
Robert HARRON et Antonio LEI

Iwasawa theory for symmetric powers of CM modular forms at
non-ordinary primes
Tome 26, no 3 (2014), p. 673-707.

<http://jtnb.cedram.org/item?id=JTNB_2014__26_3_673_0>

© Société Arithmétique de Bordeaux, 2014, tous droits réservés.

L’accès aux articles de la revue « Journal de Théorie des Nom-
bres de Bordeaux » (http://jtnb.cedram.org/), implique l’accord
avec les conditions générales d’utilisation (http://jtnb.cedram.
org/legal/). Toute reproduction en tout ou partie de cet article sous
quelque forme que ce soit pour tout usage autre que l’utilisation à
fin strictement personnelle du copiste est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://jtnb.cedram.org/item?id=JTNB_2014__26_3_673_0
http://jtnb.cedram.org/
http://jtnb.cedram.org/legal/
http://jtnb.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Journal de Théorie des Nombres
de Bordeaux 26 (2014), 673–707

Iwasawa theory for symmetric powers of CM
modular forms at non-ordinary primes

par Robert HARRON et Antonio LEI

Résumé. Soit f une forme primitive cuspidale à multiplication
complexe (CM) et soit p un nombre premier impair tel que f soit
non-ordinaire en p. Nous construisons des fonctions L p-adiques
admissibles pour les puissances symétriques de f , vérifiant ainsi
des cas particuliers de conjectures de Dabrowski et Panchishkin. À
l’aide d’un résultat récent de Benois, nous prouvons la conjecture
des zéros triviaux dans notre contexte. De plus, nous construisons
des fonctions L p-adiques plus/moins “mixtes” et obtenons une
décomposition des fonctions L p-adiques admissibles analogue à
celle de Pollack. Du côté arithmétique, nous définissons les groupes
de Selmer plus/moins mixtes correspondants et nous énonçons une
Conjecture Principale.

Abstract. Let f be a cuspidal newform with complex mul-
tiplication (CM) and let p be an odd prime at which f is non-
ordinary. We construct admissible p-adic L-functions for the sym-
metric powers of f , thus verifying conjectures of Dabrowski and
Panchishkin in this special case. We combine this with recent work
of Benois to prove the trivial zero conjecture in this setting. We
also construct “mixed” plus and minus p-adic L-functions and
prove an analogue of Pollack’s decomposition of the admissible
p-adic L-functions. On the arithmetic side, we define correspond-
ing mixed plus and minus Selmer groups and formulate the Main
Conjecture of Iwasawa Theory.

1. Introduction

This paper can be considered as a simultaneous sequel to the second
author’s article [L12] on the main conjecture for the symmetric square of a
non-ordinary CM modular form and the first author’s article [H13] on the
trivial zero conjecture for the symmetric powers of ordinary CM modular
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forms. Let f be a normalised newform of weight k ≥ 2, level Γ1(N), and
Nebentypus ε, and let ρf be the p-adic Galois representation attached to
f . The study of the Iwasawa theory of the symmetric powers of f began in
the 1980s with the symmetric square case in the work of Coates–Schmidt
and Hida (e.g. [CSch87, Sch88, Hi88, Hi90]). More precisely, they study
the adjoint representation ad0ρf ∼= Sym2ρf ⊗det−1ρf in the ordinary case,
constructing one- and two-variable analytic p-adic L-functions and stating
a main conjecture (for f corresponding to an elliptic curve). More recently,
still in the ordinary case, Urban ([U06]) has announced a proof of one divis-
ibility in the main conjecture for ad0ρf under some technical hypotheses.
For general higher symmetric powers, even Deligne’s conjecture on the alge-
braicity of special values of L-functions remains open, and consequently the
analytic p-adic L-functions interpolating these values have yet to be con-
structed. The case where f has complex multiplication is however accessible.
In the ordinary setting, the analytic p-adic L-functions were constructed
by the first author in [H13] and the trivial zero conjecture was proved there
as well. At non-ordinary primes, the second author constructed p-adic L-
functions and formulated the Main Conjecture of Iwasawa Theory for the
symmetric square in [L12]. This article deals with the non-ordinary CM
case for all symmetric powers. Specifically, we construct the analytic p-adic
L-functions for ρm := Symm ρf ⊗det−bm/2c ρf and prove the corresponding
trivial zero conjecture. We also formulate a Main Conjecture of Iwasawa
Theory in this setting and prove it in Theorem 5.9 for sufficiently large p
(depending on m and k).

To begin, Section 2 describes our notation and normalizations, while
Section 3 develops some basic facts about ρm. In Section 4, we construct
what we refer to as “mixed” plus and minus p-adic L-functions for ρm.
The construction of these proceeds as in [H13] taking advantage of the
decomposition of ρm into a direct sum of Galois representations attached
to modular forms and Dirichlet characters. Each modular form that shows
up has plus and minus p-adic L-functions constructed by Pollack in [Pol03]
and we define 2dm/2e mixed plus and minus p-adic L-functions for ρm by
independently choosing a sign for each modular form. We then use these
mixed p-adic L-functions in Section 5 to formulate the Main Conjecture of
Iwasawa Theory for ρm. This also involves defining mixed plus and minus
Selmer groups which uses the decomposition of ρm and the work of the
second author in [L11]. In Section 6, we construct 2dm/2e “admissible” p-adic
L-functions for ρm, verifying a conjecture of Dabrowski [Dab11, Conjecture
1] and Panchishkin [Pan94, Conjecture 6.2]. It should be noted that for
m ≥ 2, none of these p-adic L-functions is determined by its interpolation
property. We go on to show that the admissible p-adic L-functions can
be decomposed into a linear combination of the mixed p-adic L-functions
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and mixed p-adic logarithms analogous to the results of Pollack in [Pol03].
Finally, in Section 6.4, we locate the trivial zeroes of the admissible p-adic
L-functions of ρm and prove the related trivial zero conjecture showing
that the analytic L-invariants are given by Benois’s arithmetic L-invariant
defined in [Ben11]. This relies on recent work of Benois [Ben13] computing
the analytic and arithmetic L-invariants of modular forms at near-central
points in the crystalline case. The trivial zero phenomenon presents an
interesting feature in our situtation: the order of the trivial zero grows with
the symmetric power, thus providing examples of trivial zeroes of order
greater than one for motives for Q. This also has ramifications for a question
raised by Greenberg in [G94, p. 170]: Is the L-invariant independent of the
symmetric power? Our result shows that the answer must be no, unless
every CM modular form has L-invariant equal to 1. The latter option seems
unlikely.

Acknowledgements

We would like to thank Rob Pollack for pointing us to the article [KPZ10].
Thanks are also due to the referee for several suggestions that improved the
readability of our article and to Jay Pottharst for catching some errors.

2. Notation and conventions

2.1. Extensions by p-power roots of unity. Throughout this paper,
p is a fixed odd prime. If K is a finite extension of Q or Qp, then we write
GK for its absolute Galois group, OK for its ring of integers, and χ for the
p-adic cyclotomic character of GK . We fix an embedding ι∞ : Q → C and
write Frob∞ for the induced complex conjugation in GQ. We also fix an
embedding ιp : Q→ Qp. Let Frob` denote an arithmetic Frobenius element
at ` in GQ. If K is a number field, AK (resp., AK,f and AK,∞) denotes its
adele ring (resp., its ring of finite adeles and its ring of infinite adeles).

For an integer n ≥ 0, we write Kn for the extension K(µpn) where µpn is
the set of pnth roots of unity, and K∞ denotes

⋃
n≥1Kn. When K = Q, we

write kn = Q(µpn) instead, and when K = Qp, we write Qp,n = Qp(µpn).
Let Gn denote the Galois group Gal(Qp,n/Qp) for 0 ≤ n ≤ ∞. Then,
G∞ ∼= ∆ × Γ where ∆ = G1 is a finite group of order p − 1 and Γ =
Gal(Qp,∞/Qp,1) ∼= Zp. The cyclotomic character χ induces an isomorphism
G∞ ∼= Z×p identifying ∆ with µp−1 and Γ with 1 + pZp. We denote by
g 7→ 〈g〉 the character that projects G∞ onto the factor 1 + pZp. We fix a
topological generator γ0 of Γ.

We identify a Dirichlet character η : (Z/NZ)× → C× with a Galois
character η : GQ → Q×p via η(Frob`) = ιpι

−1
∞ η(`) noting that η(Frob∞) =

η(−1).
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2.2. Iwasawa algebras and power series. Given a finite extension E of
Qp, ΛOE (G∞) (resp., ΛOE (Γ)) denotes the Iwasawa algebra of G∞ (resp., Γ)
over OE . We write ΛE(G∞) = ΛOE (G∞)⊗OE E and ΛE(Γ) = ΛOE (Γ)⊗OE
E. There is an involution f 7→ f ι on each of these algebras given by sending
each group element to its inverse. IfM is a finitely generated ΛE(Γ)-torsion
module, we write CharΛE(Γ)(M) for its characteristic ideal. The Pontryagin
dual of M is written as M∨.

Given a module M over ΛOE (G∞) or ΛE(G∞) and a character ν : ∆→
Z×p , Mν denotes the ν-isotypical component of M . Explicitly, there is an
idempotent πν ∈ ΛOE (G∞) given by

πν = 1
p− 1

∑
σ∈∆

ν(σ)σ−1

that projectsM ontoMν . If m ∈M , we sometimes write mν for πνm. Note
that the character group of ∆ is generated by the Teichmüller character
ω := χ|∆.

Let r ∈ R≥0. We define

Hr =

 ∑
n≥0,σ∈∆

cn,σ · σ ·Xn ∈ Cp[∆]JXK : sup
n

|cn,σ|p
nr

<∞, for all σ ∈ ∆


where | · |p is the p-adic norm on Cp such that |p|p = p−1. We write H∞ =
∪r≥0Hr and Hr(G∞) = {f(γ0 − 1) : f ∈ Hr} for r ∈ R≥0 ∪ {∞}. In other
words, the elements of Hr (respectively Hr(G∞)) are the power series in X
(respectively γ0 − 1) over Cp[∆] with growth rate O(logrp).

Given a subfield E of Cp, we write Hr,E = Hr ∩ E[∆]JXK and similarly
for Hr,E(G∞). In particular, H0,E(G∞) = ΛE(G∞).

Let n ∈ Z. We define the E-linear map Twn from Hr,E(G∞) to itself to
be the map that sends σ to χ(σ)nσ for all σ ∈ G∞. It is clearly bijective
(with inverse Tw−n).

If h =
∑

n≥0,σ∈∆
cn,σ · σ · (γ0 − 1)n ∈ H∞(G∞) and λ ∈ Homcts(G∞,C×p ),

we write
λ(h) =

∑
n≥0,σ∈∆

cn,σ · λ(σ) · (λ(γ0)− 1)n ∈ Cp.

2.3. Crystalline representations and Selmer groups. Let Bcris ⊆
BdR be the rings of Fontaine (for Qp) and ϕ for the Frobenius acting on
Bcris.

Let V be an E-linear p-adic representation of GQ for some finite exten-
sion E/Qp. We denote the crystalline Dieudonné module and its dual by
Dcris(V ) = HomQp[GQp ](V,Bcris) and D̃cris(V ) = (Bcris ⊗ V )GQp respectively.
We say that V is crystalline if V has the same Qp-dimension as Dcris(V ).
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Fix such a V . If j ∈ Z, Filj Dcris(V ) denotes the jth de Rham filtration of
Dcris(V ).

Let T be a lattice of V which is stable under GQ and let A = V/T . If K
is a number field and v is a place of K, we define

H1
f (Kv, V ) :=

{
ker
(
H1(Kv, V )→ H1(Iv, V )

)
if v - p

ker
(
H1(Kv, V )→ H1(Kv, V ⊗Qp Bcris)

)
if v | p

where Iv denotes the inertia subgroup at v. The local condition H1
f (Kv, A)

is defined as the image of the above under the map induced by V → A.
We define the Selmer group of A over K to be

H1
f (K,A) := ker

(
H1(K,A)→

∏
v

H1(Kv, A)
H1
f (Kv, A)

)
where v runs through the places of K.

We write V (j) for the jth Tate twist of V , i.e. V (j) = V ⊗ Eej where
GQp acts on ej via χj . The Tate dual of V (respectively T ) is V ∗ :=
Hom(V,E(1)) (respectively T ∗ := Hom(T,OE(1))). We write A∗ = V ∗/T ∗.

2.4. Imaginary quadratic fields. LetK be an imaginary quadratic field
with ring of integers O. We write εK for the quadratic character associated
to K, i.e. the character on GQ which sends σ to 1 if σ ∈ GK and to −1
otherwise.

A Hecke character of K is simply a continuous homomorphism ψ : A×K →
C× that is trivial on K×. Its complex L-function is

L(ψ, s) =
∏
v

(1− ψ(v)N(v)−s)−1

where the product runs through the finite places v of K at which ψ is
unramified, ψ(v) is the image of the uniformiser of Kv under ψ, and N(v)
is the norm of v. We say that ψ is algebraic of type (m,n) where m,n ∈ Z if
the restriction of ψ to A×K,∞ is of the form z 7→ zmz̄n. All Hecke characters
are tacitly assumed to be algebraic in what follows.

Let E be a finite extension of Qp that contains the image of ιpι−1
∞ ψ|A×

K,f
.

We write Vψ for the one-dimensional E-linear representation of GK nor-
malised so that at finite places v relatively prime to p and the conductor
of ψ, the action of Frobv is via multiplication by ψ(v). We write Ṽψ =
IndQ

K(Vψ).

2.5. Modular forms. We will use the term newform to mean a holomor-
phic modular form of integral weight ≥ 2, level Γ1(N), and Nebentypus
character ε which is a normalised cuspidal eigenform for the Hecke alge-
bra generated by all Hecke operators T` (` - N) and U` (` | N) and is an
element of the new subspace. Let f =

∑
anq

n be such a newform. Unless
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stated otherwise, we assume that f is a CM modular form which is good
and non-ordinary at p, i.e.

L(f, s) =
∑

an(f)n−s = L(ψ, s)
for some Hecke character ψ of an imaginary quadratic field K with p inert
in K and p - N . Then, εK(p) = −1 and we normalise our choice of ψ such
that it is of type (k − 1, 0). In this case, ap(f) is always 0 since f is CM.

We write E for the completion in Qp of the extension of Qp generated
by the image of ιpι−1

∞ ψ|A×
K,f

. The coefficient field of f is contained in E.
We write Vf for the dual of the 2-dimensional E-linear representation of

GQ associated to f inside the cohomology of a Kuga–Sato variety by [D69],
so we have a homomorphism ρf : GQ → GL(Vf ) with det(ρf ) = εχk−1.
Moreover, Vf ∼= Ṽψ.

3. The symmetric power of a modular form

Let f be a CM newform as in Section 2.5. Let m ≥ 1 be an integer. In
this section, we collect basic results on the representation Symm(Vf ), as
well as the main representation of interest in this article, Vm. Throughout
this article, we let r := bm/2c and r̃ := dm/2e.
Proposition 3.1. If m is even, we have

Symm(Vf ) ∼=
r̃−1⊕
i=0

(
Ṽψm−2i ⊗ (εK det ρf )i

)
⊕ (εK det ρf )r

as GQ-representations. If m is odd, then

Symm(Vf ) ∼=
r̃−1⊕
i=0

(
Ṽψm−2i ⊗ (εK det ρf )i

)
.

Proof. See either [H13, Section 2] or [L12, Proposition 5.1]. �

Definition 3.2. We define for all m ≥ 1 the representation
Vm = Symm(Vf )⊗ det(ρf )−r.

Note that V2 ∼= ad0(Vf ).
Corollary 3.3. As GQ-representations, we have an isomorphism

Vm ∼=
r̃−1⊕
i=0

(
Ṽψm−2i ⊗

(
εiKε

i−rχ(i−r)(k−1)
) )
⊕ εrK

when m is even. If m is odd,

Vm ∼=
r̃−1⊕
i=0

(
Ṽψm−2i ⊗

(
εiKε

i−rχ(i−r)(k−1)
) )
.
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Proof. Recall that det(ρf ) ∼= εχk−1, so this is immediate from Proposi-
tion 3.1. �

Proposition 3.4. For 0 ≤ i ≤ r̃−1, there exist CM newforms fi of weight
(m− 2i)(k − 1) + 1 such that

Vm ∼=
r̃−1⊕
i=0

(
Vfi ⊗ χ

(i−r)(k−1)
)
⊕ εrK

when m is even and

Vm ∼=
r̃−1⊕
i=0

Vfi ⊗ χ
(i−r)(k−1)

when m is odd. Moreover, these fi have CM by K, level prime to p, and
are non-ordinary at p.

Proof. This is discussed in [H13, Proposition 2.2]. Since ψm−2i is a Grossen-
character of type ((m − 2i)(k − 1), 0), it corresponds to a CM form f ′i of
weight (m − 2i)(k − 1) + 1 by [Rib77, Theorem 3.4]. Therefore, we may
take fi to be the newform whose Hecke eigenvalues agree with those of
f ′i ⊗ εiKεi−r outside of the level of f ′i and the conductor of εiKεi−r. It is CM
because it corresponds to the Grossencharacter ψm−2i ⊗ εiKεi−r.

Since p does not divide the conductor of ψm−2i, we see that the level of
f ′i is not divisible by p. The conductor of εiKεi−r is coprime to p, too, hence
the level of fi is also prime to p. Since p is inert in K, fi is non-ordinary
at p. �

Corollary 3.5. The complex L-function admits a decomposition

L(Vm, s) =

r̃−1∏
i=0

L (fi, s+ (r − i)(k − 1))

 · {L(εrK , s) m even,
1 m odd.

Now, we discuss the Hodge theory of Vm at ∞ and describe its critical
twists. Recall that the Hodge structure1 of Vf is of the formH0,k−1⊕Hk−1,0,
with each summand one-dimensional. Taking symmetric powers, we see that
the Hodge structure of Symm(Vf ) is of the form

m⊕
a=0

Ha(k−1),(m−a)(k−1)

with each summand one-dimensional. In particular, if m is even, there is a
“middle” term Hr(k−1),r(k−1) and to specify the Hodge structure we must

1To be precise, when referring to the Hodge structure of a Galois representation, we really
mean that of the motive giving the dual Galois representation. We do this so that our Hodge
structure computations are in line with those of [D79]. Indeed, we define the L-function of V in
terms of arithmetic Frobenius, the dual of Deligne’s definition. These two duals then cancel out.
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also say how the “complex conjugation” involution, denoted F∞, acts on
this term: it acts trivially. When we twist by det(ρf )−r, this shifts the
indices by −r(k − 1) and, when m is even, twists the action of F∞ on the
middle term by

det(ρf )−r(Frob∞) =
(
ε(−1)(−1)(k−1)

)−r
=
(
(−1)k(−1)(k−1)

)r
= (−1)r.

We have thus proved the following.

Lemma 3.6. The Hodge structure of Vm is
m⊕
a=0

H−(r−a)(k−1),(r̃−a)(k−1)

with each summand one-dimensional. If m is even, then F∞ acts on H0,0

by (−1)r.

Therefore, if d± denotes the dimension of the part of the Hodge structure
of Vm on which F∞ acts by ±1, then

d+ =
{
r if m ≡ 2 (mod 4)
r + 1 otherwise,

(3.1)

d− =
{
r if m ≡ 0 (mod 4)
r + 1 otherwise.

(3.2)

From this, we can determine the critical twists of Vm (in the sense of
[D79]).

Lemma 3.7. Let Cm denote the set of all pairs (θ, j) such that Vm ⊗ θχj
is critical, where θ is a Dirichlet character of p-power conductor. Then,

Cm = {(θ, j) : −(k − 1) + 1 ≤ j ≤ (k − 1) and
θχj(−1) = sgn(j − 1/2)(−1)r}

if m is even. Otherwise,
Cm = {(θ, j) : 1 ≤ j ≤ k − 1} .

Proof. The integers j are forced to lie between
max{a : Ha,b 6= 0 with a < b}+ 1 and min{a : Ha,b 6= 0 with a > b}.

When there is a non-zero Ha,b with a = b, there is an additional condition
depending on the parity of θχj and the sign of j − 1

2 (i.e. whether j is
positive or non-positive) which is determined by the action of F∞. This
occurs when m is even. We leave the details to the reader. �
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We remark that this lemma holds without the requirement that θ have
p-power conductor.

Recall that the Hodge polygon PH(x, Vm) (viewed as a function of x ∈
[0, dim(Vm)]) is the convex piecewise-linear function whose segment of slope
a has horizontal length dimHa,b. The vertices of the Hodge polygon of Vm
are as follows.

Lemma 3.8. For a = 0, 1, . . . ,m,

PH(a+ 1, Vm) = (k − 1)
((a+ 1)(a− 2r)

2

)
.

Proof. Since each piece of the Hodge decomposition of Vm has dimension
one, the y-coordinate at the end of the ath segment is

a∑
c=0
−(r − c)(k − 1).

The result follows from evaluating this sum. �

This whole discussion of the Hodge theory at ∞ holds for any newform
(as we have used the term).

We will also require knowledge of the Hodge theory of Vm at p.

Lemma 3.9. If m is even, the eigenvalues of ϕ on Dcris(Vm) are ±1 with
multiplicity d±. When m is odd, the eigenvalues are ±α each with multi-
plicity d± = r̃, where ±α are the roots of x2 + ε(p)pk−1.

Proof. Let α and α be the roots of x2 + ε(p)pk−1, so that α = −α. It
follows from work of Saito ([Sai97]) that α and α are the eigenvalues of ϕ
on Dcris(Vf ). Therefore, there is a basis of Dcris(Symm(Vf )) in which ϕ is
diagonal with entries αaαm−a for a = 0, 1, . . . ,m. Twisting by det(ρf )−r
translates into multiplying this matrix by (αα)−r. Ifm is even, the diagonal
entries become

(
α
α

)a for a = −r̃,−r + 1, . . . , r. For m odd, the diagonal
entries become α

(
α
α

)a for a = −r̃,−r, . . . , r. The result follows. �

We remark that this lemma holds without the assumption that f is CM
as long as ap(f) = 0.

It is not necessary, but convenient, to use the decomposition of Propo-
sition 3.4 in order to determine the filtration on Dcris(Vm). We obtain the
following description of Dcris(Vm).

Lemma 3.10. If m is even, there is a basis v, v0, v0, v1, v1, . . . , vr̃−1, vr̃−1
of Dcris(Vm) such that

ϕ(v) = (−1)rv,
ϕ(vj) = vj ,
ϕ(vj) = −vj
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and, for j = −r,−r + 1, . . . , r̃, the graded piece grj(k−1) Dcris(Vm) is gener-
ated by the image of 

vr+j if j < 0,
v if j = 0,
vr̃−j + vr̃−j if j > 0.

If m is odd, there is a basis v0, v0, v1, v1, . . . , vr̃−1, vr̃−1 of Dcris(Vm) such
that

ϕ(vj) = αvj ,
ϕ(vj) = −αvj

and, for j = −r,−r + 1, . . . , r̃, the graded piece grj(k−1) Dcris(Vm) is gener-
ated by the image of {

vr+j if j ≤ 0,
vr̃−j + vr̃−j if j > 0.

Proof. Suppose m is even. The crystalline Dieudonné module of a Dirichlet
character η (of prime-to-p conductor) has Hodge–Tate weight 0 and ϕ acts
by η(p). Let v be a basis of Dcris(εrK). For i = 0, 1, . . . , r̃ − 1, let v′i, v′i be a
basis of Dcris(Vfi) in which the action of ϕ is diagonal. Since fi has weight
2(r− i)(k−1)+1, its crystalline Dieudonné module Dcris(Vfi) has non-zero
graded pieces in degrees 0 and 2(r− i)(k− 1). Furthermore, its filtration is
determined by the degree 2(r− i)(k− 1) piece. In order for the Dieudonné
module to be weakly admissible, this piece cannot contain either v′i or v′i;
therefore, up to rescaling,

Fil2(r−i)(k−1) Dcris(Vfi) = 〈v′i + v′i〉.
Twisting by −(r− i)(k−1) shifts the filtration so that it drops into degrees
±(r − i)(k − 1). Let vi, vi denote the twisted basis. Given what we know
from lemma 3.9, ϕ(vi) = ±vi and ϕ(vi) = ±vi. Up to reordering, ϕ(vi) = vi
and ϕ(vi) = −vi, since the Frobenius eigenvalues of Vfi are negatives of
each other (since ap(fi) = 0). The result follows from the decomposition of
Proposition 3.4. The proof when m is odd is along the same lines and we
leave it to the reader. �

Therefore, the dimension of the de Rham tangent space tdR(Vm) :=
Dcris(Vm)/Fil0 Dcris(Vm) is d+ − 1, unless m ≡ 2 (mod 4), in which case
it is d+. Recall that the Newton polygon PN (x, Vm) is the piecewise-linear
increasing function whose segment of slope λ has length equal to the num-
ber of eigenvalues of ϕ whose valuation is λ. The following lemma follows
immediately from the previous lemma.
Lemma 3.11. If m is even, the Newton polygon of Vm is the horizontal
line from (0, 0) to (m + 1, 0). When m is odd, it is the straight line from
(0, 0) to

(
m+ 1, (k−1)(m+1)

2

)
.
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4. Plus and minus p-adic L-functions

4.1. Some known p-adic L-functions. In this section, we review some
facts concerning the p-adic L-functions of Dirichlet characters and new-
forms, as well as Pollack’s plus and minus p-adic L-functions of newforms.

The following is a consequence of classical results of Kubota–Leopoldt
and Iwasawa ([KL64, Iw72]).

Theorem 4.1. If η is a non-trivial Dirichlet character of conductor fη
prime to p (resp. the trivial character 1) and E/Qp contains the values of
η, then there exists a unique Lη ∈ ΛOE (G∞) (resp. L1 with (γ0 − 1)(γ0 −
χ(γ0))L1 ∈ ΛOE (G∞)) such that

θχj(Lη) = eη(θ, j)
L(ηθ−1, j)
Ωη(θ, j)

for any integer j and Dirichlet character θ of conductor pn satisfying

θχj(−1) = sgn
(
j − 1

2

)
η(−1)

where

eη(θ, j) =
(
pj

η(p)

)n
·
{(

1− pj−1(η−1θ)(p)
)

if θχj(−1) = η(−1), j ≥ 1,(
1− p−j(ηθ−1)(p)

)
if θχj(−1) = −η(−1), j ≤ 0,

1
Ωη(θ, j)

=


2Γ(j)fjη

τ(θ−1)(−2πi)jθ(fη)τ(η) if θχj(−1) = η(−1), j ≥ 1,(
pj

η(p)

)−n
if θχj(−1) = −η(−1), j ≤ 0,

and τ denotes the Gauss sum of the given character.

Proof. Let us briefly sketch the construction of these elements. The work
of Iwasawa in [Iw72, Chapter 6], building upon the main result of [KL64],
attaches to a non-trivial even Dirichlet character ξ of conductor not divis-
ible by p2 an Iwasawa function LKL

ξ ∈ ΛOE (Γ) (for any E containing the
values of ξ) such that

(χ/ω)n(LKL
ξ ) =

(
1− (ξωn−1)(p)p−n

)
L(n, ξωn−1)

for all n ∈ Z≤0. When ξ = 1, Iwasawa constructs LKL
1 ∈ Frac(ΛZp(G∞))

such that (γ0−χ(γ0))LKL
1 ∈ ΛZp(G∞) with the same interpolation property.

We write
Lη =

∑
a∈Z/(p−1)Z

πωaLη,a,
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where πωa are the idempotents defined in §2.2 and where

Lη,a :=

Tw1
((
LKL
η−1ωa

)ι)
if η(−1) = (−1)a,

LKL
ηω1−a if η(−1) = −(−1)a.

�

Next, we recall the existence of p-adic L-functions for newforms.

Theorem 4.2. Let f be a newform of level prime to p. Let α be a root of
x2 − ap(f)x+ ε(p)pk−1such that h := ordp(α) < k − 1 and let α denote the
other root. There exist Ω±f ∈ C× and Lf,α ∈ Hh,E(G∞) such that for all
integers j ∈ [1, k − 1] and Dirichlet characters θ of conductor pn, we have

θχj(Lf,α) = ef,α(θ, j)L(f, θ−1, j)
Ωf (θ, j)

where

ef,α(θ, j) =
(
pj

α

)n (
1− θ−1(p)αp−j

)(
1− θ(p)pj−1

α

)
,

and
1

Ωf (θ, j) = Γ(j)
τ(θ−1)(−2πi)jΩδ

f

,

where δ = (−1)jθ(−1). Moreover, Lf,α is uniquely determined by its values
at θχj given above.

Proof. This is the main result of [AV75]. �

We now recall Pollack’s construction of plus and minus p-adic L-functions
in [Pol03]. The plus and minus logarithms are defined as follows.

Definition 4.3. Let b ≥ 1 be an integer and define2

log+
b =

b∏
a=1

∞∏
n=1

Φ2n(χ(γ0)−aγ0)
p

,

log−b =
b∏

a=1

∞∏
n=1

Φ2n−1(χ(γ0)−aγ0)
p

,

where Φm denotes the pmth cyclotomic polynomial.

2We take a different normalization than Pollack does. In [Pol03, Corollary 4.2], he attaches to
an f of weight k two elements that we denote here log±Pollack which are related to our logarithms
by

log±
k−1 = pk−1 Tw−1 log±Pollack .
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Recall that log±b ∈ H b
2
(G∞) and that the zeroes of log+

b (resp., log−b ) are
simple and located at χjθ for all integers j ∈ [1, b] and for all θ of conductor
p2n+1 (resp., p2n) for positive integers n.

The following is the main result of [Pol03].

Theorem 4.4. Let f and α be as in Theorem 4.2 with ap(f) = 0. There
exist L±f ∈ ΛE(G∞) (independent of α) such that

Lf,α = L+
f log+

k−1 +αL−f log−k−1 .

In particular, if α and α are the two roots to x2 + ε(p)pk−1 = 0, we have
α = −α and

(4.1)
L+
f = αLf,α − αLf,α

(α− α) log+
k−1

,

L−f = Lf,α − Lf,α
(α− α) log−k−1

.

Therefore, we can readily combine Theorems 4.2 and 4.4 to obtain the
interpolating formulae of L±f as follows.

Lemma 4.5. Let j ∈ [1, k− 1] be an integer and θ a Dirichlet character of
conductor pn > 1. Write δ as in Theorem 4.2. If n is even, then

θχj(L+
f ) = 1

(−ε(p))n/2pn( k−1
2 −j)θχj(log+

k−1)
· L(f, θ−1, j)

Ωf (θ, j) ,

and if n = 1,

θχj(L+
f ) = 0.

For all odd n, we have

θχj(L−f ) = 1
(−ε(p))(n+1)/2pn( k−1

2 −j)+
k−1

2 θχj(log−k−1)
· L(f, θ−1, j)

Ωf (θ, j) .

Moreover,

χj(L+
f ) = 1− p−1

χj(log+
k−1)

· L(f, j)
Ωf (1, j) ,

χj(L−f ) = p−j + ε(p)−1pj−k

χj(log−k−1)
· L(f, j)

Ωf (1, j) .
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Proof. As a sample calculation, for L−f we have

θχj(L−f ) = (ef,α(θ, j)− ef,α(θ, j)) · L(f, θ−1, j)
(α− α)θχj(log−k−1)Ωf (θ, j)

=
((

pj

α

)n
−
(
pj

α

)n)
· L(f, θ−1, j)

(−2α)θχj(log−k−1)Ωf (θ, j)

=
(

2pnj

(−α)n

)
· L(f, θ−1, j)

(−2α)θχj(log−k−1)Ωf (θ, j)

=
(

pnj

(−α)n+1

)
· L(f, θ−1, j)
θχj(log−k−1)Ωf (θ, j)

=
(

pnj

(−αα)
n+1

2

)
· L(f, θ−1, j)
θχj(log−k−1)Ωf (θ, j)

=
(

pnj

(−αα)
n+1

2

)
· L(f, θ−1, j)
θχj(log−k−1)Ωf (θ, j)

,

which gives the result. �

Remark 4.6.
(i) For a fixed j, L±f is uniquely determined by θχj(L+

f ) for an infi-
nite number of θ since it is in ΛE(G∞). Therefore, it is uniquely
determined by the interpolating properties given in Lemma 4.5.

(ii) The interpolation property for the other n is not known because
log±k−1 vanishes there. To distinguish the above characters, θχj will
be called a plus-critical twist (resp., a minus-critical twist) of f if
1 ≤ j ≤ k − 1 with θ of conductor pn with n = 1 or even (resp.,
with n = 0 or odd).

(iii) It is clear from the lemma that L+
f vanishes at the plus-critical twist

θχj if and only if θ has conductor p or the complex L-value vanishes
at the central point. Furthermore, L−f vanishes at the minus-critical
twist θχj if and only if k is even, ε(p) = −1, θ = 1, and j = k

2
(the central point) or the complex L-value vanishes at the central
point.

For notational simplicity later on, we define the following.

Definition 4.7. Let j ∈ [1, k−1] be an integer and θ a Dirichlet character
of conductor pn with n ≥ 0. We define

e+
f (θ, j) =


1− θ(p)p−1

(−ε(p))n/2pn( k−1
2 −j)θχj(log+

k−1)
if n is even,

0 if n = 1.
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Similarly, we define

e−f (θ, j) =


1

(−ε(p))(n+1)/2pn( k−1
2 −j)+

k−1
2 θχj(log−k−1)

if n is odd,

p−j + ε(p)−1pj−k

χj(log−k−1)
if n = 0.

4.2. Mixed plus and minus p-adic L-functions for Vm. We now de-
fine mixed plus and minus p-adic L-functions for Vm with the decomposition
of Corollary 3.5 in mind.

Let S denote the set of all choices of ± for i = 0, 1, . . . , r̃ − 1, so that
#S = 2r̃. For s ∈ S, let si denote the ith choice and let s± denote the
number of plusses and minuses, respectively.

Definition 4.8. Let fi be the modular forms as given in Proposition 3.4.
For an s ∈ S, define

Ls
Vm =

r̃−1∏
i=0

Tw(r−i)(k−1)
(
Lsi
fi

) · {LεrK m even,
1 m odd.

Remark 4.9. We have that Ls
Vm
∈ ΛE(G∞) for m odd; whereas if m

is even, then Ls
Vm
∈ ΛE(G∞) unless 4|m, in which case (γ0 − 1)(γ0 −

χ(γ0))Ls
Vm
∈ ΛE(G∞).

Definition 4.10. If θ is a Dirichlet character of conductor pn, j ∈ Z, and
s ∈ S, then the character θχj will be called s-critical (for Vm) if (θ, j) ∈ Cm
and 

n = 1 or is even if s− = 0,
n = 0 or is odd if s+ = 0,
n = 0 or 1 otherwise.

For s ∈ S and for s-critical θχj, define

esVm(θ, j) :=

r̃−1∏
i=0

esifi(θ, j + (r − i)(k − 1))

 · {eεrK (θ, j) m even,
1 m odd.

For all (θ, j) ∈ Cm, let

Ωm(θ, j) :=

r̃−1∏
i=0

Ωfi(θ, j + (r − i)(k − 1))

 · {ΩεrK
(θ, j) m even,

1 m odd.

Theorem 4.11. Let s ∈ S. If θχj is s-critical, then

θχj
(
Ls
Vm

)
= esVm(θ, j)L(Vm, θ−1, j)

Ωm(θ, j) .
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Proof. This follows from the definitions together with Theorem 4.1 and
Lemma 4.5. �

Let ωa be a character on ∆. If Ls
Vm

=
∑
σ∈∆,n≥0 aσ,nσ(γ0 − 1)n, the

ωa-isotypical component of Ls
Vm

is given by

Ls,ωa

Vm
:= πωa · Ls

Vm = πωa
∑
n≥0

∑
σ∈∆

aσ,nη(σ)

 (γ0 − 1)n.

Therefore,

θχj
(
Ls,ωa

Vm

)
=

θχj
(
Ls
Vm

)
if θχj |∆ = ωa,

0 otherwise.

Proposition 4.12. Let ωa be a character on ∆. We have Ls,ωa

Vm
6= 0. More-

over, if either of s+ or s− vanishes, it is uniquely determined by its inter-
polation property given by Theorem 4.11.

Proof. The proof of [L11, Lemma 6.5] shows that L±,ω
a

fi
6= 0 for all i.

Furthermore, it is known that LωaεrK 6= 0. The same then follows for Ls,ωa

Vm

by definition. The uniqueness is immediate since Ls,ωa

Vm
∈ πωaΛE(G∞) (or

possibly its field of fractions) and when s consists of only plusses or minuses,
there is at least one j for which there are infinitely many θ such that θχj
is s-critical. �

5. Selmer groups and the Main Conjecture of Iwasawa Theory

In this section, we formulate the Main Conjecture of Iwasawa Theory
for Vm. Since we are in the non-ordinary setting, this involves a relation
between the mixed plus and minus p-adic L-functions introduced in the pre-
vious section and the mixed plus and minus Selmer groups that we define
below. We once again take advantage of the decomposition of Proposi-
tion 3.4 to define these Selmer groups of Vm as the direct sum of the plus
and minus Selmer groups of the εrK and Vfi . The latter were defined by the
second author in [L11, Section 4]. We then apply the results of Mazur–Wiles
[MzW84] and [L11, Section 7].

5.1. Selmer groups. Fix a GQ-stable OE-lattice Tψ of Vψ. It gives rise
to natural OE-lattices Tψm−2i for 0 ≤ i ≤ r̃ − 1, which in turn give rise to
natural OE-lattices Tfi in Vfi which are stable under GQ. Write VεrK (resp.
TεrK ) for the representation over E (resp. OE) associated to εrK when m is
even. Let Afi = Vfi/Tfi , and Aεm/2

K

= V
ε
m/2
K

/T
ε
m/2
K

. We briefly remind the
reader about the Selmer groups of A∗1, A∗εK , and A

∗
fi
.

Let θ denote 1 or εK and let F = Q or K, respectively. Classical
Iwasawa theory studies the modules X∞ := Gal(M∞/F∞), where M∞
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is the maximal p-abelian extension of F∞ unramified outside of p, and
Y∞ := Gal(L∞/F∞), where L∞ is the maximal p-abelian extension of F∞
everywhere unramified. The arguments of [G89, Section 1] show that, as
Gal(F∞/Q)-modules,

(5.1) H1
f (F∞, A∗θ) ∼= Homcts(X∞, A∗θ)

and
(5.2) H1

f (F∞, Aθ) ∼= Homcts(Y∞, Aθ).3

In order to get the Selmer group over k∞ when θ = εK , we take the εK-
isotypic piece (for the action of Gal(F∞/k∞)). Thus,

(5.3) H1
f (k∞, A∗θ) ∼= Homcts(X∞, A∗θ)θ.

and
(5.4) H1

f (k∞, Aθ) ∼= Homcts(Y∞, Aθ)θ.
We define
(5.5) Selk∞(A∗θ) := π+ ·H1

f (k∞, A∗θ(−1))(1) + π− ·H1
f (k∞, A∗θ),

where
π± =

∑
a∈Z/(p−1)

θ(−1)=±(−1)a

πωa .

For comments on this definition, see Remark 5.4
We now make an additional hypothesis.

Hypothesis 5.1. For 0 ≤ i ≤ r̃ − 1, we have (p+ 1) - (m− 2i)(k − 1).

Lemma 5.2. If Hypothesis 5.1 holds, then
(
A∗fi(j)

)GQp,n = 0 for all 0 ≤
i ≤ r̃ − 1, j ∈ Z and n ∈ Z≥0.

Proof. Recall that fi is of weight (m−2i)(k−1)+1, so Hypothesis 5.1 implies
[L11, Assumption (2)]. Therefore, the result follows from [L11, Lemma 4.4].

�

As in [L11, Section 4], the restriction map H1(Qp,ν , T
∗
fi

)→ H1(Qp,n, T
∗
fi

)
is injective for any integers n ≥ ν ≥ 0. On identifying the former as a
subgroup of the latter, we define

(5.6) H1,±
f (Qp,n, T

∗
fi) =

{
x ∈ H1

f (Qp,n, T
∗
fi) : corn/ν+1(x) ∈ H1

f (Qp,ν , T
∗
fi)

for all ν ∈ S±n
}

3More precisely, Greenberg relates the right-hand side to his Selmer group. Appealing to
Proposition 4.2 of [Och00] then shows that the left-hand side has finite index in the right-hand
side. It is an old result of Iwasawa’s that the latter has no proper finite index submodules.
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where cor denotes the corestriction map and
S+
n = {ν ∈ [0, n− 1] : ν even},
S−n = {ν ∈ [0, n− 1] : ν odd}.

Let
H1,±
f (Qp,n, A

∗
fi) = H1,±

f (Qp,n, T
∗
fi)⊗ E/OE ⊂ H

1
f (Qp,n, A

∗
fi).

The plus and minus Selmer groups over kn = Q(µpn) are defined by

H1,±
f (kn, A∗fi) = ker

H1
f (kn, A∗fi)→

H1(Qp,n, A
∗
fi

)
H1,±
f (Qp,n, A∗fi)


and those over k∞ = Q(µp∞) are defined by

H1,±
f (k∞, A∗fi) = lim

−→
H1,±
f (kn, A∗fi),

which can be identified as a subgroup of H1(k∞, A∗fi). For j = 0, 1, . . . , (m−
2i)(k − 1) − 1, we may identify H1

f (k∞, A∗fi) with H1
f (k∞, A∗fi(j)) by mul-

tiplying a cocycle of H1
f (k∞, A∗fi) by ej (note that this does not give us a

ΛZp(Γ)-isomorphism since the actions of ΛZp(Γ) differ by Twj).
We use this to define the Tate twisted plus and minus Selmer groups of

A∗fi(j) by

(5.7) H1,±
f (k∞, A∗fi(j)) := H1,±

f (k∞, A∗fi) · ej .
Now,

Tm :=

r̃−1⊕
i=0

Tfi((i− r)(k − 1))

⊕ {TεrK m even
0 m odd

is a GQ-stable OE-lattice in Vm. Let Am = Vm/Tm. Since Selmer groups
decompose under direct sums, we make the following definition for the
mixed plus and minus Selmer groups of A∗m.

Definition 5.3. Let s ∈ S. Under Hypothesis 5.1, we define Selsk∞(A∗m) to
be r̃−1⊕

i=0
H1,si
f

(
k∞, A

∗
fi ((r − i)(k − 1))

)⊕ {Selk∞(A∗εrK ) m even
0 m odd

Remark 5.4. The definition of the Selmer group in the Dirichlet character
case may seem odd at first and, when m is even, it may seem strange
that the modular forms are not given the same treatment in the definition
of Selsk∞(A∗m). We make a few comments to clarify this situation. First,
the complications arise because we insist on defining our Selmer groups
over k∞ as opposed to the cyclotomic Zp-extension of Q. While this is
commonly done when discussing modular forms, it is quite rarely done for
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Dirichlet characters exactly because of the parity issues we circumvent with
our definitions (both of the Selmer groups in this section and the analytic
p-adic L-functions of Theorem 4.1). Second, concerning the modular forms
when m is even, the definition in (5.7) shows that

H1,si
f

(
k∞, A

∗
fi ((r − i)(k − 1)) (−1)

)
(1) ∼= H1,si

f

(
k∞, A

∗
fi ((r − i)(k − 1))

)
,

so that defining the Selmer groups of the fi using the π± as in the Dirichlet
character case would actually yield isomorphic Selmer groups.

5.2. Main conjectures. We begin by recalling the results of [MzW84,
L11] on the main conjectures for Dirichlet characters and CM newforms.

Write
L1,a = Fa

Ga
with Fa, Ga ∈ ΛZp(Γ) and

Ga =


γ0 − 1 a = 0,
γ0 − 〈γ0〉 a = 1,
1 otherwise.

To streamline the statement of the main conjecture, let

L̃1 :=
∑

a∈Z/(p−1)Z
πωaFa

and L̃εK := LεK . The results of Mazur and Wiles are equivalent to the
following theorem.

Theorem 5.5 ([MzW84]). Let θ = 1 or εK . Then, for all a ∈ Z/(p− 1)Z,

CharΛZp (Γ)
((

Selk∞(A∗θ)∨
)ωa) =

(
(Tw1(L̃θ))ω

a
)
.

Proof. Since (Tw1(L̃θ))ω
a = Tw1(L̃θ,a+1), the definition of L̃θ together with

the results of Mazur–Wiles show that the right-hand isTw1
(
CharΛZp (Γ)

(
Y θωa+1
∞

))
if θ(−1) = (−1)a

Tw1
(
CharΛZp (Γ)

(
Xθωa+1
∞

))
if θ(−1) = −(−1)a.

We then use that fact that (M(j))ωa ∼= (Mωa−j )(j) for G∞-modulesM and
that CharΛZp (Γ)(M(j)) = Tw−j(CharΛZp (Γ)(M)) for Γ-modulesM , together
with equations (5.3) and (5.4), to confirm that we have simply rephrased
the results of [MzW84]. �

Let

L̃±fi :=
∑

a∈Z/(p−1)Z

πωaL
±
fi

Tw−1
(
l±fi,a

) ,
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where l±fi,a generate the images of the plus and minus Coleman maps, as
explained in the appendix. The following is a consequence of the work of
the second author combined with that of [KPZ10].

Theorem 5.6 ([L11, Section 6]). Assume Hypothesis 5.1. Then, for all

a ∈ Z/(p−1)Z, the module
(
H1,±
f

(
k∞, A

∗
fi

((r − i)(k − 1))
)∨)ωa

is ΛE(Γ)-
torsion and

CharΛE(Γ)

((
H1,±
f

(
k∞, A

∗
fi((r − i)(k − 1))

)∨)ωa)
=(

(Tw(r−i)(k−1)+1(L̃±fi))
ωa
)
.

In particular, Kato’s main conjecture for fi holds.

Remark 5.7. In both [PolRu04] and [L11], the main conjecture was only
proved for the case where a = 0 and fi is defined over Q with K having
class number 1, but using the techniques developed in [KPZ10], the same
proof in fact works for general a and fi.

For s ∈ S, define

L̃s
Vm =

r̃−1∏
i=0

Tw(r−i)(k−1)
(
L̃si
fi

) · {L̃εrK m even,
1 m odd.

We are now ready to formulate the Main Conjecture of Iwasawa Theory for
Vm.

Conjecture 5.8. For all s ∈ S and a ∈ Z/(p− 1)Z, we have equality

CharΛE(Γ)
((

Selsk∞(A∗m)∨
)ωa) =

(
(Tw1(L̃s

Vm))ωa
)
.

We have the following result towards this conjecture.

Theorem 5.9. Assume Hypothesis 5.1. Then, for all s ∈ S and a ∈ Z/(p−
1)Z,

(
H1,s
f (k∞, A∗m)∨

)ωa
is ΛE(Γ)-torsion and

CharΛE(Γ)
((

Selsk∞(A∗m)∨
)ωa) =

(
(Tw1(L̃s

Vm))ωa
)
.

Proof. Since

CharΛE(Γ)(M1 ⊕M2) = CharΛE(Γ)(M1) · CharΛQp (Γ)(M2),

the theorem follows from Theorems 5.5 and 5.6. �
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6. The admissible p-adic L-functions

In this section, we construct admissible4 p-adic L-functions for the sym-
metric powers of CM newforms for non-ordinary primes, thus verifying the
conjecture of Dabrowski–Panchishkin ([Dab11, Conjecture 1],[Pan94, Con-
jecture 6.2]). In [L12], the second author used elliptic units to construct
two p-adic L-functions for the symmetric square lying in Hk−1,E(G∞), but
only proved that they interpolate the L-values L(Sym2(Vf ), θ−1, 2k−2) (or
equivalently L(V2, θ

−1, k−1)). Here, we construct 2r̃ p-adic L-functions for
Vm and we show that they have the expected interpolation property at all
critical twists and the expected growth rate. We also relate them to the
mixed plus and minus p-adic L-functions Ls

Vm
introduced in Definition 4.8,

thus providing an interesting analogue of Pollack’s decomposition of p-adic
L-functions of non-ordinary modular forms. As in [H13], these p-adic L-
functions are defined as products of p-adic L-functions of newforms and
Dirichlet characters as given by the decomposition in Corollary 3.5. This
approach was also taken by Dabrowski in [Dab93] for Symm(Vf ). We then
go on to prove the trivial zero conjecture for Vm using a recent result of
Denis Benois ([Ben13]).

6.1. Definition and basic properties. Recall that each newform fi in
the decomposition of Corollary 3.5 has weight ki := (m − 2i)(k − 1) + 1
and let εi denote its Nebentypus. It follows from the proof of Lemma 3.10
that the roots of x2 + εi(p)p(m−2i)(k−1) are ±p(r−i)(k−1) if m is even and
±αp(r−i)(k−1) if m is odd. Accordingly, we let

(6.1) αi,± :=
{
±p(r−i)(k−1) if m is even,
±αp(r−i)(k−1) if m is odd.

Since hi := ordp(αi,±) < ki − 1, the result of Amice–Vélu (Theorem 4.2)
provides for each choice of i and ± a p-adic L-function Lfi,± ∈ Hhi,E(G∞)
(which should not be confused with the notation for Pollack’s p-adic L-
functions L±fi). Recall the notation concerning elements of S as introduced
in section §4.2. Corollary 3.5 suggests the following definition.

4The qualifier “admissible” here is what is commonly used to distinguish the more standard
p-adic L-functions constructed in this section from the plus/minus p-adic L-functions constructed
above. The terminology refers to the fact that, in general, the usual p-adic L-function conjec-
turally attached to a motive is not expected to be given by the Mellin transform of a p-adic
measure, but rather by that of an unbounded p-adic distribution; such distributions are still
expected to be so-called “admissible measures”. The prototypical examples are the two p-adic
L-functions of an elliptic curve over Q with supersingular reduction at p. In this case, Rob Pollack
showed that one could “change basis“ to obtain two p-adic measures (giving the plus and minus
p-adic L-functions).
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Definition 6.1. For each s ∈ S, define

(6.2) LVm,s =

r̃−1∏
i=0

Tw(r−i)(k−1) (Lfi,si)

 · {LεrK if m is even,
1 if m is odd.

This gives 2r̃ p-adic L-functions for Vm. Note that these 2r̃ functions
come from fixing a root of x2 + εi(p)p(m−2i)(k−1) for each i; this is different
from the 2r̃ choices of §4.2.

Theorem 6.2. For each s ∈ S and each (θ, j) ∈ Cm, where θ has conductor
pn, we have

(6.3) θχj(LVm,s) = em,s(θ, j)
L(Vm, θ−1, j)

Ωm(θ, j) ,

where em,s(θ, j) is given byr̃−1∏
i=0

efi,αi,si (θ, j + (r − i)(k − 1))

 · eεrK (θ, j) =

1

pn(k−1) r(r+1)
2

(
(−1)n

(
1− θ−1(p)p−j

) (
1 + θ(p)pj−1

))s−
×
((

1 + θ−1(p)p−j
) (

1− θ(p)pj−1
))s+

eεrK (θ, j)

when m is even andr̃−1∏
i=0

efi,αi,si (θ, j + (r − i)(k − 1))

 =

1(
αr+1p(k−1) r(r+1)

2

)n
(

(−1)n
(
1− θ−1(p)αp−j

)(
1 + θ(p)pj−1

α

))s−

×
((

1 + θ−1(p)αp−j
)(

1− θ(p)pj−1

α

))s+

when m is odd and Ωm(θ, j) is as in Definition 4.10.
Furthermore,

(6.4) LVm,s ∈ H(k−1) d+d−
2 ,E

(G∞)

unless 4|m, in which case

(γ0 − 1)(γ0 − χ(γ0))LVm,s ∈ H(k−1) d+d−
2 ,E

(G∞).



Symmetric powers of CM modular forms 695

Remark 6.3. When m ≥ 2, LVm,s is not uniquely determined by its inter-
polation property. Indeed, an element of Ha needs to satisfy an interpola-
tion property at θχj for at least ba+ 1c choices of j. When m ≥ 4 is even,
(k − 1)d+d−

2 ≥ 3(k − 1) is greater than the number of distinct j such that
(θ, j) ∈ Cm (this number being 2(k−1)). Similarly, when m ≥ 3 is odd, the
latter number is only k−1 which is less than (k−1)d+d−

2 ≥ 2(k−1). When
m = 2, (k − 1)d+d−

2 = 2(k − 1), but the parity condition on (θ, j) implies
that only half of the j’s can be used.
Proof. One can easily verify that Cm is a subset of all the pairs (θ, j) at
which the elements Tw(r−i)(k−1) (Lfi,si) and LεrK satisfy the interpolation
properties of Theorems 4.2 and 4.1, respectively. The interpolation property
for LVm,s then follows immediately from its definition.

As for the growth condition, Theorems 4.2 and 4.1 tell us that
Tw(r−i)(k−1) (Lfi,si) ∈ H(m2 −i)(k−1),E(G∞)

(as the twisting operation does not affect the growth) and LεrK ∈ Frac(H0).
When taking a product, the growth rates are additive; hence, the growth
of LVm,s is

r̃−1∑
i=0

(
m

2 − i
)

(k − 1).

A simple summation then gives the stated growth rate. The statements
about being in H(k−1) d+d−

2 ,E
(G∞) rather than its fraction field follow by

the corresponding statements in Theorems 4.2 and 4.1. �

Proposition 6.4. Let ωa be a character of ∆. For each s, the ωa-isotypical
component of LVm,s is non-zero.
Proof. This follows from the same proof as Proposition 4.12. �

6.2. A conjecture of Dabrowski–Panchishkin. We begin this section
by computing the generalized Hasse invariant hp(Vm) of Vm. Recall that
hp(Vm) := max(PN (d±, Vm)−PH(d±, Vm)) (see e.g. [Pan94, §5]). We obtain
the following from lemmas 3.8 and 3.11.
Lemma 6.5. For all m ≥ 2,

hp(Vm) = (k − 1)d
+d−

2 .

Proof. If m is even, PN (x, Vm) is identically zero, so
hp(Vm) = max(−PH(d±, VM )).

A simple computation shows that

hp(Vm) = −PH(r + 1, Vm) = (k − 1)r(r + 1)
2 ,
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as desired. When m is odd, we have d+ = d− = r + 1. Thus,

hp(Vm) = PN (r+1, Vm)−PH(r+1, Vm) = (r+1)k − 1
2 −(k−1)(r + 1)(−r)

2 ,

which yields the result. �

This lemma, together with (6.4) of Theorem 6.2, shows that LVm,s has
the growth property predicted by [Dab11, Conjecture 1(iv)] and [Pan94,
Conjecture 6.2(iv)], and (6.3) of Theorem 6.2 shows that it satisfies the
expected interpolation property.

6.3. Decomposition into mixed plus and minus p-adic L-functions.
We generalize the decomposition of Theorem 4.4, due to Pollack, to our
setting. In other words, we decompose each of the 2r̃ p-adic L-functions
LVm,s introduced in Definition 6.1 as a linear combination of the 2r̃ p-adic
L-functions Ls

Vm
given in Definition 4.8.

Let
`+i := log+

ki−1 and `−i := αi,+ log−ki−1 .

Then, (4.1) becomes

(6.5) Lsi
fi

= Lfi,+ + siLfi,−
2`sii

,

and we have the following result.
Lemma 6.6. For all s ∈ S, we have

(6.6) 2r̃`sVmL
s
Vm =

∑
t∈S

as,tLVm,t

where

`sVm =
r̃−1∏
i=0

Tw(r−i)(k−1) (`sii )

and as,t ∈ {+1,−1}. Moreover, as,t is given by (−1)bs,t where bs,t is the
number of i ∈ [0, r̃ − 1] such that si = ti = −.
Proof. On substituting (6.5) into the definition of Ls

Vm
, we have

Ls
Vm =

r̃−1∏
i=0

Tw(r−i)(k−1)

(
Lfi,+ + siLfi,−

2`sii

) · {LεrK if m is even,
1 if m is odd.

Hence, upon expanding, we obtain (6.6). To find as,t, we observe that the
sign in front of LVm,t is given by

r̃−1∏
i=0
ti=−

si,

so we are done. �
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Let A be the 2r̃ × 2r̃ matrix (as,t)(s,t)∈S×S.

Proposition 6.7. The matrix A is symmetric and has orthogonal columns
and rows.

Proof. It is clear from the description of as,t in Lemma 6.6 that A is sym-
metric. For the orthogonality, we show that for t 6= u,

(6.7) #{s ∈ S : as,t = as,u} = #{s ∈ S : as,t = −as,u} = 2r̃−1,

which would imply that the (t, u)-entry∑
s∈S

as,tas,u

of AAT is zero
Let I = {i : ti 6= ui}. By definition, #I ≥ 1. Let s ∈ S be such that

as,t = as,u. By Lemma 6.6,

(6.8) bs,t ≡ bs,u (mod 2).

For each i ∈ I, either (ti, ui) = (+,−) or (−,+). Hence, each i ∈ I such
that si = − contributes a “one" to one side of the equation in (6.8), but
not to the other side. But for i /∈ I, each si = − would contribute a “one"
to both sides. Therefore, in order for (6.8) to hold, #{i ∈ I : si = −} must
be even, but for i /∈ I, no such condition is required. Hence, the number of
choices coming from i ∈ I is given by∑

n even

(
#I
n

)
= 2#I−1

and for i 6∈ I, there are 2r̃−#I choices. This gives 2r̃−1 choices for s such that
as,t = as,u. Since this is half of S, the other half must have as,t = −as,u. �

Corollary 6.8. The matrix A is invertible with inverse 2−r̃A.

Proof. Since all entries of A are +1 or −1, the fact that A is symmetric
and has orthogonal columns and rows implies that A2 is a diagonal matrix.
The (t, t)-entry of A2 is ∑

s∈S
a2
s,t = 2r̃,

hence the result. �

Corollary 6.9. For all t ∈ S, we have an expansion

LVm,t =
∑
s∈S

as,t`
s
VmL

s
Vm .

Proof. This follows immediately from Lemma 6.6 and Corollary 6.8. �
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6.4. Trivial zeros and L-invariants. In this section, we will use the
main result of [Ben13] to determine the (analytic) L-invariants of Vm. It fol-
lows that these L-invariants are given by Benois’s (arithmetic) L-invariant
(as defined in [Ben11]). We also discuss a case that does not fit into the
standard situation of trivial zeroes namely when 4|m we can say something
at a couple of non-critical twists.

From now on, if m and k are both odd and α = ±p
k−1

2 , then we fix the
choice α = p

k−1
2 . We can read off the following from Theorems 4.1 and 4.2.

Lemma 6.10.
(i) The p-adic L-function LεrK has no trivial zeroes.
(ii) If m is even, then Tw(r−i)(k−1) (Lfi,+) (resp., Tw(r−i)(k−1) Lfi,−)

has a trivial zero at the critical twist (θ, j) if and only if j = 1
(resp., j = 0) and θ = 1.

(iii) If m is odd, then Tw(r−i)(k−1) (Lfi,+) (resp., Tw(r−i)(k−1) Lfi,−) has
a trivial zero at the critical twist (θ, j) if and only if j = k+1

2 (resp.,
j = k−1

2 ), θ = 1, k is odd, and α = p
k−1

2 .

Proof. In all cases, θ must be trivial otherwise θ(p) = 0.
For LεrK , a trivial zero must occur at j = 0 or 1 and requires that εrK(p) =

1. Since p is inert in K, we have εK(p) = −1, so r needs to be even. But
for even r, (1, j) 6∈ Cm for j = 0, 1.

For the fi, in all cases,

(6.9) efi,αi,±(1, j) =
(
1− αi,∓p−j

)(
1− pj−1

αi,±

)
.

For m even, (6.1) tells us that this is equal to(
1± p

ki−1
2 −j

)(
1∓ pj−

ki+1
2

)
since (r − i)(k − 1) = ki−1

2 . Hence, Lfi,− has a trivial zero at j = ki−1
2 and

Lfi,+ has one at j = ki+1
2 . The twist operation simply shifts these to the

left by ki−1
2 . When m is odd, the proof is similar. In this case, we can write

α = ζp
k−1

2 where ζ is a root of unity. Then, using (6.1) shows that (6.9)
becomes (

1± ζp
ki−1

2 −j
)(

1∓ ζpj−
ki+1

2

)
since (r− i)(k−1)+ k−1

2 = ki−1
2 . If k is even, then ki is odd, so ki±1

2 6∈ Z, so
no trivial zeroes can occur. Assume that k is odd. Then, ζ must be ±1, in
which case we have fixed the choice ζ = 1. In this case, Lfi,− has a trivial
zero at j = ki−1

2 and Lfi,+ has one at j = ki+1
2 . The twist operation shifts

these to the left by ki−1
2 − k−1

2 . �
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For the character ωa of ∆ and an element L ∈ Frac(H∞(G∞)), we write

La(s) := 〈πωaL〉s

for the ath branch of L. This is a meromorphic function of s ∈ Zp and for
j ∈ Z, La(j) = ωa−jχj(L).

The following is a special case of the main theorem of [Ben13].

Theorem 6.11 (Theorem 4.3.2 of [Ben13]). Let f ′ be a newform of prime-
to-p level, Nebentypus ε′, and odd weight k′ with ap(f ′) = 0. Suppose α′ =
p
k′−1

2 is a root of x2 + ε′(p)pk′−1. Then, for a = k′+1
2 or k′−1

2 , Benois’
arithmetic L-invariant LVf ′ ,α′(1, a) ∈ Cp of (V ′f , α′) at (1, a) (as defined in
[Ben11]) satisfies

lim
s→a

Lf ′,α′,a(s)
s− a

= LVf ′ ,α′(1, a)
(

1 + 1
p

)
L(f ′, a)
Ωf ′(1, a) .

Proof. Here are some remarks that explain how the above statement follows
from [Ben13, Theorem 4.3.2]. First, what we denote LVf ′ ,α′(1,

k′+1
2 ) is de-

noted −Lα′(f ′) by Benois. Since we assume that ap(f ′) = 0, we know that
the other root of x2 + ε′(p)pk−1 is α′ = −α′, hence ε′(p) = −1 and ϕ acts
semisimply on Dcris(Vf ). What we write Lf ′,α′,a(s) is denoted Lp,α′(f, ωa, s)
in [Ben13]. Finally, to obtain the statement for a = k′−1

2 from [Ben13, Theo-
rem 4.3.2], one uses the compatibility of Benois’ L-invariant with the p-adic
functional equation as discussed in [Ben13, §0.3, Remark 3]. �

Note that for a ∈ Z/(p− 1)Z, the p-adic L-function LVm,s,a(s) is an ana-
lytic function of s ∈ Zp unless 4|m, in which case it follows from Theorem
6.2 that simple poles arise for LVm,s,1(s) at s = 1 and for LVm,s,0(s) at s = 0.
Translating Cm into this setting, we obtain the following lemma.

Lemma 6.12. An integer j is critical for LVm,s,a if and only if{
−(k − 1) + 1 ≤ j ≤ 0 if m is even and a and r have opposite parities,
1 ≤ j ≤ k − 1 otherwise.

In particular, note that for even m the integers 0 and 1 are only critical
when r is odd.

Proof. It follows from the fact that evaluating LVm,s,a(s) at s = j is the
same as evaluating ωa−jχj(LVm,s). �

Recall from Proposition 3.4 that when m is even the fi all have odd
weight, and when m is odd their weight has the same parity as the weight
of f . This allows us to appeal to Benois’ theorem to define the L-invariant
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of (Vm, s) as a product of the L-invariants of the fi. If m is even, then for
a = 0 or 1, let σa = sgn(a− 1

2) and

(6.10) LVm,s(1, a) :=
r̃−1∏
i=0

si=σa

LVfi,αi,si

(
1, a+ ki − 1

2

)
.

If m is odd, with k odd and α = p
k−1

2 , then for a = 0 or 1, let

(6.11) LVm,s
(

1, a+ k − 1
2

)
:=

r̃−1∏
i=0

si=σa

LVfi,αi,si

(
1, a+ ki − 1

2

)
.

Theorem 6.13. Suppose j is critical for LVm,s,a(s).
(i) If m is even, then

ords=j LVm,s,a(s) is


≥ s+ if a = j = 1 (and r is odd),
≥ s− if a = j = 0 (and r is odd),
= 0 otherwise.

Furthermore, for r odd,

lim
s→1

LVm,s,1(s)
(s− 1)s+ = 2s−+1 ·

(
1− 1

p

)s−

·
(

1 + 1
p

)s+

· LVm,s(1, 1) · L(Vm, 1)
Ωm(1, 1)

and

lim
s→0

LVm,s,0(s)
ss−

= 2s++1 ·
(

1− 1
p

)s+

·
(

1 + 1
p

)s−

· LVm,s(1, 0) · L(Vm, 0)
Ωm(1, 0) .

(ii) If m is odd, then

ords=j LVm,s,a(s) is



≥ s+ if k odd, α = p
k−1

2 , and a = j = k + 1
2 ,

≥ s− if k odd, α = p
k−1

2 , and a = j = k − 1
2 ,

= ? if k even, j = k

2 , and L
(
Vm, ω

k
2−a,

k

2

)
= 0

= 0 otherwise.

Furthermore, in the first two cases,

lim
s→ k+1

2

LVm,s, k+1
2

(s)(
s− k+1

2

)s+ =

2s− ·
(

1− 1
p

)s−

·
(

1 + 1
p

)s+

· LVm,s
(

1, k + 1
2

)
·
L
(
Vm,

k+1
2

)
Ωm

(
1, k+1

2

)
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and

lim
s→ k−1

2

LVm,s, k−1
2

(s)(
s− k−1

2

)s− =

2s+ ·
(

1− 1
p

)s+

·
(

1 + 1
p

)s−

· LVm,s
(

1, k − 1
2

)
·
L
(
Vm,

k−1
2

)
Ωm

(
1, k−1

2

) .
In the third case, we have that the p-adic interpolation factor does
not vanish.

In all cases, LVm,s(1, a) equals Benois’ arithmetic L-invariant of (Vm, s) at
(1, a) as defined in [Ben11].

Remark 6.14. The inequalities in the theorem would become equalities if
the corresponding L-invariants of the newforms fi were known to be non-
zero. When m is odd, k is even, and j = k

2 , we are at a central point
which complicates matters since the order of vanishing of the archimedean
L-function is a subtle point. Since the p-adic interpolation factor does not
vanish, it would be natural to conjecture that

ords= k
2
LVm,s,a (s) = ords= k

2
L
(
Vm, ω

k
2−a, s

)
.

Proof. Let Li,si,a(s) = Tw(r−i)(k−1) Lfi,si,a(s). Suppose m is even. The cen-
tral point of the L-function of Vm is at s = 1/2, so none of the values we
are considering are central. Therefore, none of the archimedean L-values
we deal with vanish and all zeroes must come from the p-adic interpolation
factor. Indeed, away from the near-central points, the non-vanishing of the
archimedean L-functions at critical integers follows from their definition as
an Euler product to the right of the critical strip 0 < s < 1 and by the
functional equation to the left of the critical strip (since we are only con-
sidering critical integers). At the near-central points, the non-vanishing is a
classical theorem for L(εK , s) and a result of Jacquet–Shalika for newforms
([JS76]). We have that

LVm,s,a(s) = LεrK ,a(s) ·
r̃−1∏
i=0

Li,si,a(s).

We know from Lemma 6.10 that LεrK ,a(s) has no trivial zeroes at critical
j and similarly for Li,si,a(s) when (si, a, j) 6= (+, 1, 1) or (−, 0, 0). This
shows that the order of vanishing of LVm,s,a(j) is zero away from these two
exceptional cases. Note that the exceptional cases do not correspond to
critical j when r is even, so we may assume r is odd from now on. For
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a = 0, 1, we get from Benois’ result (Theorem 6.11) that near s = a,

Li,σa,a(s) = (s− a)LVfi ,αi,σa
(

1, a+ ki − 1
2

)(
1 + 1

p

)
L(fi, a)
Ωfi(1, a)

+ higher order terms.

Since
LεK ,a(a) = 2 L(εK , a)

ΩεK (1, a)
and

Li,−σa,a(a) = 2
(

1− 1
p

) L (fi, a+ ki−1
2

)
Ωfi(1, a) ,

the statements in part (i) hold.
Now, suppose m is odd. If k is even, we know from Lemma 6.10 that no

trivial zeroes occur. But j = k
2 ∈ Z is the central point and the order of

vanishing of the archimedean L-function at j can be positive. If it is, we
have no knowledge of the order of vanishing of the p-adic L-function, but
if it isn’t, we know the latter is non-vanishing at the central point. Outside
of this case, we are at non-central points so the archimedean L-values are
non-zero as explained above. We may therefore assume k is odd. Using
Lemma 6.10 again, we know that the order of vanishing of LVm,s,a is zero
away from the two exceptional cases (α, si, a, j) =

(
p
k−1

2 ,+, k+1
2 , k+1

2

)
and(

p
k−1

2 ,−, k−1
2 , k−1

2

)
. The rest of the proof proceeds as in the case of even

m.
We know from [Ben11] that the LVfi ,αi,±(1, a) are equal to Benois’ arith-

metic L-invariants. That the LVm,s(1, a) are as well follows from the fact
that Benois’ L-invariant is multiplicative on direct sums of representations
of GQ. �

An interesting phenomenon occurs for 4|m. In this case, each of the
twisted p-adic L-functions of the fi has a trivial zero at (1, 1) or (1, 0), but
Vm itself is not critical at these characters because of the presence of the
p-adic L-function of εrK = 1. However, this latter p-adic L-function is given
by ζp(s) (resp. ζp(1 − s)) at the corresponding branches. Here ζp(s) is the
p-adic Riemann zeta function of Kubota–Leopoldt and we know its residue
at s = 1.

Theorem 6.15. If 4|m and j = 0, 1, then

ords=j LVm,s,a(s) is


≥ s+ − 1 if a = j = 1,
≥ s− − 1 if a = j = 0,
= 0 otherwise.
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Furthermore,

lim
s→1

LVm,s,1(s)
(s− 1)s+−1 = 2s− ·

(
1− 1

p

)s−+1
· LVm,s(1, 1) · L(Vm, 1)

Ωm(1, 1)

and

lim
s→0

LVm,s,0(s)
ss−−1 = −2s+ ·

(
1− 1

p

)s++1
· LVm,s(1, 0) · L(Vm, 0)

Ωm(1, 0) .

The inequalities would become equalities if the corresponding L-invariants
of the fi were known to be non-zero.

Proof. The proof is along the same lines as the previous theorem noting
that near s = 1

ζp(s) =
(

1− 1
p

)
· 1
s− 1 + higher order terms.

�

Appendix A. Plus and minus Coleman maps

In [L11, Section 5], we describe the images of plus and minus Coleman up
to isomorphism. Here, we will give a more explicit description using ideas
in [LLZ11].

Let us first review the definition of the Coleman maps in [L11]. Let f be
a modular form as in Section 2.5 with ap = 0 but not necessarily CM. Let
H1

Iw(Qp, Vf ) = Qp⊗ lim←−H
1(Qp,n, Tf ) (note that Vf in this paper is defined

to be the Tate dual of the Vf in [L11]). The plus and minus Coleman maps
are ΛE(G∞)-homomorphisms

Col± : H1
Iw(Qp, Vf )→ ΛE(G∞),

which are defined by the relation

(A.1) Tw1(log±k−1) Col± = Lη± ,

where
Lη± : H1

Iw(Qp, Vf )→ H(k−1)/2,E(G∞)

are the Perrin-Riou pairing associated to η± ∈ D̃cris(V ∗f (−1)). Here, η− ∈
Fil1 D̃cris(V ∗f (−1)) and η+ = ϕ(η−).

Let z ∈ H1
Iw(Qp, Vf ). We write z−j,n for the natural image of z in

H1(Qp,n, Vf (−j)). For an integer j ∈ [0, k − 2] and a Dirichlet character θ
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of conductor pn > 1, we have

χj(Lη±(z)) = j!
[(

1− ϕ−1

p

)
(1− ϕ)−1(η±j+1), exp∗(z−j,0)

]
0
,(A.2)

θχj(Lη±(z)) = j!
τ(θ−1)

∑
σ∈Gn

θ−1(σ)
[
ϕ−n(η±j+1), exp∗(zσ−j,n)

]
n
.(A.3)

Here, η±j+1 denotes the natural image of η± in D̃cris(V ∗f (j)) and [, ]n is the
natural pairing on

Qp,n ⊗ D̃cris(V ∗f (j))×Qp,n ⊗ D̃cris(Vf (−j))→ Qp,n ⊗ E.

Proposition A.1. The ΛE(G∞)-homomorphism

Col : H1
Iw(Qp, Vf )→ ΛE(G∞)⊕2

z 7→ (Col+(z),Col−(z))

has determinant
∏k−2
j=0(χ−j(γ0)γ0 − 1).

Proof. The δ(V )-conjecture of Perrin-Riou in [PR94, Conjecture 3.4.7],
which is a consequence of [Col98, Théorème IX.4.5], says that the determi-
nant of the ΛE(G∞)-homomorphism

H1
Iw(Qp, Vf )→ H(k−1)/2,E(G∞)⊕2

z 7→ (Lη+(z),Lη−(z))

is given by
∏k−2
j=0 logp(χ−j(γ0)γ0). But we have

k−2∏
j=0

logp(χ−j(γ0)γ0) = log+
k−1× log−k−1×

k−2∏
j=0

(χ−j(γ0)γ0 − 1)

by definition. Hence the result follows from (A.1). �

Theorem A.2. The image of Col is given by

S := {(F,G) ∈ ΛE(G)⊕2 : (ε(p)−1p1+j−k+p−j−1)χj(F ) = (1−p−1)χj(G),
θχj(F ) = 0 for all integers 0 ≤ j ≤ k − 2 and all θ of conductor p}.

Proof. Since the set S has determinant
∏k−2
j=0(χ−j(γ0)γ0 − 1), in view of

Proposition A.1, we only need to show that Col(z) is contained in S for all
z ∈ H1

Iw(Qp, Vf ).
Fix an integer j ∈ [0, k − 2]. If θ is a Dirichlet character of conductor p,

(A.3) says that

θχj(Lη+(z)) = j!
τ(θ−1)

∑
σ∈Gn

θ−1(σ)
[
ϕ−1(η+

j+1), exp∗(zσ−j,n)
]
n
.
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But
ϕ−1(η+

j+1) = pj+1η−j+1 ∈ Fil0 D̃cris(V ∗f (j))
and
(A.4)

[
η−j+1, exp∗(zσ−j,n)

]
n

= 0.

Hence θχj(Lη+(z)) = 0.
On D̃cris(V ∗f (j)), we have ϕ2 + ε(p)pk−2j−3 = 0, so [LLZ11, Lemma 5.6]

implies that(
1− ϕ−1

p

)
(1− ϕ)−1 = (1 + ε(p)pk−2j−2)ϕ+ ε(p)pk−2j−3(p− 1)

ε(p)pk−2j−2(1 + ε(p)pk−2j−3) .

We write δj = ε(p)pk−2j−2(1 + ε(p)pk−2j−3), then (A.2) and (A.4) imply
that

χj(Lη+(z)) = j!
δj
× ε(p)pk−2j−3(p− 1)×

[
η+
j+1, exp∗(z−j,0)

]
0
,

χj(Lη−(z)) = j!
δj
× 1 + ε(p)pk−2j−2

pj+1 ×
[
η+
j+1, exp∗(z−j,0)

]
0
.

Therefore, we indeed have
(ε(p)−1p1+j−k + p−j−1)χj(Lη+(z)) = (1− p−1)χj(Lη−(z))

as required. �

Note that ε(p)−1p1+j−k + p−j−1 6= 0 unless ε(p) = −1 and j = k/2 − 1.
We therefore deduce that

im(Col+) = {F ∈ ΛE(G∞) : θχj(F ) = 0 for all j ∈ [0, k − 2]
and Dirichlet characters θ of conductor p}

and

im(Col−) =
{
{F ∈ ΛE(G∞) : χ

k
2−1(F ) = 0} if ε(p) = −1 and k even,

ΛE(G∞) otherwise.
If a ∈ Z/(p− 1)Z, let

l+f,a =
∏

0≤j≤k−2
j 6≡a (mod p−1)

(χ−j(γ0)γ0 − 1)

and

l−f,a =
{
χ−

k
2 +1(γ0)γ0 − 1 if ε(p) = −1, k even, a ≡ k

2 − 1 (mod p− 1),
1 otherwise.

Then,
im(Col±)ωa = ΛE(Γ)l±f,a.
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