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On the compositum of all degree d

extensions of a number field

par Itamar GAL et Robert GRIZZARD

Résumé. Nous étudions le compositum k[d] de toutes les ex-
tensions de degré d d’un corps de nombres k dans une clôture
algébrique fixée. Nous démontrons que k[d] contient toutes les
sous-extensions de degré inférieur à d si et seulement si d ≤ 4.
Nous montrons que quand d > 2, il n’existe pas de majorant
c = c(d) sur le degré des éléments nécessaires pour engendrer
les sous-extensions finies de k[d]/k. En se restreignant aux sous-
extensions galoisiennes, nous montrons qu’un tel majorant n’existe
pas sous certaines conditions sur les diviseurs de d, mais que l’on
peut prendre c = d quand d est premier. Cette question a été ins-
pirée par les travaux de Bombieri et Zannier sur les hauteurs dans
des extensions similaires, et examinés par Checcoli.

Abstract. We study the compositum k[d] of all degree d ex-
tensions of a number field k in a fixed algebraic closure. We show
k[d] contains all subextensions of degree less than d if and only if
d ≤ 4. We prove that for d > 2 there is no bound c = c(d) on
the degree of elements required to generate finite subextensions of
k[d]/k. Restricting to Galois subextensions, we prove such a bound
does not exist under certain conditions on divisors of d, but that
one can take c = d when d is prime. This question was inspired
by work of Bombieri and Zannier on heights in similar extensions,
and previously considered by Checcoli.

1. Introduction
Let k be a field. Throughout this paper, all extensions of k will be as-

sumed to lie in a fixed algebraic closure k. We are interested in fields ob-
tained by adjoining to k all roots of irreducible polynomials of a given
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degree d. For any positive integer d we will write
k[d] = k(β

∣∣ [k(β) : k] = d), and(1.1)

k(d) = k(β
∣∣ [k(β) : k] ≤ d) = k[2]k[3]k[4] · · · k[d].(1.2)

We have k[1] = k(1) = k, and for all d it is clear that k[d] and k(d) are
normal extensions of k. We are primarily interested in the case where k is
a number field, in which case these are infinite Galois extensions. When
d > 2 it is natural to ask what polynomials of degree less than d split
in k[d]. If c < d and all irreducible polynomials of degree c split in k[d],
then k[c] ⊆ k[d]. Notice that this occurs in particular when c divides d, since
every degree c extension admits a degree d/c extension. If all polynomials of
degree less than d split in k[d], then k[d] = k(d). We will prove the following
results along these lines.

Theorem 1.1. If k is a number field †, then
(a) k[2] ⊆ k[d] for all d ≥ 2,
(b) k[3] ⊆ k[4], and
(c) for each d ≥ 5, there exists a prime p < d such that k[p] 6⊆ k[d].

The following corollary is immediate.

Corollary 1.1. If k is a number field, then k[d] = k(d) if and only if d < 5.

We now introduce the notion of boundedness for an extension of fields.
We will use this language to state our remaining results.

Definition. We say an infinite extensionM of k is bounded over k (or that
M/k is bounded) if there exists a constant c such that all finite subextensions
of M/k can be generated by elements of degree less than or equal to c. If
there is no such c, we say that M/k is unbounded.

If all finite Galois subextensions of M/k can be generated by elements
of degree less than or equal to c, we say M/k is Galois bounded; otherwise
we say M/k is Galois unbounded.

It was first shown by Checcoli that, for a number field k, the extension
k(d)/k is not in general Galois bounded (see [5], Theorem 2, part ii). We will
address the question of how boundedness and Galois boundedness depend
on d for the fields k(d) and k[d]. Further restricting attention to abelian
Galois extensions greatly simplifies the discussion. It is easily seen that k(d)

ab
is bounded over k for all d, where the subscript denotes the maximal abelian
subextension. This is contained in the proof of [7, Proposition 2.1] and can

†Many of our results contain the hypothesis that k is a number field or global function field.
However, the astute reader will notice after reading the proofs that this hypothesis could be
replaced with more technical restrictions on the field k – specifically, that certain embedding
problems have solutions over k.
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be seen in the statement of [5, Theorem 1.4]. It follows from the fact that
a finite abelian group can be written as a product of cyclic groups, where
the trivial subgroup is the intersection of subgroups of index not exceeding
the greatest order of a cyclic factor.

In the case where k is a number field, Bombieri and Zannier ask in [3]
whether, for any given constant T , only finitely many points in k(d) have
absolute Weil height (see [2], p. 16 for a definition) at most T . Such a
finiteness property is called the Northcott property. This problem has been
further discussed in [20] and [6], but remains open. In Theorem 1 of [3] it is
proved that this property is enjoyed by k(d)

ab , and the boundedness of k(d)
ab /k

plays a role in the proof. The authors of the present work are hopeful that
understanding the boundedness properties in k[d] and k(d) will be useful in
understanding such problems.

The following theorems summarize our results on boundedness and Ga-
lois boundedness.

Theorem 1.2. If k is a number field, then k[d] is bounded over k if and
only if d ≤ 2.

Theorem 1.3. If k is any field and p is a prime number, then k[p] is Galois
bounded over k. More precisely, all finite Galois subextensions of k[p]/k can
be generated by elements of degree at most p over k.

We will also establish the following partial converse to Theorem 1.3.

Theorem 1.4. If k is a number field or global function field and d > 2,
then k[d]/k is Galois unbounded in the following cases:

(a) d is divisible by a square;
(b) d is divisible by two primes p and q such that q ≡ 1 (mod p).

In particular, this includes the case where d is even and greater than 2.

In terms of the fields k(d), Theorems 1.2, 1.3, and 1.4 immediately imply
the following.

Corollary 1.2. Let k be a number field. Then
(a) k(2)/k is bounded,
(b) k(3)/k is Galois bounded but not bounded, and
(c) k(d)/k is Galois unbounded for d ≥ 4.

This paper is organized as follows. Sections 2 and 3 are devoted to pre-
liminaries and background material on group theory and Galois theory. In
Section 4 we prove Theorem 1.1; parts (a) and (b) appeal to existing results
on embedding problems, while part (c) follows by a purely group theoretic
argument. We conclude Section 4 with an elementary construction which
gives part (a) in the case where k = Q. In Section 5 we prove Theorems 1.2
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and 1.4 using explicit constructions. Finally, in Section 6 we prove Theorem
1.3 as an immediate corollary of a purely group theoretic statement (see
Proposition 6.1).

Acknowledgments
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Gunther, Andrea Lucchini, Jeffrey Vaaler, and anonymous referees for nu-
merous useful communications. We would also like to express our appre-
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of these problems.

2. Preliminaries on group theory
We recall some standard definitions. A transitive group of degree d will

mean a finite permutation group acting faithfully and transitively on a set
Ω of size d, such as the Galois group of an irreducible degree d polynomial
acting on the roots. A transitive group is primitive if there is no nontrivial
partition of Ω such that the group has an induced action on the blocks of the
partition. Since all such blocks must be equal in size, any transitive group
of prime degree must be primitive. For more background on transitive and
primitive groups, see [8] or [21].

Let us fix some notation for finite groups. We will denote by Cd, Dd, Ad,
and Sd the cyclic, dihedral, alternating, and symmetric groups of degree d,
respectively. Note that Dd has order 2d. We denote the Klein 4-group by
V .

A subdirect product G of some collection of groups {Gi}i is a subgroup of
the direct product

∏
iGi with the property that the projection map from

G to each factor Gi is surjective. We will sometimes write G ≤sd
∏
iGi to

abbreviate that G is such a group.
Let H1, H2 and Q be groups, and let α1 : H1 → Q and α2 : H2 → Q

be surjective group homomorphisms. The fibered product of H1 with H2
over Q (with respect to the maps α1 and α2) is defined to be the subgroup
H1 ×Q H2 of the direct product H1 ×H2 given by

H1 ×Q H2 = {(h1, h2) ∈ H1 ×H2
∣∣ α1(h1) = α2(h2)}.

Notice that we have

(2.1) |H1 ×Q H2| =
|H1| · |H2|
|Q|

.

The following lemma can be found in different forms in many texts, and
is variously attributed to Goursat or Goursat and Lambek. A short proof
can be found in [4], p. 864.
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Lemma 2.1 (Goursat’s Lemma). Let H1 and H2 be groups. The set of
subdirect products of H1×H2 is equal to the set of fibered products H1×QH2.
In particular, every subdirect product of H1×H2 is of the form H1×QH2.

3. Galois theory and embedding problems
The following elementary proposition highlights the role of Galois theory

in the proofs of our results.
Proposition 3.1. Let k be a perfect field and let L/k be a finite Galois
extension of fields. The following are equivalent:

(a) L is generated by elements of degree d over k;
(b) in Gal(L/k) the trivial group is the intersection of subgroups of

index d;
(c) Gal(L/k) is a subdirect product of transitive groups of degree d.

Proof. The equivalence (a) and (b) follows immediately from the Galois
correspondence and the primitive element theorem. If (a) is satisfied, then
L is a compositum of the splitting fields of some degree d polynomials.
It follows from basic Galois theory that Gal(L/k) is a subdirect product
of these Galois groups, which are transitive groups of degree d, so (c) is
satisfied. Suppose (c) is satisfied, so we have Gal(L/k) acting on a disjoint
union of sets of size d, transitively on each set. Then all point-stabilizers
have index d, and the intersection of these subgroups is trivial, yielding
(b). �

In order to establish Theorem 1.1, we must discuss the embedding prob-
lem in Galois theory. Let K/k be a Galois extension of fields, G a finite
group, and N a normal subgroup of G with a short exact sequence

(3.1) 1→ N → G
φ→ Gal(K/k)→ 1.

These data give us the embedding problem (K/k,G,N). A solution to the
embedding problem is an extension L/k with L ⊇ K such that Gal(L/k) ∼=
G and the natural map Gal(L/k)→ Gal(K/k) agrees with φ. Hence, a so-
lution to the embedding problem is described by the following commutative
diagram.

(3.2)

Gal(L/k)

1 N G Gal(K/k) 1.// //
φ

// //

o

�� !!CC
CC

CC
CC

C

For our purposes, all that is important is finding an extension L/k such
that L ⊇ K and Gal(L/k) ∼= G, and therefore we will not mention the map
φ in what follows.
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A celebrated result in this context is a theorem of Shafarevich, which
states that if k any number field or global function field, any solvable group
can be realized as the Galois group of some extension of k. Since products
of solvable groups are solvable, this allows us to realize a solvable group as
the Galois group of infinitely many extensions, whose pairwise intersections
are k. A full proof of Shafarevich’s Theorem, along with more background
on embedding theory, can be found in [15].

The following proposition is a simple yet important observation which is
used implicitly throughout the proof of Theorem 1.1.

Proposition 3.2. Let k be a field and let K/k be a finite extension. Then
K ⊆ k[d] if and only if the following two conditions are met.

(i) We can find a group H which is a subdirect product of transitive
groups of degree d with some normal subgroup N such that there is
a short exact sequence

(3.3) 1→ N → H → Gal(K/k)→ 1.

(ii) We can solve the corresponding embedding problem, i.e. find L ⊇ K
such that Gal(L/k) ∼= H.

Proof. If K ⊆ k[d], then K is contained in some finite Galois extension
L/k generated by elements of degree d. By Proposition 3.1, we have that
Gal(L/k) is a subdirect product of transitive groups of degree d, and (i)
and (ii) are clearly satisfied via the short exact sequence

(3.4) 1→ Gal(L/K)→ Gal(L/k)→ Gal(K/k)→ 1.

Conversely, if (i) and (ii) are satisfied, then we have K ⊆ L as in (ii),
and L ⊆ k[d] by (i) and Proposition 3.1. �

4. Proof of Theorem 1.1
We implicitly apply Proposition 3.2 throughout. For integers m < d, we

are interested in whether or not k[m] ⊆ k[d]. Let K be the splitting field
of an irreducible polynomial of degree m in k[x]. In the case m = 2, we
must have that Gal(K/k) ∼= C2, and we use the following result due to O.
Neumann (cf. [16], Theorem 2) in order to conclude that K ⊆ k[d].

Proposition 4.1. Let K/k be a quadratic extension of number fields and
let d ≥ 3. Then there is a solution to the embedding problem (K/k, Sd, Ad)
arising from

(4.1) 1→ Ad → Sd → Gal(K/k)→ 1.

In other words, every irreducible quadratic splits in the splitting field of
some degree d polynomial (with symmetric Galois group).
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This establishes part (a) of Theorem 1.1, that k[2] ⊆ k[d] for all d ≥ 2,
and in particular it tells us that k[3] = k(3). At the end of this section we
give a short, elementary proof of part (a) of Theorem 1 in the case where
k = Q.

For part (b) of Theorem 1 it now suffices to consider the case m = 3, d =
4. We must have Gal(K/k) ∼= S3 or C3. The following is a special case of
a classical result of Shafarevich that gives the solution to all embedding
problems with nilpotent kernel (see [18], Claim 2.2.5).

Proposition 4.2. Let k be a number field and let f(x) ∈ k[x] be an irre-
ducible cubic with splitting field K. Let V denote the Klein 4-group.

(a) If Gal(K/k) ∼= S3, then there is a solution to the embedding problem
(K/k, S4, V ) arising from

1→ V → S4 → Gal(K/k)→ 1.
(b) If Gal(K/k) ∼= C3, then there is a solution to the embedding problem

(K/k,A4, V ) arising from
1→ V → A4 → Gal(K/k)→ 1.

In other words, every irreducible cubic splits in the splitting field of some
quartic.

This proves that k[3] ⊆ k[4], and combining with part (a) of Theorem 1
we now have that k[4] = k(4).

To prove part (c) of Theorem 1.1 we consider the case d ≥ 5. We will
show that, for certain primes p < d, if Gal(K/k) ∼= Cp, then there is no
possible subdirect product of transitive groups of degree d having Gal(K/k)
as a quotient. That is, we cannot even find groups H and N satisfying a
short exact sequence as in (3.3) above. We begin with a lemma.

Lemma 4.1. For any integer d ≥ 5 there exists a prime number p ∈ (d2 , d)
such that, if G is a transitive subgroup of Sd containing a p-cycle, then
either G = Sd or G = Ad.

Proof. The transitive groups of degree d are well-known for small d – see
for example [4] for the groups up to degree 11; GAP (see [13], [19]) has a
library of all of them for d ≤ 30. It can be checked easily that we can use
p = 3 when d = 5, and we can use p = 5 when d = 6, 7; in each of these
cases, Sd and Ad are the only transitive subgroups with order divisible by
p. Therefore all that remains is to prove our lemma in the case d ≥ 8.

There exists at least one prime p ∈ (d2 , d−2). This follows from Bertrand’s
Postulate, first proved by Chebyshev, which states that for m > 3 there
exists a prime in the interval (m, 2m− 2) – see [12], p. 343, Theorem 418;
cf. p. 373. Let p be such a prime, and suppose G is a transitive subgroup of
Sd containing some p-cycle g. Without loss of generality, g = (1 2 3 · · · p).
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Since G is transitive, for each i ∈ {p + 1, . . . , d} there is some element
σi ∈ G such that σi(1) = i. If we let gi = σigσ

−1
i , then gi will be a

p-cycle in G whose support contains i. Since p is prime, each 〈gi〉 acts
primitively on its support, which is a set of size p. Since p > d

2 , the pairwise
intersections of the supports of the groups 〈gi〉 are nontrivial. Therefore we
can apply Proposition 8.5 from [21] inductively to see that the subgroup
H = 〈g, gp+1, gp+2, . . . , gd〉 is a primitive subgroup of Sd. Since H contains
a p-cycle and p < d−2, Theorem 13.9 from [21] tells us that either H = Sd
or H = Ad, and since H ≤ G, our proof is complete. �

Part (c) will be an immediate corollary of the following proposition.

Proposition 4.3. For any integer d ≥ 5 there exists some prime p < d
such that, if G ≤sd G1× · · ·×Gn is a subdirect product of transitive groups
of degree d, then G has no quotient that is cyclic of order p.

Proof. Fix d ≥ 5. By Lemma 4.1, there is a prime p ∈ (d2 , d) such that
the only transitive subgroups of Sd containing a p-cycle are Sd and Ad. We
proceed by induction on n, noting that the case n = 1 follows immediately
by our choice of p. In general, we will have that G ≤sd G0 ×Gn, where Gn
is a transitive group of degree d and G0 is a subdirect product of n−1 such
groups. If N is any normal subgroup of G, we have that N ≤sd N0×Nn for
some normal subgroups N0 � G0 and Nn � Gn. By Goursat’s Lemma, we
may write G as a fibered product G = G0×QGn for some group Q which is
a quotient of both G0 and Gn. Similarly, we have N = N0 ×R Nn for some
group R which is a quotient of both N0 and Nn.

By the inductive hypothesis, neither G0/N0 nor Gn/Nn has order p.
Suppose that G/N ∼= Cp. Since G/N surjects onto both G0/N0 and Gn/Nn,
the latter two groups must be trivial. Therefore, using (2.1), we have

(4.2) p = |G|
|N |

= |G0| · |Gn|/|Q|
|N0| · |Nn|/|R|

= |G0/N0| · |Gn/Nn| ·
|R|
|Q|

= |R|
|Q|

.

This means that |R| is divisible by p, and therefore |Gn| and |Nn| are both
divisible by p as well. This means Gn must be isomorphic to either Sd or
Ad. Hence the only possibilities for Q are Sd, Ad, C2, or 1, and the only
possibilities for R are Sd or Ad. None of these possibilities allows for the
equality in (4.2). �

This establishes part (c) of Theorem 1.1. Indeed, it shows that k[p] ( k[d],
for p and d as above, whenever k is any field that admits a degree cyclic
Galois extension of degree p.

In summary, if d ≤ 4, an irreducible polynomial in k[x] of degree less than
d splits in the splitting field of a single irreducible polynomial of degree d.
When d > 4, however, some irreducible polynomials of degree less than d
do not split in any compositum of such splitting fields. We conclude this
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section by demonstrating that part (a) of Theorem 1.1 can be proved by a
very elementary construction when k = Q.

Elementary proof that Q[2] ⊆ Q[d] for all d ≥ 2. In general, k[`] ⊆ k[d] if `|d.
Hence it will suffice to show that √p ∈ Q[`] for any prime ` ≥ 3, whenever
p is a rational prime or p = −1. If p is any rational prime or equal to ±1,
define

(4.3) fp(x) = x` − `(`p+ 1)x+ (`− 1)(`p+ 1)

The discriminant ∆p of this polynomial is given by the following (see for
example [14]):

(4.4) (−1)(`−1)(`−2)/2∆p = −(`− 1)`−1``+1(`p+ 1)`−1 · p.

In particular, it follows that √p will be in the splitting field of either fp(x)
or f−p(x). We now show that fp(x) is irreducible. First notice that if ` 6= p
then fp(x + 1) is Eisenstein at `. Next we consider the case where ` = p.
To handle this case we use the following version of Dumas’s Irreducibility
Criterion. A proof can be found in [17, Section 2.2.1], where the langauge
of Newton diagrams is used.

Proposition 4.4 (Dumas’s Irreducibility Criterion). Let f(x) = a0x
n +

a1x
n−1 + · · ·+an ∈ Z[x]. Suppose there exists a prime q such that vq(a0) =

0, vq(ai)/i > vq(an)/n for i ∈ {1, . . . , n} and gcd(vq(an), n) = 1. Here
vq(·) denotes the greatest power of q dividing the argument. Then f(x) is
irreducible.

Applying Dumas’s criterion in the case l = p, we find that a sufficient
condition for the irreducibility of fp is the existence of a prime q and an
integer m such that qm exactly divides p2 + 1, such that q is coprime to
p− 1, and and such that m is coprime to p. Notice that

(4.5) (p2 + 1)− (p+ 1)(p− 1) = 2.

Since 2 is an integer combination of p2 +1 and p−1, it follows that gcd(p2 +
1, p− 1) divides 2. Also notice that

(4.6) p2 + 1 = (p− 1)2 + 2(p− 1) + 2 ≡ 2 (mod 4).

Thus p2 + 1 is not a power of 2, and we can take q to be any one of its odd
prime factors. Now choose m such that qm exactly divides p2 + 1. Since
p2 + 1 < qp for p, q ≥ 3, it follows that 1 < m < p. Thus m is coprime to p,
which completes the proof. �
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5. Unboundedness: proofs of Theorems 1.2 and 1.4
In the spirit of Proposition 3.1, let G be a finite group and d a positive

integer. Suppose that H is a subgroup of G that cannot be written as an
intersection of subgroups of index less than or equal to d in G. If G is the
Galois group of a field extension L/k, this implies that the fixed field K
of H is not generated over k by elements of degree less than or equal to
d. In order to prove unboundedness results, we must exhibit groups with
these properties which can be realized as Galois groups of subextensions
of k[d]. The example in the next lemma will be applied toward establishing
Theorem 1.2.

Lemma 5.1. Let p be an odd prime number, and let
(5.1) G = Dn−1

p × Cp = 〈r1, s1, . . . , rn−1, sn−1, rn〉
be the direct product of n − 1 copies of the dihedral group Dp and a cyclic
group of order p, where for i ∈ {1, . . . , n − 1} the ith Dp = 〈ri, si〉 is
generated by the p-cycle ri and the 2-cycle si, and Cp = 〈rn〉. Let
(5.2) H = 〈r1rn, r2rn, . . . , rn−1rn〉 ≤ G.
If B is a subgroup of G with H � B ≤ G, then rn ∈ B. In particular, the
intersection of all such subgroups B strictly contains H.

Proof. Let Gp = 〈r1, . . . , rn〉 be the unique Sylow p-subgroup of G, consid-
ered as an n-dimensional Fp-vector space. Any Sylow 2-subgroup G2 of G
will be an (n − 1)-dimensional F2-vector space which acts by conjugation
on Gp, so that G = Gp oG2.

Let H � B ≤ G. Note that H is a codimension 1 subspace of Gp, so if B
contains any element of order p not in H, then B contains all of Gp. If B
contains any involution τ ∈ G, notice that there will be some i such that
τ acts non-trivially on the ith copy of Dp, so that 〈rirn, τ〉 will contain rn.
Since every nontrivial element of G is either of order p, an involution, or of
order 2p (a power of which is an involution), this completes our proof. �

Corollary 5.1. Let k be a number field or a global function field, and let
p be an odd prime number. Then k[p]/k is unbounded.

Proof. Let G and H be as in Lemma 5.1. Since G is solvable we have
an extension L/k with Gal(L/k) ∼= G. Let LH be the fixed field in L

of H, and notice that LH ⊆ k[p]. It is clear from our construction that
[LH : k] = p · 2n−1. The Galois correspondence tells us that every proper
subextension of LH/k corresponds to a subgroup B of G with H � B ≤ G.
Furthermore, since the intersection of all such groups strictly contains H,
the compositum of all proper subextensions of LH/k is strictly a subfield
of LH . This shows that LH is not generated by elements of degree less than
p · 2n−1. �
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Notice that the field extension LH/k in the proof above is not Galois
(H is not normal in G). As we will prove in the next section, this was
necessarily so.

In order to prove our Galois unboundedness results, we must now intro-
duce extraspecial p-groups. We write Hp for the finite Heisenberg group
of order p3, when p is a prime. This group is defined as the multiplicative
group of upper triangular matrices of the form 1 a c

0 1 b
0 0 1

 ,
with a, b, and c belonging to the finite field Fp.

The group Hp plays an important role in our Galois unboundedness
results. We review some of its properties. First, Hp has a natural action
on the three-dimensional vector space F3

p. Analyzing this action, it is easy
to see that when an element of Hp acts on a vector, the third coordinate
is fixed, and Hp acts faithfully and transitively on a 2-dimensional affine
subspace (the subspace with third coordinate equal to 1, say), which has p2

elements. Thus we see that Hp is isomorphic to a transitive group of degree
p2.

The groupHp is an extraspecial p-group, meaning its center, commutator,
and Frattini subgroups coincide and have order p. We can construct larger
extraspecial p-groups as follows. Let n be a positive integer, and consider
the normal subgroup Np,n of the direct product Hn

p given by

(5.3) Np,n = {(za1
1 , . . . , zan

n )
∣∣ Σn

i=1ai ≡ 0 (mod p)},

where zi generates the center of the ith copy of Hp. The quotient Hn
p /Np,n is

an extraspecial p-group of order p2n+1 and exponent p (except when p = 2,
when the exponent is 4), which we will denote by Ep,n. The basic properties
of these groups are discussed in [9, Section A.20].

The following lemma can be found in [5] (cf. Proposition 2.4), where it
is stated only for p odd. We briefly recall the proof below.
Lemma 5.2. Let p be a prime number. The intersection of all subgroups of
index less than pn in Ep,n contains the commutator subgroup. In particular,
this intersection is nontrivial.
Proof. Any subgroup H of Ep,n of index less than pn has order greater
than pn+1 and is therefore non-abelian by [1, Theorem 4.7 (d)]. Since H
contains a pair of non-commuting elements and the commutator subgroup
[Ep,n, Ep,n] is cyclic of order p, we have that H contains the commutator
subgroup. �

Checcoli used this fact in [5] to show that, for a number field k, the exten-
sion k(d)/k is not in general Galois bounded. The idea of using extraspecial
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groups for this purpose is attributed to A. Lucchini. However, the author
was not concerned with the question of which values of d suffered from this
pathology, nor with the more general question of the boundedness of k[d]/k.
The use of extraspecial p-groups (which are certainly not the only groups
with properties like the conclusion of Lemma 5.2, but are natural and easy
to work with) remains our primary tool for proving that extensions are
Galois unbounded. The following lemma simplifies our application of this
principle.

Lemma 5.3. Let d be a positive integer. Suppose there is a prime number
p such that there is a solvable group G which is a subdirect product of
transitive groups of degree d, and a quotient of G is isomorphic to Hp.
Then k[d]/k is Galois unbounded for any number field or global function
field k.

Proof. By Shafarevich’s Theorem, for any positive integer n we can realize
Gn as the Galois group of some extension L/k, and we will have L ⊆ k[d].
There will be a Galois subextension K/k with Galois group Hn

p , and the
subfield of K corresponding to the normal subgroup defined in (5.3) will
have Galois group Ep,n, and will therefore not be generated by elements of
degree less than pn. �

The following lemma gives a construction of a permutation group that
will allow us to apply Lemma 5.3 in our proof of part (b) of Theorem 1.4.

Lemma 5.4. Let d = pq, where p and q are primes with q ≡ 1 (mod p).
Then there exists a transitive group of degree d which is isomorphic to
Cpq oHp.

Proof. Write q = mp + 1. Consider p sets Ωi of size q, written Ωi =
{1i, 2i, . . . , qi} for i ∈ Fp. We write Ω for the disjoint union of the sets
Ωi. We will construct a group G of permutations of Ω, which acts im-
primitively with respect to the partition into the sets Ωi. Let σ be the
permutation (1 2 · · · q). The q-cycle σ is normalized by some (q− 1)-cycle
η in the symmetric group Sq and, since q ≡ 1 (mod p), we have that ηm is
a product of m disjoint p-cycles; we set τ = ηm. The permutations σ and
τ induce permutations on each set Ωi, which we denote by σi and τi.

We define α = τ0τ1 · · · τp−1, β = τ0
0 τ

1
1 · · · τ

p−1
p−1 , and define γ to be the

permutation on Ω sending ji to ji+1. Let A = 〈σ0, σ1, · · · , σp−1〉 ∼= Cpq , and
B = 〈α, β, γ〉. Notice that our construction ensures that A is normalized
by B. The interested reader will verify that B ∼= Hp via

(5.4) α 7→

 1 0 1
0 1 0
0 0 1

 , β 7→

 1 1 0
0 1 0
0 0 1

 , γ 7→

 1 0 0
0 1 1
0 0 1

 .
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The example below with p = 3, q = 7 makes the isomorphism more clear.
The Heisenberg group B acts simultaneously on m “planes” of p2 points,
each plane consisting of points ji with i ∈ Fp and j running over the indices
in one of the disjoint p-cycles that make up τ .

We let

(5.5) G = AoB

and notice that G acts transitively on Ω (indeed, 〈σ0, γ〉 is already transitive
on Ω). �

It would be quite tedious to write explicitly the generators of the group
constructed in the proof of Lemma 5.4 for general p and q, but we will make
this construction more clear by giving an example with d = 21 = 3 · 7.

Example. We assume the notation of the preceding proof. The 7-cycle
σ = (1 2 3 4 5 6 7) is normalized by the 6-cycle η = (2 6 5 7 3 4). Squaring
this permutation yields a product of 3-cycles τ = (2 5 3)(6 7 4), which
normalizes σ. As described above, we have

Ω =
{
ji
∣∣ i ∈ Fp, j ∈ {1, . . . , 7}}.

The permutations defined in the proof are given as follows:

σ0 =
(
10 20 30 40 50 60 70

)
,

σ1 =
(
11 21 31 41 51 61 71

)
,

σ2 =
(
12 22 32 42 52 62 72

)
,

τ0 =
(
20 50 30

)
·
(
60 70 40

)
,

τ1 =
(
21 51 31

)
·
(
61 71 41

)
,

τ2 =
(
22 52 32

)
·
(
62 72 42

)
,

α = τ0τ1τ2,

β = τ1τ
2
2 ,

γ =
(
10 11 12

)
·
(
20 21 22

)
· · ·
(
70 71 72

)
, and

G = 〈σ0, σ1, σ2〉o 〈α, β, γ〉.

To verify that 〈α, β, γ〉 ∼= H3 as given by (5.4), we consider the following
way of visualizing Ω.

Shown are two copies of the affine plane z = 1 inside of F3
3 = {(x, y, z)

∣∣
x, y, z ∈ F3}. These eighteen points, together with the three points on the
left, correspond to elements of Ω by the labelings. For example, the point
(2, 0, 1) in the plane on the left corresponds to 30 ∈ Ω0. The blocks Ωi are
represented as the three horizontal rows in the diagram. The columns have
been partitioned according to the cycle decomposition of permutations τi,
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Ω2

Ω1

Ω0

y y

x x

• • • • • • •

• • • • • • •

• • • • • • •

12 22 52 32 62 72 42

11 21 51 31 61 71 41

10 20 50 30 60 70 40

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

so that α, β, and γ act via the matrices given in (5.4), simultaneously on
each plane of nine points.

Proof of Theorem 1.4. Recall that if c divides d, then k[c] ⊆ k[d]. Since Hp

is solvable and transitive of degree p2, if follows immediately from Lemma
5.3 that k[p2] is Galois unbounded over k for any prime p, yielding part
(a). Checcoli showed how to realize these groups explicitly in [5]. Since the
group constructed in Lemma 5.4 is solvable, we again apply Lemma 5.3 to
see that k[pq] is Galois unbounded over k whenever p and q are primes with
q ≡ 1 (mod p). This gives part (b).

�

Proof of Theorem 1.2. We know that k[2] = k
(2)
ab , so k[2]/k is bounded. If

d > 2, then d is divisible by c, where c is either 4 or an odd prime. We
have k[c] ⊆ k[d], and by Corollary 5.1 and part (a) of Theorem 1.4, k[c] is
unbounded over k. �

We remark that our proofs actually demonstrate that k[d]/k is also un-
bounded in the case where k is a global function field and d ≥ 3.

6. Galois boundedness in prime degree
In this section we prove Theorem 1.3. Clearly the general technique for

showing boundedness is to find subgroups of small index inside of a Galois
group G, whose intersection is a given subgroup H. If we want to show
Galois boundedness, we take H to be normal. We will show that we can
accomplish this task when G is a subdirect product of transitive groups of
prime degree.

The following lemma characterizes the transitive groups of degree p.

Lemma 6.1. If p is a prime number and G is a transitive group of degree
p, then we have G = T o B, where T is simple and transitive, and B is a
subgroup of Cp−1.
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This lemma can be proved by elementary means. It can also be seen
quickly using the classification of finite simple groups: a theorem of Burnside
(see [21], Theorem 11.7; cf. [8], Theorem 4.1B) implies that G is either a
subgroup of Cp ×Cp−1 containing Cp, or an almost simple group, meaning
that there is a simple group T such that T ≤ G ≤ Aut(T ); in this case we
also have that G is doubly transitive, meaning that G can send any two
points to any other two points. That T is itself transitive of degree p follows
from [21], Proposition 7.1, which states that every normal subgroup of a
primitive permutation group is transitive. The Classification Theorem for
Finite Simple Groups implies that there is a very small list of possibilities
for T (see [11], Corollary 4.2), and the lemma can be easily checked in these
cases.

We are now ready to establish a group theoretic result, of which Theorem
1.3 will be an immediate corollary.

Proposition 6.1. Let p be a prime number and let G be a finite subdirect
product of transitive groups of degree p. If N is a normal subgroup of G,
then N is an intersection of subgroups of index at most p in G.

Proof. Let G ≤sd G1×· · ·×Gn, where Gi is a transitive group of degree p for
i ∈ {1, . . . , n}. If we consider each group Gi acting transitively on a set Ωi of
size p, we have G acting faithfully on the disjoint union of these sets, which
we denote by Ω. Let πi denote the projection onto Gi, and let Ti denote the
(unique) minimal normal subgroup of Gi. As mentioned following Lemma
6.1, we know that each Ti is either isomorphic to Cp or to a simple non-
abelian group. We write Ki = G ∩Gi, which is a normal subgroup of both
G and Gi. We proceed by induction on n. The case n = 1 follows easily
from Lemma 6.1, since if N is nontrivial we must have G/N abelian of
order dividing p− 1; if N is trivial, observe that the point-stabilizers in G
have index p and trivial intersection.

For each i we have that G/Ki is a subdirect product of the groups
{Gj}j 6=i. Notice that we may apply the inductive hypothesis to write
NKi/Ki as an intersection of some subgroups {Hl/Ki}l of index at most
p in G/Ki. Now the subgroups {Hl}l are of index at most p in G, and
NKi = ∩lHl. If Ki is trivial, then our proof is complete. Alternatively, if
N acts trivially on Ωi, notice that

(6.1) N =
(
∩x∈Ωi StabG(x)

)
∩NKi =

(
∩x∈Ωi StabG(x)

)
∩
(
∩l Hl

)
.

Since the stabilizers StabG(x) have index p in G, we have written N as an
intersection of subgroups of index at most p in G. Thus we may assume
that, for each i, the subgroup Ki is nontrivial, and N acts nontrivially on
Ωi. Moreover, since Ki is nontrivial and normalized by Gi, it follows that
Ki contains the unique minimal normal subgroup Ti of Gi. In particular
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this means that Ti ≤ G, and writing T =
∏
i Ti we have that T ≤ G.

Furthermore, G/T is abelian of exponent dividing p− 1.
Since N acts nontrivially on each Ωi, we know that Ti ≤ πi(N). For

each i such that Ti is non-abelian (recall that Ti is simple), we will have
Ti = [Ti, N ] ≤ N . Write Tab for the product of the Ti which are abelian
(these are all isomorphic to Cp), and write Tn for the product of those which
are non-abelian. We have Tn ≤ N , so

(6.2) TN

N
= TabTnN

N
= TabN

N
∼=

Tab
Tab ∩N

.

Therefore TN/N is an elementary abelian p-group. We also know that
G/TN is abelian of exponent dividing p− 1, so the short exact sequence

(6.3) 1→ TN/N → G/N → G/TN → 1

splits by the Schur-Zassenhaus Theorem (Theorem 39 from Chapter 17
of [10]). Let V = TN/N and B = G/TN , so (6.3) gives us

(6.4) G/N = V oB.

We want to show that there is a collection of subgroups of index at most
p in G/N whose intersection is trivial. It is clear that we can find such
subgroups whose intersection is V , since B is abelian of exponent dividing
p − 1. Therefore it suffices to find subgroups of G/N of index at most p
whose intersection meets V trivially.

Considering the Fp-vector space V as a B-module, Maschke’s Theorem
(Theorem 1 from Chapter 18 of [10]) tells us that V decomposes as a direct
sum of irreducible B-modules. Since xp−1− 1 splits over Fp, it follows that
these irreducible submodules are one dimensional. Now we have submodules
Vi of index p (codimension-one submodules), which yield subgroups VioB
of index p in G/N , and the intersection of all of these meets V trivially. �

Proof of Theorem 1.3. Let k be any field, and let K/k be a finite Galois
subextension of k[p]/k, where p is prime. This implies that K is contained in
a compositum L of the splitting fields of finitely many irreducible, separable
polynomials of degree p over k. Let G = Gal(L/k) and N = Gal(L/K).
Then G isomorphic to a subdirect product of transitive groups of degree
p, and N is normal in G. Proposition 6.1 implies that N is an intersection
of subgroups of index at most p in G. By the Galois correspondence, this
means that K is the compositum of finitely many extensions of k of degree
at most p. Therefore, K/k is generated by elements of degree at most p.
(In fact, it must be generated by elements whose degrees are either equal
to p or divide p− 1.) �
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