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Optimality of the Width-w Non-adjacent Form:
General Characterisation and the Case of

Imaginary Quadratic Bases

par Clemens HEUBERGER et Daniel KRENN

Résumé. On étudie des systèmes de numération
∑`−1

j=0 Φj(Dj)
avec un endomorphisme Φ d’un groupe abélien. On démontre
que dans un tel système la condition w-NAF (chaque bloc de w
chiffres consécutifs contient au plus un chiffre non nul) minimise le
poids de Hamming par rapport à toutes les représentations avec
le même ensemble de chiffres si et seulement si la condition de
sous-additivité est vérifiée (la somme de deux représentations de
poids 1 admet une représentation optimale w-NAF).

Ce résultat est ensuite appliqué sur les bases entières quadra-
tiques complexes, qui sont utilisées pour la multiplication par un
scalaire dans la cryptographie sur les courbes elliptiques. On pré-
sente un critère algorithmique et des réponses génériques pour
des cas différents. Des entiers quadratiques complexes de trace
au moins 3 (en valeur absolue) admettent une w-NAF optimale
pour w ≥ 4. Il en va de même pour le cas particulier de la base
(±3±

√
−3)/2 (quatre cas) et w ≥ 2, qui correspond à des courbes

de Koblitz en caractéristique trois. Dans le cas de τ = ±1 ± i
(quatre cas), l’optimalité dépend de la parité de w. Des résultats
numériques pour des traces plus petites sont présentés.

Abstract. We consider digit expansions
∑`−1

j=0 Φj(dj) with an
endomorphism Φ of an Abelian group. In such a numeral system,
the w-NAF condition (each block of w consecutive digits contains
at most one nonzero) is shown to minimise the Hamming weight
over all expansions with the same digit set if and only if it fulfills
the subadditivity condition (the sum of every two expansions of
weight 1 admits an optimal w-NAF).

This result is then applied to imaginary quadratic bases, which
are used for scalar multiplication in elliptic curve cryptography.
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Both an algorithmic criterion and generic answers for various cases
are given. Imaginary quadratic integers of trace at least 3 (in ab-
solute value) have optimal w-NAFs for w ≥ 4. The same holds for
the special case of base (±3 ±

√
−3)/2 (four cases) and w ≥ 2,

which corresponds to Koblitz curves in characteristic three. In the
case of τ = ±1 ± i (again four cases), optimality depends on the
parity of w. Computational results for small trace are given.

1. Introduction

Let τ be an imaginary quadratic algebraic integer. We consider τ -adic
(multi-)expansions for an element of Z[τ ] using a redundant digit set, i.e.
our expansions need not be unique without any further constraints. The
question that arises is how to find “good” representations. This problem
comes from elliptic curve cryptography, where one is interested in expan-
sions leading to efficient calculation schemes.

A scalar multiplication, one of the key operations in elliptic curve cryp-
tosystems, can be carried out by a double-and-algorithm or by using the
Frobenius endomorphism (“Frobenius-and-add”), cf. Koblitz [16] and Soli-
nas [25, 26]: The Frobenius endomorphism ϕ fulfils a quadratic equation
ϕ2 − pϕ + q = 0 for integers p and q depending on the curve. We iden-
tify ϕ with the complex root τ of the same equation. We represent a
scalar n as n =

∑`
j=0 ηjτ

j for ηj from some suitable digit set D. Then
the scalar multiplication nP for some P on the curve can be computed
as nP =

∑`
j=0 ηjϕ

j(P ). The latter sum can be efficiently computed using
Horner’s scheme, where the ηP for η ∈ D have to be precomputed. The
number of applications of ϕ (which is computationally cheap) corresponds
to the length of the expansion, the number of additions corresponds to the
weight of the expansion, i.e. the number of nonzero digits ηj .

Some of the results of this article do not depend on the setting in an
imaginary quadratic number field. Those are valid in the following more
general (abstract) setting and may be used in other situations as well.

A general numeral system is an Abelian group A together with a group
endomorphism Φ and a digit set D, which is a finite subset of A including 0.
The endomorphism acts as base in our numeral system. A common choice is
multiplication by a fixed element. In this general setting we consider multi-
expansions, which are simply finite sums with summands Φk(d), where k ∈
N0 and d a nonzero digit in D. The “multi” in the expression “multi-
expansion” means that we allow several summands with the same k. If the
k are pairwise distinct, we call the sum an expansion. Note that in the
context of the Frobenius-and-add algorithm, multi-expansions are as good
as expansions, as long as the weight is low.
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A special expansion is the width-w non-adjacent form, or w-NAF for
short. It will be the main concept throughout this article. In a w-NAF-
expansion, the k in different summands differ at least by a fixed positive
rational integer w, i.e. considering an expansion as a sequence (ηj)j∈N0

∈
DN0 (or alternatively as finite word over the alphabet D), each block
ηj+w−1 . . . ηj of width w contains at most one nonzero digit. The term
“non-adjacent form” at least goes back to Reitwiesner [24]. More details
and precise definitions of those terms can be found in Section 2.

Obviously, a w-NAF has low weight and therefore leads to quite efficient
scalar multiplication in the Frobenius-and-add method. The main question
investigated in this article is: Does the w-NAF minimise the weight, i.e.
the number of nonzero digits, among all possible representations (multi-
expansions) with the same digit set? If the answer is affirmative, we call
the w-NAF-expansion optimal.

We give conditions equivalent to optimality in Section 3 in the setting of
general numeral systems. We show that each group element has an op-
timal w-NAF-expansion if and only if the digit set is “w-subadditive”,
which means that each multi-expansion with two summands has a w-NAF-
expansion with weight at most 2. This condition can be verified algorith-
mically, since there are only finitely many nontrivial cases to check. More
precisely, one has to consider the w-NAFs corresponding to w(#D − 1)2

multi-expansions. Another way to verify w-subadditivity is to use the ge-
ometry of the digit set. This is done in our imaginary quadratic setting, see
below.

Now consider some special cases of numeral systems, where optimality
or non-optimality of the non-adjacent form is already known. Here, multi-
plication by a base element is chosen as endomorphism Φ. In the case of
2-NAFs with digit set {−1, 0, 1} and base 2, optimality is known, cf. Re-
itwiesner [24]. This was reproved in Jedwab and Mitchell [14] and in Gor-
don [9]. That result was generalised in Avanzi [4], Muir and Stinson [22]
and in Phillips and Burgess [23]. There, the optimality of the w-NAFs with
base 2 was shown. As digit set, zero and all odd numbers with absolute
value less than 2w−1 were used. In this setting, there is also another op-
timal expansion, cf. Muir and Stinson [21]. Using base 2 and a digit set
{0, 1, x} with x ∈ Z, optimality of the 2-NAFs is answered in Heuberger
and Prodinger [12]. Some of these results will be reproved and extended
to arbitrary rational integer bases with our tools in Section 4. That proof
will show the main idea how to use the geometry of the digit set to show
w-subadditivity and therefore optimality.

We come back to our imaginary quadratic setting, so suppose that the
imaginary quadratic base τ is a solution of τ2 − pτ + q = 0, where p and
q are rational integers with q > p2/4. Here, Z[τ ] plays the rôle of the
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group and multiplication by τ is taken as the endomorphism. We suppose
that the digit set consists of 0 and one representative of minimal norm of
every residue class modulo τw, which is not divisible by τ , and we call it a
minimal norm representatives digit set. It can be shown that, taking such
a digit set, every element of Z[τ ] admits a unique w-NAF, cf. Blake, Murty
and Xu [7, 6, 5], Koblitz [17] and Solinas [25, 26] for some special cases
or Heuberger and Krenn [11] for a general result. All those definitions and
basics can be found in Section 6 in a precise formulation.

First, consider the cases |p| = 1 and q = 2, which comes from a Koblitz
curve in characteristic 2, cf. Koblitz [16], Meier and Staffelbach [20], and
Solinas [25, 26]. There optimality of the w-NAFs can be shown for w ∈
{2, 3}, cf. Avanzi, Heuberger and Prodinger [1, 2]. The case w = 2 can also
be found in Gordon [9]. For the cases w ∈ {4, 5, 6}, non-optimality was
shown, see Heuberger [10].

In the present paper we give a general result on the optimality of the
w-NAFs with imaginary quadratic bases, namely when |p| ≥ 3, as well as
some results for special cases. So let |p| ≥ 3. If w ≥ 4, then optimality of
the w-NAFs could be shown in all cases. If we restrict to |p| ≥ 5, then the
w-NAFs are already optimal for w ≥ 3. Further, we give a condition — p
and q have to fulfil a special inequality —, when 2-NAFs are optimal. All
those results can be found in Section 7. There we show that the digit set
in those cases is w-subadditive by using its geometry.

In the last four sections some special cases are examined. Important
ones are the cases |p| = 3 and q = 3 coming from Koblitz curves in
characteristic 3. In Kröll [18] optimality of the w-NAFs was shown for
w ∈ {2, 3, 4, 5, 6, 7} by using a transducer and some heavy symbolic com-
putations. In this article we prove that the w-NAF-expansions are optimal
for all w ≥ 2, see Section 8. In Section 9 we look at the cases |p| = 2 and
q = 2. There the w-NAF-expansions are optimal if and only if w is odd. In
the cases p = 0 and q ≥ 2, see Section 10, non-optimality of the w-NAFs
with odd w could be shown.

2. Expansions and Numeral Systems

This section contains the abstract definition of numeral systems and the
definition of expansions. Further, we specify the width-w non-adjacent form
and notions related to it.

Abstract numeral systems can be found in van de Woestijne [28], which
are generalisations of the numeral systems used, for example, in Germán
and Kovács [8]. We use that concept to define w-NAF-numeral systems.

Definition 2.1. A pre-numeral system is a triple (A,Φ,D) where A is an
Abelian group, Φ an endomorphism of A and the digit set D is a subset of
A such that 0 ∈ D and each nonzero digit is not in the image of Φ.
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Note that we can assume Φ is not surjective, because otherwise the digit
set would only consist of 0.

Before we define expansions and multi-expansions, we give a short intro-
duction on multisets. We take the notation used, for example, in Knuth [15].
Notation 2.2. A multiset is like a set, but identical elements are allowed to
appear more than once. For a multiset A, its cardinality #A is the number
of elements in the multiset. For multisets A and B, we define new multisets
A]B and A \B in the following way: If an element occurs exactly a times
in A and b times in B, then it occurs exactly a + b times in A ] B and it
occurs exactly max(a− b, 0) times in A \B.

Now a pre-numeral system (and multisets) can be used to define what
expansions and multi-expansions are.
Definition 2.3 (Expansion). Let (A,Φ,D) be a pre-numeral system, and
let µ be a multiset with elements (d, n) ∈ (D \ {0}) × N0. We define the
following:

(1) We set
weight(µ) := #µ

and call it the Hamming-weight of µ or simply weight of µ. The
multiset η is called finite, if its weight is finite.

(2) We call an element (d, n) ∈ µ an atom and Φn(d) the value of the
atom (d, n).

(3) Let µ be finite. We call

value(µ) :=
∑

(d,n)∈µ
Φn(d)

the value of µ.
(4) Let z ∈ A. A multi-expansion of z is a finite µ with value(µ) = z.
(5) Let z ∈ A. An expansion of z is a multi-expansion µ of z where all

the n in (d, n) ∈ µ are pairwise distinct.
We use the following conventions and notations. If necessary, we see

an atom as a multi-expansion or an expansion of weight 1. We identify
an expansion η with the sequence (ηn)n∈N0

∈ DN0 , where ηn = d for
(d, n) ∈ η and all other ηn = 0. For an expansion η (usually a bold,
lower case Greek letter) we will use ηn (the same letter, but indexed and
not bold) for the elements of the sequence. Further, we identify expansions
(sequences) in DN0 with finite words over the alphabet D written from right
(least significant digit) to left (most significant digit), except left-trailing
zeros, which are usually skipped. Besides, we follow the terminology of
Lothaire [19] for words.

Note, if η is an expansion, then the weight of η is
weight(η) = #{n ∈ N0 | ηn 6= 0}
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and the value of η is

value(η) =
∑
n∈N0

Φn(ηn) .

For the sake of completeness—although we do not need it in this paper—
a pre-numeral system is called numeral system if each element of A has an
expansion. We call the numeral system non-redundant if there is exactly
one expansion for each element of A, otherwise we call it redundant. We
will modify this definition later for w-NAF numeral systems.

Before going any further, we want to see some simple examples for the
given abstract definition of a numeral system. We use multiplication by an
element τ as endomorphism Φ. This leads to values of the type

value(η) =
∑
n∈N0

ηnτ
n

for an expansion η.

Example 2.4. The binary numeral system is the pre-numeral system

(N0, z 7→ 2z, {0, 1}).

It is a non-redundant numeral system, since each integer admits exactly
one binary expansion. We can extend the binary numeral system to the
pre-numeral system

(Z, z 7→ 2z, {−1, 0, 1}),
which is a redundant numeral system.

In order to get a non-redundant numeral system out of a redundant one,
one can restrict the language, i.e. we forbid some special configurations
in an expansion. There is one special kind of expansion, namely the non-
adjacent form, where no adjacent nonzeros are allowed. A generalisation of
it is defined here.

Definition 2.5 (Width-w Non-Adjacent Form). Let w be a positive in-
teger and D be a digit set (coming from a pre-numeral system). Let η =
(ηj)j∈N0

∈ DN0 . The sequence η is called a width-w non-adjacent form, or
w-NAF for short, if each factor1 ηj+w−1 . . . ηj , i.e. each block of length w,
contains at most one nonzero digit.

A w-NAF-expansion is an expansion that is also a w-NAF.

Note that a w-NAF-expansion is finite. With the previous definition we
can now define what a w-NAF numeral system is.

1See Lothaire [19] for the used terminology on words.
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Definition 2.6. For a positive integer w, a pre-numeral system (A,Φ,D)
is called a w-NAF numeral system if each element of A admits a w-NAF-
expansion, i.e. for each z ∈ A there is a w-NAF η ∈ DN0 with value(η) = z.
We call a w-NAF numeral system non-redundant if each element of A has
a unique w-NAF-expansion, otherwise we call it redundant.

Now we continue the example started above.
Example 2.7. The redundant numeral system

(Z, z 7→ 2z, {−1, 0, 1})
is a non-redundant 2-NAF numeral system. This fact has been shown in
Reitwiesner [24]. More generally, for an integer w at least 2, the numeral
system

(Z, z 7→ 2z,D),
where the digit set D consists of 0 and all odd integers with absolute value
smaller than 2w−1, is a non-redundant w-NAF numeral system, cf. Soli-
nas [25, 26] or Muir and Stinson [22].

Finally, since this paper deals with the optimality of expansions, we have
to define the term “optimal”. This is done in the following definition.
Definition 2.8 (Optimal Expansion). Let (A,Φ,D) be a pre-numeral sys-
tem, and let z ∈ A. A multi-expansion or an expansion µ of z is called
optimal if for any multi-expansion ν of z we have

weight(µ) ≤ weight(ν) ,
i.e. µminimises the Hamming-weight among all multi-expansions of z. Oth-
erwise µ is called non-optimal.

The “usual” definition of optimal, cf. [24, 14, 9, 4, 22, 23, 21, 12, 1, 2, 10],
is more restrictive: An expansion of z ∈ A is optimal if it minimises the
weight among all expansions of z. The difference is that in Definition 2.8
we minimise over all multi-expansions. The use of multi-expansions is mo-
tivated by applications: we want to do efficient operations. There it is no
problem to take multi-expansions if they are “better”, so it is more natural
to minimise over all of them instead of just over all expansions.

3. The Optimality Result

This section contains our main theorem, the Optimality Theorem, The-
orem 3.2. It contains four equivalences. One of them is a condition on the
digit set and one is optimality of the w-NAF. We start with the definition
of that condition on the digit set.
Definition 3.1. Let (A,Φ,D) be a pre-numeral system, and let w be a
positive integer. We say that the digit set D is w-subadditive if the sum of
the values of two atoms has a w-NAF-expansion of weight at most 2.
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In order to verify the w-subadditivity-condition it is enough to check
atoms (c, 0) and (d, n) with n ∈ {0, . . . , w − 1} and nonzero digits c and d.
Therefore, one has to consider w (#D − 1)2 multi-expansions.

Theorem 3.2 (Optimality Theorem). Let (A,Φ,D) be a pre-numeral sys-
tem with ⋂

m∈N0

Φm(A) = {0} ,

and let w be a positive integer. Then the following statements are equivalent:
(1) The digit set D is w-subadditive.
(2) For all multi-expansions µ there is a w-NAF-expansion ξ such that

value(ξ) = value(µ)
and

weight(ξ) ≤ weight(µ) .
(3) For all w-NAF-expansions η and ϑ there is a w-NAF-expansion ξ such

that
value(ξ) = value(η) + value(ϑ)

and
weight(ξ) ≤ weight(η) + weight(ϑ) .

(4) If z ∈ A admits a multi-expansion, then z also admits an optimal
w-NAF-expansion.

Note that if we assume that each element A has at least one expansion
(e.g. by assuming that we have a w-NAF numeral system), then we have
the equivalence of w-subadditivity of the digit set and the existence of an
optimal w-NAF-expansion for each group element.

We will use the term “addition” in the following way: The addition of
two group elements x and y means finding a w-NAF-expansion of the sum
x+y. Addition of two multi-expansions shall mean addition of their values.

Proof of Theorem 3.2. For a nonzero z ∈ A, we define
L(z) := max {m ∈ N0 | z ∈ Φm(A)} .

The function L is well-defined, because⋂
m∈N0

Φm(A) = {0} .

We show that (1) implies (2) by induction on the pair
(weight(µ) , L(value(µ)))

for the multi-expansion µ. The order on those pairs is lexicographic. In
the case value(µ) = 0, we choose ξ = 0 and are finished. Further, if the
multi-expansion µ consists of less than two elements, then there is nothing
to do, so we suppose weight(η) ≥ 2.
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We choose an atom (d, n) ∈ µ (note that d ∈ D \ {0} and n ∈ N0) with
minimal n. If n > 0, then we consider the multi-expansion µ′ arising from
µ by shifting all indices by n, use the induction hypothesis on µ′ and apply
Φn. Note that µ′ and µ have the same weight, but

L
(
value

(
µ′
))

= L(value(µ))− n < L(value(µ)) .

So we can assume n = 0. Set µ? := µ \ {(d, 0)}. Using the induction
hypothesis, there is a w-NAF-expansion η of value(µ?) with weight strictly
smaller than weight(µ) = weight(µ?) + 1.

Consider the addition of η and the digit d. If the digits η` are zero for all
` ∈ {0, . . . , w − 1} , then the result follows by setting ξ = . . . ηw+1ηw0w−1d.
So we can assume

η = β0w−k−1b0k

with a w-NAF β, a digit b 6= 0 and k ∈ {0, . . . , w − 1}. Note that there are
at least w − 1 zeros on the left hand-side of b in η, but for our purposes,
it is sufficient (and more convenient) to consider only w − k − 1 zeros.
Since the digit set D is w-subadditive, there is a w-NAF γ of Φk(b) + d
with weight at most 2. If the weight is strictly smaller than 2, we use the
induction hypothesis on the multi-expansion β0w ] γ to get a w-NAF ξ
with the desired properties and are done. Otherwise, denoting by J the
smallest index with γJ 6= 0, we distinguish between two cases: J = 0 and
J > 0.

First let J = 0. The w-NAF β (seen as multi-expansion) has a weight
less than weight(η), so, by induction hypothesis, there is a w-NAF ξ′ with

value
(
ξ′
)

= value(β) + value(. . . γw+1γw)

and
weight

(
ξ′
)
≤ weight(β) + weight(. . . γw+1γw) .

We set ξ = ξ′γw−1 . . . γ0. Since ξ is a w-NAF-expansion we are finished,
because

value(ξ) = Φw(value(β)) + Φw(value(. . . γw+1γw)) + value(γw−1 . . . γ0)
= Φw(value(β)) + Φk(b) + d = value(η) + d = value(µ?) + d = value(µ)

and

weight(ξ) = weight
(
ξ′
)

+ weight(γw−1 . . . γ0) ≤ weight(β) + weight(γ)
≤ weight(η) + 1 ≤ weight(µ?) + 1 = weight(µ) .

Now, in the case J > 0, we consider the multi-expansion ν := β0w]γ. We
use the induction hypothesis for ν shifted by J (same weight, L decreased
by J) and apply ΦJ on the result.
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The proofs of the other implications of the four equivalences are simple.
To show that (2) implies (3), take µ := η ] ϑ, and (3) implies (1) is the
special case when η and ϑ are atoms.

Further, for (2) implies (4) take an optimal multi-expansion µ (which
exists, since z admits at least one multi-expansion). We get a w-NAF-
expansion ξ with weight(ξ) ≤ weight(µ). Since µ was optimal, equality is
obtained in the previous inequality, and therefore ξ is optimal, too. The
converse, (4) implies (2), follows using z = value(µ) and the property that
optimal expansions minimise the weight. �

Let X and Y be subsets in an additively written semigroup. Then we
write

X + Y := {x+ y |x ∈ X, y ∈ Y } ,
see, for example, Hungerford [13]. We use that notion from now on.

Proposition 3.3. Let (A,Φ,D) be a pre-numeral system with⋂
m∈N0

Φm(A) = {0} ,

and let w be a positive integer. We have the following sufficient condition:
Suppose we have sets U and S such that D ⊆ U , −D ⊆ U , U ⊆ Φ(U) and
all elements in S are atoms. If D contains a representative for each residue
class modulo Φw(A) which is not contained in Φ(A) and

(3.1)
(
Φw−1(U) + U + U

)
∩ Φw(A) ⊆ S ∪ {0} ,

then the digit set D is w-subadditive.

Sometimes it is more convenient to use (3.1) of this proposition instead
of the definition of w-subadditive. For example, in Section 4 all digits lie
in an interval U and all nonzero integers in that interval have a w-NAF
expansion with weight 1. The same technique is used in the optimality
result of Section 7.

Proof of Proposition 3.3. Consider y = value((c, 0) ] (d, n)), where (c, 0)
and (d, n) are atoms with n ∈ {0, . . . , w − 1}. If y = 0, we have nothing
to do, so we can assume y 6= 0. First suppose y 6∈ Φ(A). Because of our
assumptions on D there is a digit a such that

z := Φn(d) + c− a ∈ Φw(A) .

If z is not zero, then, using our sufficient condition, there is an atom (b,m)
with value z, and we have m ≥ w. The w-NAF-expansion b0m−1a does
what we want.

Now suppose y ∈ Φk(A) with a positive integer k, which is chosen max-
imally. That case can only happen when n = 0. Since y 6= 0 and our
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assumptions on D there is an w-NAF-expansion of y with an atom (a, k)
as least significant digit. If k ∈ {0, . . . , w − 1}, then

z := d+ c− Φk(a) ∈ Φw+k(A) .
If z is nonzero it is a value of an atom (b,m), m ≥ w+ k, because of (3.1),
and we obtain a w-NAF-expansion of y with atoms (b,m) and (a, k). If
k ≥ w, then

z := d+ c ∈ Φw(A)
and z is the value of an atom (b,m) by (3.1). We get a w-NAF-expansion
b0m. �

Sometimes the w-subadditivity-condition is a bit too strong, so we do not
get optimal w-NAFs. In that case one can check whether (w−1)-NAFs are
optimal. This is stated in the following remark, where the w-subadditive-
condition is weakened.

Remark 3.4. Suppose that we have the same setting as in Theorem 3.2. We
call the digit set w-weak-subadditive if the sum of the values of two atoms
(c,m) and (d, n) with |m− n| 6= w−1 has a w-NAF-expansion with weight
at most 2.

We get the following result: If the digit set D is w-weak-subadditive, then
each element of A, which has at least one multi-expansion, has an optimal
(w − 1)-NAF-expansion. The proof is similar to the proof of Theorem 3.2,
except that a “rewriting” only happens when we have a (w − 1)-NAF-
violation.

4. Optimality for Integer Bases

In this section we give a first application of the abstract optimality theo-
rem of the previous section. We reprove the optimality of the w-NAFs with a
minimal norm digit set and base 2. But the result is more general: We prove
optimality for all integer bases (with absolute value at least 2). This demon-
strates one basic idea how to check whether a digit set is w-subadditive or
not.

Let b be an integer with |b| ≥ 2 and w be an integer with w ≥ 2. Consider
the non-redundant w-NAF numeral system

(Z, z 7→ bz,D)
where the digit set D consists of 0 and all integers with absolute value
strictly smaller than 1

2 |b|
w and not divisible by b. We mentioned the special

case base 2 of that numeral system in Example 2.7. See also Reitwiesner [24]
and Solinas [26].

The following optimality result can be shown. For proofs of the base 2
setting cf. Reitwiesner [24], Jedwab and Mitchell [14], Gordon [9], Avanzi [4],
Muir and Stinson [22], and Phillips and Burgess [23].
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Theorem 4.1. With the setting above, the w-NAF-expansion for each in-
teger is optimal.

Proof. We show that the digit set D is w-subadditive by verifying the suf-
ficient condition of Proposition 3.3. Then optimality follows from Theo-
rem 3.2. First, note that the w-NAF-expansion of each integer with abso-
lute value at most 1

2 |b|
w−1 has weight at most 1, because either the integer

is already a digit, or one can divide by a power of b to get a digit. Further,
we have D = −D. Set U =

[
−1

2 |b|
w, 1

2 |b|
w
]
and S = bw(U ∩ Z \ {0}). We

have to show(
bw−1U + U + U

)
∩ bwZ ⊆ S ∪ {0} = bwU ∩ bwZ.

If we can show
b−w

(
bw−1U + U + U

)
⊆
[
−1

2 |b|
w, 1

2 |b|
w
]
,

the inclusion above follows by multiplying with bw and taking the intersec-
tion with bwZ.

So let
bwz = bw−1c+ a+ d

for some digits a, c and d. A digit has absolute value less than 1
2 |b|

w, so

|z| < |b|−w
(
|b|w−1 + 2

)
1
2 |b|

w =
(
|b|−1 + 2 |b|−w

)
1
2 |b|

w ≤ 1
2 |b|

w ,

where we also used the assumptions |b| ≥ 2 and w ≥ 2. Thus, the desired
inclusion is shown. �

5. Voronoi Cells

We first start to define Voronoi cells. Let τ ∈ C be an algebraic integer
that is imaginary quadratic, i.e. τ is solution of an equation τ2−pτ + q = 0
with p, q ∈ Z and such that q − p2/4 > 0.

Definition 5.1 (Voronoi Cell). We set
V := {z ∈ C | ∀y ∈ Z[τ ] : |z| ≤ |z − y|}

and call it the Voronoi cell for 0 corresponding to the set Z[τ ]. Let u ∈ Z[τ ].
We define the Voronoi cell for u as
Vu := u+ V = {u+ z | z ∈ V } = {z ∈ C | ∀y ∈ Z[τ ] : |z − u| ≤ |z − y|} .

The point u is called centre of the Voronoi cell or lattice point corresponding
to the Voronoi cell.

An example of a Voronoi cell in a lattice Z[τ ] is shown in Figure 5.1.
Two neighbouring Voronoi cells have at most a subset of their boundary in
common. This can be a problem, when we tile the plane with Voronoi cells
and want that each point is in exactly one cell. To fix this problem we define
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V

0 1

1+i
√
3

2

1−i
√
3

2

τ

Figure 5.1. Voronoi cell V for 0 corresponding to the set
Z[τ ] with τ = 3

2 + i
2
√

3.

Ṽ

0

v0

v1

v2

v3

v4

v5

v0.5v1.5

v2.5

v3.5 v4.5

v5.5

Figure 5.2. Restricted Voronoi cell Ṽ for 0 corresponding
to the set Z[τ ] with τ = 3

2 + i
2
√

3.

a restricted version of V . This is very similar to the construction used in
Avanzi, Heuberger and Prodinger [3] and in Heuberger and Krenn [11].

Definition 5.2 (Restricted Voronoi Cell). Let Vu be a Voronoi cell with
its centre u as above. Let v0, . . . , vm−1 with appropriate m ∈ N be the
vertices of Vu. We denote the midpoint of the line segment from vk to vk+1
by vk+1/2, and we use the convention that the indices are meant modulo
m.

The restricted Voronoi cell Ṽu consists of
• the interior of Vu,
• the line segments from vk+1/2 (excluded) to vk+1 (excluded) for all
k,
• the points vk+1/2 for k ∈

{
0, . . . ,

⌊
m
2
⌋
− 1

}
, and

• the points vk for k ∈
{
1, . . . ,

⌊
m
3
⌋}
.

Again we set Ṽ := Ṽ0.



366 Clemens Heuberger, Daniel Krenn

In Figure 5.2 the restricted Voronoi cell of 0 is shown for τ = 3
2+ i

2
√

3. The
second condition in the definition is used because it benefits symmetries.
The third condition is just to make the midpoints unique. Obviously, other
rules2 could have been used to define the restricted Voronoi cell.

The statements (including proofs) of the following lemma can be found
in Heuberger and Krenn [11]. We use the notation B(z, r) for an open ball
with centre z and radius r and B(z, r) for a closed ball.

Lemma 5.3 (Properties of Voronoi Cells). We have the following proper-
ties:
(a) The vertices of V are given explicitly by

v0 = 1/2 + i

2 Im(τ)
(
Im(τ)2 + {Re(τ)}2 − {Re(τ)}

)
,

v1 = {Re(τ)} − 1
2 + i

2 Im(τ)
(
Im(τ)2 − {Re(τ)}2 + {Re(τ)}

)
,

v2 = −1/2 + i

2 Im(τ)
(
Im(τ)2 + {Re(τ)}2 − {Re(τ)}

)
= v0 − 1,

v3 = −v0,

v4 = −v1

and

v5 = −v2.

All vertices have the same absolute value. If Re(τ) ∈ Z, then v1 = v2
and v4 = v5, i.e. the hexagon degenerates to a rectangle.

(b) The Voronoi cell V is convex.
(c) We get B

(
0, 1

2

)
⊆ V .

(d) The inclusion τ−1V ⊆ V holds.

6. Digit Sets for Imaginary Quadratic Bases

In this section we assume that τ ∈ C is an imaginary quadratic algebraic
integer, i.e. τ is solution of an equation τ2 − pτ + q = 0 with p, q ∈ Z and
such that q − p2/4 > 0. By V we denote the Voronoi cell of 0 of the lattice
Z[τ ], by Ṽ the corresponding restricted Voronoi cell, cf. Section 5.

We consider w-NAF numeral systems
(Z[τ ], z 7→ τz,D),

where the digit set D is the so called “minimal norm representatives digit
set”. The following definition specifies that digit set, cf. Solinas [25, 26],

2The rule has to make sure that the complex plane can be covered entirely and with no
overlaps by restricted Voronoi cells, i.e. the condition C =

⊎
z∈Z[τ ] Ṽz has to be fulfilled.



Optimality of the Width-w Non-adjacent Form 367

(a) Digit set for τ =
3
2 + i

2
√

7 and w = 2.
(b) Digit set for τ =
3
2 + i

2
√

7 and w = 3.
(c) Digit set for τ =
2 + i and w = 2.

(d) Digit set for τ =
5
2 + i

2
√

3 and w = 2.

Figure 6.1. Minimal norm representatives digit sets mod-
ulo τw. For each digit η, the corresponding Voronoi cell Vη
is drawn. The large scaled Voronoi cell is τwV .

Blake, Murty and Xu [5] or Heuberger and Krenn [11]. It is used through-
out this article, whenever we have the setting (imaginary quadratic base)
mentioned above.

Definition 6.1 (Minimal Norm Representatives Digit Set). Let w be an
integer with w ≥ 2 and D ⊆ Z[τ ] consist of 0 and exactly one representative
of each residue class of Z[τ ] modulo τw that is not divisible by τ . If all such
representatives η ∈ D fulfil η ∈ τwṼ , then D is called the minimal norm
representatives digit set modulo τw.

The previous definition uses the restricted Voronoi cell Ṽ for the point 0,
see Definition 5.2, to choose a representative with minimal norm. Note that
by construction of Ṽ , there is only one such choice for the digit set. Some
examples of such digit sets are shown in Figures 6.1, 8.1, 9.1 and 10.1.

Remark 6.2. The definition of a minimal norm representative digit set,
Definition 6.1, depends on the definition of the restricted Voronoi cell Ṽ ,
Definition 5.2. There we had some freedom in choosing which part of the
boundary is included in Ṽ , cf. the remarks after Definition 5.2. We point
out that all results given here for imaginary quadratic bases are valid for
any admissible configuration of the restricted Voronoi cell, although only
the case corresponding to Definition 5.2 will be presented.

Using a minimal norm representatives digit set, each element of Z[τ ]
corresponds to a unique w-NAF, i.e. the pre-numeral system given at the
beginning of this section is indeed a w-NAF numeral system. This is stated
in the following theorem, which can be found in Heuberger and Krenn [11].

Theorem 6.3 (Existence and Uniqueness Theorem). Let w be an integer
with w ≥ 2. Then the pre-numeral system

(Z[τ ], z 7→ τz,D),
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where D is the minimal norm representatives digit set modulo τw, is a
non-redundant w-NAF numeral system, i.e. each lattice point z ∈ Z[τ ] has
a unique w-NAF-expansion η ∈ DN0 with z = value(η).

7. Optimality for Imaginary Quadratic Bases

In this section we assume that τ ∈ C is an imaginary quadratic algebraic
integer, i.e. τ is solution of an equation τ2 − pτ + q = 0 with p, q ∈ Z and
such that q − p2/4 > 0. Further let w be an integer with w ≥ 2 and let

(Z[τ ], z 7→ τz,D)

be the non-redundant w-NAF numeral system with minimal norm repre-
sentatives digit set modulo τw, cf. Section 6.

Our main question in this section, as well as for the remaining part of this
article, is the following: For which bases and which w is the width-w non-
adjacent form optimal? To answer this, we use the result from Section 3.
If we can show that the digit set D is w-subadditive, then optimality fol-
lows. This is done in the lemma below. The result will then be formulated
in Corollary 7.2, which, eventually, contains the optimality result for our
mentioned configuration.

Lemma 7.1. Suppose that one of the following conditions hold:
(i) w ≥ 4 and |p| ≥ 3,
(ii) w = 3 and |p| ≥ 5,
(iii) w = 3, |p| = 4 and 5 ≤ q ≤ 9,
(iv) w = 2, p even, and(

1
√
q

+ 2
q

)2(
q − p2

4 + 1
)
< 1

or equivalently

|p| > 2

√√√√q + 1− q2(
2 +√q

)2 ,
(v) w = 2, p odd and(

1
√
q

+ 2
q

)2(
q − p2

4 + 1
4

)2(
q − p2

4

)−1

< 1.

Then the digit set D is w-subadditive.

The conditions (iv) and (v) of Lemma 7.1, i.e. the case w = 2, are
illustrated graphically in Figure 7.1.
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Figure 7.1. Bounds for the optimality of 2-NAFs. The
two curves correspond to the conditions (iv) and (v) of
Lemma 7.1. A dot corresponds to a valid τ . If the dot is
black, then the 2-NAFs of that τ are optimal, gray means
not decidable with this method. Each dot is labelled with
(|p| , q).

Proof. We denote the interior of V by int(V ). If

τw−1V + V + V ⊆ τw int(V )

holds, then the digit set D is w-subadditive since D ⊆ τwV , −D ⊆ τwV ,
V ⊆ τV and z ∈ τw int(V ) ∩ Z[τ ] implies that there is an integer ` ≥ 0
with z ∈ τ `D. The sufficient condition of Proposition 3.3 was used with
U = τwV and S = τw int(V ) \ {0}.



370 Clemens Heuberger, Daniel Krenn

Since V is convex, it is sufficient to show that
τw−1V + 2V ⊆ τw int(V ) .

This will be done by showing(
|τ |−1 + 2 |τ |−w

)
|V | < 1

2 ,

where |V | denotes the radius of the smallest closed disc with centre 0 con-
taining V . By setting

T (p, q, w) := 2
(
|τ |−1 + 2 |τ |−w

)
|V | ,

we have to show that
T (p, q, w) < 1.

Note that T (p, q, w) > 0, so it is sufficient to show
T 2(p, q, w) < 1.

For each of the different conditions given, we will check that the inequal-
ity holds for special values of p, q and w and then use a monotonicity
argument to get the result for other values of p, q and w. In the following
we distinguish between even and odd p.

Let p be even, first. Then 1
2 + i

2 Im(τ) is a vertex of the Voronoi cell
V . This means |V | = 1

2
√

1 + q − p2/4. Inserting that and |τ | = √q in the
asserted inequality yields

T 2(p, q, w) =
(

1
√
q

+ 2q−w/2
)2(

1 + q − p2

4

)
< 1.

It is easy to see that the left hand side of this inequality is monotonically
decreasing in |p| (as long as the condition q > p2/4 is fulfilled) and mono-
tonically decreasing in w. We assume p ≥ 0.

If we set p = 4 and w = 4, we get

T 2(4, q, 4) = −12
q4 + 4

q3 −
12
q5/2 + 4

q3/2 −
3
q

+ 1,

which is strictly monotonically increasing for q ≥ 5. Further we get
lim
q→∞

T 2(4, q, 4) = 1.

This means T 2(4, q, 4) < 1 for all q ≥ 5. Since p ≥ 4 implies q ≥ 5 and
because of the monotonicity mentioned before, the case (i) for the even p
is completed.

If we set p = 6 and w = 3, we get

T 2(6, q, 3) = −32
q3 −

28
q2 −

4
q

+ 1,

which is obviously less than 1. Therefore, again by monotonicity, the case (ii)
is done for the even p.
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If we set p = 4 and w = 3, we obtain

T 2(4, q, 3) = −12
q3 −

8
q2 + 1

q
+ 1,

which is monotonically increasing for 5 ≤ q ≤ 18. Further we get

T 2(4, 9, 3) = 242
243 < 1

and T 2(4, 10, 3) > 1. This means T 2(4, q, 3) < 1 for all q with 5 ≤ q ≤ 9.
So case (iii) is completed.

The condition given in (iv) is exactly

T 2(p, q, 2) < 1
for even p, so the result follows immediately.

Now, let p be odd. Then i
2 Im(τ)

(
Im(τ)2 + 1

4

)
is a vertex of the Voronoi

cell V . This means

|V | = 1
2

(
q − p2

4

)−1/2(
q − p2

4 + 1
4

)
.

Inserting that in the asserted inequality yields

T 2(p, q, w) =
(
q − p2

4

)−1(
q − p2

4 + 1
4

)2 (
2q−w/2 + q−1/2

)2
< 1.

Again, it is easy to verify that the left hand side of this inequality is mono-
tonically decreasing in p (as long as the condition q ≥ p2/4+1/4 is fulfilled)
and monotonically decreasing in w. We assume p ≥ 0.

If we set p = 3 and w = 4, we get

T 2(3, q, 4) =
4(q − 2)2

(
q3/2 + 2

)2

q4(4q − 9)
which is strictly monotonically increasing for q ≥ 3. Further we get

lim
q→∞

T 2(3, q, 4) = 1.

This means T 2(3, q, 4) < 1 for all q ≥ 3. Since p ≥ 3 implies q ≥ 3 and
because of the monotonicity mentioned before, the case (i) for the odd p is
finished.

If we set p = 5 and w = 3, we get

T 2(5, q, 3) = 4(q − 6)2(q + 2)2

q3(4q − 25)
which is strictly monotonically increasing for q ≥ 7. Further we get

lim
q→∞

T 2(5, q, 3) = 1.
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Figure 7.2. Optimality of a (w − 1)-NAF-expansion with
a digit set used for w-NAFs. Each symbol is labelled with
(|p| , q) and represents the minimal w for which there is an
optimal (w − 1)-NAF-expansion of each element of Z[τ ].

This means 0 < T 2(5, q, 3) < 1 for all q ≥ 7. As p ≥ 5 implies q ≥ 7, using
monotonicity again, the case (ii) is done for the odd p.

The condition given in (v) is exactly

T 2(p, q, 2) < 1

for odd p, so the result follows immediately.
Since we have now analysed all the conditions, the proof is finished. �

Now we can prove the following optimality corollary, which is a conse-
quence of Theorem 3.2.

Corollary 7.2. Suppose that one of the conditions (i) to (v) of Lemma 7.1
holds. Then the width-w non-adjacent form expansion for each element of
Z[τ ] is optimal.

Proof. Lemma 7.1 implies that the digit set D is w-subadditive, therefore
Theorem 3.2 can be used directly to get the desired result. �
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Remark 7.3. We have the following weaker optimality result. Let p, q and
w be integers with |p| ≥ p0, q ≥ q0 and w ≥ w0 for a (p0, qo, w0) ∈ Y , where

Y = {(0, 10, 2), (0, 5, 3), (0, 4, 4), (0, 3, 5), (0, 2, 10),
(1, 2, 8), (2, 3, 4), (2, 2, 7), (3, 7, 2), (3, 3, 3), (4, 5, 2)} .

Then we can show that the minimal norm representatives digit set modulo
τw coming from a τ with (p, q) is w-weak-subadditive, and therefore, by
Remark 3.4, we obtain optimality of a (w − 1)-NAF of each element of
Z[τ ]. The results are visualised graphically in Figure 7.2.

To show that the digit set is w-weak-subadditive we proceed in the same
way as in the proof of Lemma 7.1. We have to show the condition

T ′(p, q, w) < 1
where

T ′(p, q, w) = 2
(
|τ |−2 + 2 |τ |−w

)
|V |

with |τ | = √q. When p is even, we have

|V | = 1
2

√
1 + q − p2

4 ,

and when p is odd, we have

|V | = 1
2

(
q − p2

4

)−1/2(
q − p2

4 + 1
4

)
.

Using monotonicity arguments as in the proof of Lemma 7.1 yields the list
Y of “critical points”.

8. The p-is-3-q-is-3-Case

One important case can be proved by using the Optimality Theorem of
Section 3, too, namely when τ comes from a Koblitz curve in characteris-
tic 3. We specialise the setting of Section 7 to p = 3µ with µ ∈ {−1, 1} and
q = 3. We continue looking at w-NAF-numeral systems with minimal norm
representative digit set modulo τw with w ≥ 2. Some examples of those
digit sets are shown in Figure 8.1. We have the following optimality result.

Corollary 8.1. With the setting above, the width-w non-adjacent form
expansion for each element of Z[τ ] is optimal.

Proof. Using the statement of Lemma 7.1 and Theorem 3.2 yields the op-
timality for all w ≥ 4.

Let w = 2. Then our minimal norm representatives digit set is

D = {0} ∪
⋃

0≤k<6
ζk {1} ,
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(a) Digit set for τ =
3
2 + i

2
√

3 and w = 2.
(b) Digit set for τ =
3
2 + i

2
√

3 and w = 3.
(c) Digit set for τ =
3
2 + i

2
√

3 and w = 4.

Figure 8.1. Minimal norm representatives digit sets mod-
ulo τw. For each digit η, the corresponding Voronoi cell Vη
is drawn. The large scaled Voronoi cell is τwV .

where ζ is a primitive sixth root of unity, see Avanzi, Heuberger and
Prodinger [3]. Therefore we obtain |D| = 1 and D = −D. For k ∈ {0, 1} we
get

τkD +D +D ⊆ B
(
0,
√

3 + 2
)
⊆
√

34 B
(

0, 1
2

)
⊆ τ2w int(V ) ,

so the digit set D is w-subadditive by the same arguments as in the begin-
ning of the proof of Lemma 7.1, and we can apply the Optimality Theorem
to get the desired result.

Let w = 3. Then our minimal norm representatives digit set is

D = {0} ∪
⋃

0≤k<6
ζk {1, 2, 4− µτ} ,

where ζ is again a primitive sixth root of unity, again [3]. Therefore we
obtain |D| = |4− µτ | =

√
7 and again D = −D. For k ∈ {0, 1, 2}, we get

|τ |k |D| ≤ 3
√

7, because |τ | =
√

3. Therefore

τkD +D +D ⊆ B
(
0, 5
√

7
)
⊆
√

36 B
(

0, 1
2

)
⊆ τ2w int(V ) ,

so we can use Theorem 3.2 again to get the optimality. �

9. The p-is-2-q-is-2-Case

In this section we look at another special base τ . We assume that p ∈
{−2, 2} and q = 2. Again, we continue looking at w-NAF-numeral systems
with minimal norm representative digit set modulo τw with w ≥ 2. Some
examples of those digit sets are shown in Figure 9.1.

For all possible τ of this section, the corresponding Voronoi cell can be
written explicitly as

V = polygon
({

1
2(1 + i), 1

2(−1 + i), 1
2(−1− i), 1

2(1− i)
})

.
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(a) Digit set for τ =
1 + i and w = 2.

(b) Digit set for τ =
1 + i and w = 3.

(c) Digit set for τ =
1 + i and w = 4.

(d) Digit set for τ =
1 + i and w = 5.

Figure 9.1. Minimal norm representatives digit sets mod-
ulo τw. For each digit η, the corresponding Voronoi cell Vη
is drawn. The large scaled Voronoi cell is τwV .

Remark that V is an axis-parallel square and that we have

τV = polygon
({
ij
∣∣∣ j ∈ {0, 1, 2, 3}}) .

In this section we will prove that the w-NAFs are optimal if and only if w
is odd. The first part, optimality for odd w, is written down as the theorem
below. The non-optimality part for even w can be found as Proposition 9.3.

Theorem 9.1. Let w be an odd integer with w ≥ 3, and let z ∈ Z[τ ]. Then
the width-w non-adjacent form expansion of z is optimal.

Remark 9.2. Let w be an odd integer with w ≥ 3. Let z ∈ τwV ∩ Z[τ ],
then z can be represented as a w-NAF expansion with weight at most 1.
To see this, consider the boundary of τwV . Its vertices are 2(w−1)/2im for
m ∈ {0, 1, 2, 3}. All elements of ∂(τwV )∩Z[τ ] can be written as 2(w−1)/2im+
k(1 + i)in for some integers k, m and n. Further, all those elements are
divisible by τ . Therefore each digit lies in the interior of τwV , and for each
z ∈ τwV ∩ Z[τ ] there is an integer ` ≥ 0 such that τ−`z ∈ D, because
τ−1V ⊆ V and |τ | > 1.

Proof of Theorem 9.1. We prove that the digit set D is w-subadditive. Op-
timality then follows using Theorem 3.2. Using the remark above, D = −D
and the ideas of Proposition 3.3, it is sufficient to show

τ−w
(
τkD +D +D

)
∩ Z[τ ] ⊆ τwV

for k ∈ {0, . . . , w − 1}.
Let k = w − 1. We show that

(9.1)
(
D + τ−(w−1) (D +D)

)
∩ τZ[τ ] ⊆ τw+1V.

So let y = b+ a be an element of the left hand side of (9.1) with b ∈ D and
a ∈ τ−(w−1) (D +D). We can assume y 6= 0. Since y ∈ Z[τ ] and D ⊆ Z[τ ],
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we have a ∈ Z[τ ]. Since D ⊆ τwV , we obtain
τ−(w−1) (D +D) ⊆ 2τV.

The case b = 0 is easy, because 2τV = τ3V ⊆ τwV . So we can assume
b 6= 0. This means τ -b. Since τ |y, we have τ -a. The set 2τV ∩Z[τ ] consists
exactly of 0, im, 2im and τim for m ∈ {0, 1, 2, 3}. The only elements in that
set not divisible by τ are the im. Therefore a = im for some m. The digit b
is in the interior of τwV , thus y = b+ a is in τwV ⊆ τw+1V .

Now let k ∈ {0, . . . , w − 2}. If w ≥ 5, then

τ−w
(
τkD +D +D

)
⊆ τw−2V + 2V,

using D ⊆ τwV and properties of the Voronoi cell V . Consider the two
squares τw−2V and τwV = 2τw−2V . The distance between the boundaries
of them is at least 1

2 |τ |
w−2, which is at least

√
2. Since 2V is contained in

a disc with radius
√

2, we obtain τw−2V + 2V ⊆ τwV .
We are left with the case w = 3 and k ∈ {0, 1}. There the digit set D

consists of 0 and im for m ∈ {0, 1, 2, 3}. Therefore we have D ⊆ τV (instead
of D ⊆ τ3V ). By the same arguments as in the previous paragraph we get

τ−3
(
τkD +D +D

)
⊆ 1

2 (τV + 2V ) ⊆ τ3V,

so the proof is complete. �

The next result is the non-optimality result for even w.

Proposition 9.3. Let w be an even integer with w ≥ 2. Then there is an
element of Z[τ ] whose w-NAF-expansion is non-optimal.

Again, some examples of the digit sets used are shown in Figure 9.1. The
proof of the proposition is split up: Lemma 9.4 handles the general case
for even w ≥ 4 and Lemma 9.5 gives a counter-example (to optimality) for
w = 2.

For the remaining section—it contains the proof of Proposition 9.3—we
will assume τ = 1 + i. All other cases are analogous.

Lemma 9.4. Let the assumptions of Proposition 9.3 hold and suppose
w ≥ 4. Define A := |τ |w 1

2(1 − i) and B := 1
τA and set s = −i1−w/2.

Then
(a) 1, i, −1 and −i are digits,
(b) A− 1 is a digit,
(c) −B − 1 is a digit,
(d) iτw−1 − s−1 is a digit, and
(e) we have

(A− 1)τw−1 + (−s−1) = sτ2w + (−B − 1)τw + (iτw−1 − s−1).

Figure 9.2 shows the digits used in Lemma 9.4 for a special configuration.
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0 1−1

i

−i

τ

τwV

AB

A− 1

A− τ

−B − 1

τw

τw−1

Figure 9.2. The w-is-even situation. The figure shows the
configuration p = 2, q = 2, w = 6, s = 1. A polygon filled
grey represents a digit, a dot represents a point of interest
in Lemma 9.4.

Proof. (a) A direct calculation shows that the lattice elements 1, i, −1 and
−i are in the interior of

τwV =
[
−2w/2−1, 2w/2−1

]
+
[
−2w/2−1, 2w/2−1

]
i

and are not divisible by τ . So all of them are digits.
(b) We can rewrite A as

A = 2w/2−1(1− i) = −2w/2−1iτ,

therefore τ2 |A. We remark that A is a vertex (the lower-right vertex)
of the scaled Voronoi cell τwV and that the edges of τwV are parallel to
the real and imaginary axes. This means that A−1 is on the boundary,
too, and its real part is larger than 0. By using the construction of the
restricted Voronoi cell, cf. Definition 5.2, we know that A−1 is in τwṼ .
Since it is clearly not divisible by τ , it is a digit.

(c) We have
B = 1

τA = −2w/2−1i.

Therefore τ |B, and we know that B halves the edge at the bottom of
the Voronoi cell τwV . By construction of the scaled restricted Voronoi
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cell τwṼ , cf. Definition 5.2, we obtain that B+1 is a digit, and therefore,
by symmetry, −B − 1 is a digit, too.

(d) Rewriting yields
iτw−1 − s−1 = s−1(isτw−1 − 1),

and we obtain
sτw = −i1−w/2(1 + i)w = −2w/2i,

since (1 + i)2 = 2i. Further we can check that the vertices of τwV are
ikτw−1 for an appropriate k ∈ Z.

Now consider isτw−1. This is exactly the lower-right vertex A of
τwV . Therefore, we have

iτw−1 − s−1 = s−1(A− 1).
Using that A−1 is a digit and the rotational symmetry of the restricted
Voronoi cell, iτw−1 − s−1 is a digit.

(e) As before, we remark that sτw = −2w/2i. Therefore we obtain
B − 1− sτw = −B − 1.

Now, by rewriting, we get
(A− 1)τw−1 + (−s−1) = (A− τ)τw−1 + (iτw−1 − s−1)

= (B − 1)τw + (iτw−1 − s−1)
= sτ2w + (B − 1− sτw)τw + (iτw−1 − s−1)
= sτ2w + (−B − 1)τw + (iτw−1 − s−1),

which was to prove. �

Lemma 9.5. Let the assumptions of Proposition 9.3 hold and suppose
w = 2. Then
(a) −1 and −i are digits and
(b) we have

−τ − 1 = −iτ6 − τ4 − iτ2 − i.

Proof. (a) The elements −1 and −i are on the boundary of the Voronoi
cell τ2V , cf. Figure 9.1(a). More precisely, each is halving an edge of
the Voronoi cell mentioned. The construction of the restricted Voronoi
cell, together with the rotation and scaling of τ2 = 2i, implies that −1
and −i are in τ2Ṽ . Since none of them is divisible by τ , both are digits.

(b) The element i has the 2-NAF-representation
i = −iτ4 − τ2 − i.

Therefore we obtain
−τ − 1 = (−1 + i)τ + (iτ − 1) = iτ2 + (−i) = −iτ6 − τ4 − iτ2 − i



Optimality of the Width-w Non-adjacent Form 379

(a) Digit set for τ =
i
√

2 and w = 3.
(b) Digit set for τ =
i
√

2 and w = 5.
(c) Digit set for τ =
i
√

3 and w = 3.
(d) Digit set for τ =
i
√

3 and w = 5.

Figure 10.1. Minimal norm representatives digit sets mo-
dulo τw. For each digit η, the corresponding Voronoi cell Vη
is drawn. The large scaled Voronoi cell is τwV .

as required. �

Finally, we are able to prove the non-optimality result.

Proof of Proposition 9.3. Let w ≥ 4. Everything needed can be found in
Lemma 9.4: We have the equation

(A− 1)τw−1 + (−s−1) = sτ2w + (−B − 1)τw + (iτw−1 − s−1),
in which the left and the right hand side are both valid expansions (the
coefficients are digits). The left hand side has weight 2 and is not a w-NAF,
whereas the right hand side has weight 3 and is a w-NAF.

Similarly the case w = 2 is shown in Lemma 9.5: We have the equation
−τ − 1 = −iτ6 − τ4 − iτ2 − i,

which again is a counter-example to the optimality of the 2-NAFs. �

10. The p-is-0-Case

This section contains another special base τ . We assume that p = 0 and
that we have an integer q ≥ 2. Again, we continue looking at w-NAF-
numeral systems with minimal norm representative digit set modulo τw

with w ≥ 2. Some examples of the digit sets used are shown in Figure 10.1.
For all possible τ of this section, the corresponding Voronoi cell can be

written explicitly as

V = polygon
({

1
2(τ + 1), 1

2(τ − 1), 1
2(−τ − 1), 1

2(−τ + 1)
})

.

Remark that V is an axis-parallel rectangle.
In this section we prove the following non-optimality result.

Proposition 10.1. Let w be an odd integer with w ≥ 3 and the setting as
above. Then there is an element of Z[τ ] whose w-NAF-expansion is non-
optimal.
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0 1−1

τ

τwV

A

B

A− 1− τ A− τ

B − 1

s(−s− τw−1)

sτw

sτw−1

−B − 1

Figure 10.2. The q-is-even situation. The figure shows the
configuration p = 0, q = 4, τ = 2i, w = 3, s = 1. A polygon
filled grey represents a digit, a dot represents a point of
interest in Lemma 10.2.

For the remaining section, which contains the proof of the proposition
above, we will assume τ = i

√
q. The case τ = −i√q is analogous. Before we

start with the proof of Proposition 10.1, we need the following two lemmata.
Lemma 10.2. Let the assumptions of Proposition 10.1 hold, and suppose
that q is even. Define A := 1

2 |τ |
w+1 and B := 1

τA, and set s = (−1)
1
2 (w+1).

Then
(a) 1 and −1 are digits,
(b) A− 1− τ is a digit,
(c) −B − 1 is a digit,
(d) −s− τw−1 is a digit, and
(e) we have

(A− 1− τ)τw−1 − s = sτ2w + (−B − 1)τw + (−s− τw−1).
Figure 10.2 shows the digits used in Lemma 10.2 for a special configura-

tion.

Proof. (a) A direct calculation shows that−1 and 1 are in an open disc with
radius 1

2 |τ |
w, which itself is contained in τwV . Both are not divisible

by τ , so both are digits.
(b) Because w is odd, q is even and τ = i

√
q, we can rewrite the point A

as
A = 1

2 |τ |
w+1 = q

2q
1
2 (w−1)

and see that A is a (positive) rational integer and that τw−1 | A. Fur-
thermore, A halves an edge of τwV . Therefore, A − 1 is inside τwV .
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If q ≥ 4 or w ≥ 5, the point A − 1 − τ is inside τwV , too, since the
vertical (parallel to the imaginary axis) side-length of τwV is |τ |w and
|τ | < 1

2 |τ |
w. Since τ2 |A, we obtain τ -A− 1− τ , so A− 1− τ is a digit.

If q = 2 and w = 3, we have A− 1− τ = 1− τ . Due to the definition of
the restricted Voronoi cell Ṽ , cf. Definition 5.2, we obtain that 1− τ is
a digit.

(c) Previously we saw τw−1 |A. Using the definition of B and w ≥ 3 yields
τ | B. It is easy to check that B = 1

2sτ
w. Furthermore, we see that B

is on the boundary of the Voronoi cell τwV . By a symmetry argument
we get the same results for −B. By the construction of the restricted
Voronoi cell Ṽ , cf. Definition 5.2, we obtain that −B− 1 is in τwṼ and
since clearly τ - (−B − 1), we get that −B − 1 is a digit.

(d) We first remark that τw−1 ∈ Z and that
∣∣τw−1∣∣ ≤ A. Even more, we

get 0 < −sτw−1 ≤ A. Since A is on the boundary of τwV , we obtain
−1− sτw−1 ∈ τw int(V ). By symmetry the result is true for −s− τw−1

and clearly τ - (−s− τw−1), so −s− τw−1 is a digit.
(e) We get

(A− 1− τ)τw−1 + (−s) = (A− τ)τw−1 + (−s− τw−1)
= (B − 1)τw + (−s− τw−1)
= sτ2w + (B − 1− sτw)τw + (−s− τw−1)
= sτ2w + (−B − 1)τw + (−s− τw−1),

which can easily be verified. We used B = 1
τA. �

Lemma 10.3. Let the assumptions of Proposition 10.1 hold, and suppose
that q is odd. Define A′ := 1

2 |τ |
w+1, B′ := 1

τA, A := A′− 1
2 and B := B′+ τ

2 ,
and set C = −A, t = (q + 1)/2 and s = (−1)

1
2 (w+1) ∈ {−1, 1}. Then

(a) 1 and −1 are digits,
(b) A− τ is a digit,
(c) sC is a digit,
(d) −B − 1 is a digit,
(e) sC − tτw−1 is a digit, and
(f) we have

(A− τ)τw−1 + (sC) = sτ2w + (−B − 1)τw + (sC − tτw−1).

Figure 10.3 shows the digits used in Lemma 10.3 for a special configura-
tion.

Proof. (a) See the proof of Lemma 10.2.
(b) We can rewrite the point A as

A = 1
2 |τ |

w+1 − 1
2 = 1

2
(
q

1
2 (w+1) − 1

)
.
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0 1−1

τ

τwV

A

B

A− τ A− τ + t

B − 1− τ

sτw

sτw−1

−B − 1

C s(sC − tτw−1)

Figure 10.3. The q-is-odd situation. The figure shows the
configuration p = 0, q = 5, τ = i

√
5, w = 3, s = 1. A poly-

gon filled grey represents a digit, a dot represents a points
of interest in Lemma 10.3.

Since q is odd with q ≥ 3 and w is odd with w ≥ 3, we obtain A ∈ Z
with 0 < A < 1

2 |τ |
w+1 and q -A. Therefore τ -A and A is in the interior

of the Voronoi cell τwV . The vertical (parallel to the imaginary axis)
side-length of τwV is |τ |w and |τ | < 1

2 |τ |
w, so A − τ is in the interior

of τwV , too. Since τ -A− τ , the element A− τ is a digit.
(c) We got τ -A and A is in the interior of the Voronoi cell τwV . Therefore

A is a digit, and—by symmetry—sC is a digit, too.
(d) We obtain

B = −1
2 i
√
q |τ |w−1 + i

1
2
√
q = 1

2τ
(
− |τ |w−1 + 1

)
,

which is inside τwV . Therefore the same is true for −B. The horizontal
(parallel to the real axis) side-length of τwV is larger than 2, therefore
−B − 1 is inside τwV , too. Since τ |B we get τ - (−B − 1), so −B − 1
is a digit.

(e) We obtain

0 < s
(
sC − tτw−1

)
= 1

2
(
(q + 1) |τ |w−1 − |τ |w+1 + 1

)
= 1

2
(
|τ |w−1 + 1

)
<

1
2 |τ |

w+1 .
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This means that sC − tτw−1 is in the interior of the Voronoi cell τwV .
Since τ - (−A) = C, the same is true for sC − tτw−1, i.e. it is a digit.

(f) We get
(A− τ)τw−1 + (sC) = (A− τ + t)τw−1 + (sC − tτw−1)

= (B − 1− τ)τw + (sC − tτw−1)
= sτ2w + (B − 1− τ − sτw)τw + (sC − tτw−1)
= sτ2w + (−B − 1)τw + (sC − tτw−1),

which can be checked easily. �

The two lemmata above now allow us to prove the non-optimality result
of this section.

Proof of Proposition 10.1. Let q be even. In Lemma 10.2 we got
(A− 1− τ)τw−1 − s = sτ2w + (−B − 1)τw + (−s− τw−1)

and that all the coefficients there were digits, i.e. we have valid expansions
on the left and right hand side. The left hand side has weight 2 and is
not a w-NAF, whereas the right hand side has weight 3 and is a w-NAF.
Therefore a counter-example to the optimality was found.

The case q is odd works analogously. We got the counter-example
(A− τ)τw−1 + (sC) = sτ2w + (−B − 1)τw + (sC − tτw−1)

in Lemma 10.3. �

11. Computational Results

This section contains computational results on the optimality of w-NAFs
for some special imaginary quadratic bases τ and integers w. We assume
that we have a τ coming from integers p and q with q > p2/4. Again, we
continue looking at w-NAF-numeral systems with minimal norm represen-
tative digit set modulo τw with w ≥ 2.

As mentioned in Section 3, the condition w-subadditivity-condition—and
therefore optimality—can be verified by finding a w-NAF-expansion with
weight at most 2 in w (#D − 1) cases. The computational results can be
found in Figure 11.1. The calculations were performed in Sage [27].
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Figure 11.1. The optimality map including computational
results. Below each block the parameters |p| and q (fulfilling
τ2−pτ +q = 0) are printed. A block is positioned according
to τ in the complex plane. Above each block are the w. The
symbol O means that the w-NAF-expansions are optimal, N
means there are non-optimal w-NAF-expansions. If a result
is surrounded by a circle, then it is a computational result.
Otherwise, if there is no circle, then the result comes from
a theorem given here or was already known. A dot means
that there is no result available.
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