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Quadratic modular symbols on Shimura curves

par Pilar BAYER et Iván BLANCO-CHACÓN

Résumé. Nous introduisons le concept de symbole modulaire
quadratique et nous étudions comment ces symboles sont liés aux
fonctions L p-adiques quadratiques. Ces objets ont été introduits
dans [3] dans le cas des courbes modulaires. Dans cet article, nous
proposons une méthode pour attacher des symboles modulaires et
fonctions L p-adiques quadratiques aux courbes de Shimura plus
générales.

Abstract. We introduce the concept of quadratic modular sym-
bol and study how these symbols are related to quadratic p-adic
L-functions. These objects were introduced in [3] in the case of
modular curves. In this paper, we discuss a method to attach
quadratic modular symbols and quadratic p-adic L-functions to
more general Shimura curves.

Introduction
To a newform of even weight 2 for a congruence subgroup Γ0(N), Mazur-

Tate-Teitelbaum [10] associated p-adic distributions. The main tools in
their construction were the modular integrals along geodesics joining two
cusps. The Mellin-Mazur transforms of these p-adic distributions are known
as cyclotomic p-adic L-functions attached to f . They interpolate special
values of the complex L-function L(f, s).

Alternatively, it is possible to associate different p-adic distributions to a
newform f . In [3], we have recently constructed quadratic p-adic L-functions
from integration along geodesics connecting two quadratic imaginary points
of the complex upper half-plane H. Our construction presents notable dif-
ferences with respect to the cyclotomic p-adic L-functions. For instance,
the images of the cyclotomic p-adic L-functions lie on finite dimensional p-
adic vector spaces whereas the images of the quadratic p-adic L-functions
lie on infinite dimensional p-adic Banach spaces. More crucial is the fact
that if the newform f has rational coefficients, then the quadratic p-adic
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L-functions produce algebraic points on the corresponding elliptic curve
Ef , instead of interpolating special values of the function L(Ef , s).

For a cocompact arithmetic Fuchsian group of the first kind, the absence
of cusps prevents the definition of p-adic L-functions via modular inte-
grals connecting rational numbers. In this paper, we extend the concept of
quadratic modular symbols as defined in [3] to cover the cocompact case,
and relate them to quadratic p-adic L-functions. Classical modular symbols
span a finite dimensional C-vector space; on the contrary, quadratic mod-
ular symbols do not. This situation reflects the fact that quadratic p-adic
L-functions take values in an infinite dimensional p-adic Banach space.

In section 1, we present some facts about quaternion algebras and Shi-
mura curves; we refer the reader to [1] and [17] for more detailed discussions.
In section 2, we review some results on the homology of Shimura curves.
In section 3, we introduce the quadratic modular symbols and compare
them with the classical modular ones. In section 4, we compare the two
constructions of the p-adic L-functions: that of Mazur-Tate-Teitelbaum,
and the new one. We conclude the section with the construction of a p-adic
L-function for certain Shimura curves.

We are grateful to Federico Cantero for providing us with reference [2],
and to Ignasi Mundet for helpful discussion about the topology of orbifolds.
Finally, we thank the Mathematics Department of Euskal Herria University
for giving us the possibility to publish this paper in the proceedings of the
Fourth Meeting on Number Theory.
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1. Quaternion algebras and Shimura curves
1.1. Quaternion algebras and quaternion orders. Let a, b ∈ Z and
let H =

(
a, b
Q

)
be the quaternion Q-algebra generated by I and J with the

standard relations I2 = a, J2 = b, IJ = −JI. Denote K = IJ . The reduced
trace and the reduced norm of a quaternion ω = x+ yI + zJ + tK ∈ H are
defined by

Tr(ω) = ω + ω = 2x, N(ω) = ωω = x2 − ay2 − bz2 + abt,

where ω = x−yI−zJ− tK denotes the conjugate of ω. The following map
yields a monomorphism of quaternion Q-algebras

φ :
(
a, b

Q

)
→ M (2,Q(

√
a))

x+ yI + zJ + tK 7→
(

x+ y
√
a z + t

√
a

b(z − t
√
a) x− y

√
a

)
.

Notice that for any ω ∈ H, N(ω) = det (φ(ω)), and Tr(ω) = Tr (φ(ω)).
For any place p of Q (possibly including p = ∞), Hp := H ⊗Q Qp is

a quaternion Qp-algebra. If Hp is a division algebra, it is said that H is
ramified at p. As is well known, the quaternion algebra H is ramified at a
finite even number of places. The discriminant DH is defined as the product
of the primes at which H ramifies. Moreover, two quaternion Q-algebras
are isomorphic if and only if they have the same discriminant.

Definition. Let H be a quaternion Q-algebra. If DH = 1, H is said to
be non-ramified; in this case, it is isomorphic to M(2,Q). If H is ramified
at p = ∞, it is said to be definite, and indefinite otherwise. An indefinite
quaternion algebra is said to be small ramified if DH is equal to the product
of two distinct primes.

In this paper we shall deal with indefinite quaternion Q-algebras. The fol-
lowing result gives a useful presentation of non-ramified and small ramified
quaternion Q-algebras.

Theorem 1.1 (Alsina-Bayer [1]). Let H =
(
a, b

Q

)
be a quaternion

Q-algebra.

(i) If DH = 1, then H ' M (2,Q) '
(1,−1

Q

)
.

(ii) If DH = 2p, p prime, p ≡ 3 (mod 4), then H '
(
p,−1
Q

)
.

(iii) If DH = pq, p, q primes, q ≡ 1 (mod 4) and
(
p

q

)
= 1, then

H '
(
p, q

Q

)
.
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If a and b are prime numbers, then H satisfies one, and only one, of the
three previous statements.

LetH be a quaternion Q-algebra. An element α ∈ H is said to be integral
if N(α),Tr(α) ∈ Z. A Z-lattice Λ of H is a finitely generated torsion free Z-
module contained inH. A Z-ideal ofH is a Z-lattice Λ such that Q⊗Λ ' H.
A Z-ideal is not in general a ring. An order O of H is a Z-ideal which is a
ring. Each order of a quaternion algebra is contained in a maximal order.
In an indefinite quaternion algebra, all the maximal orders are conjugate
(cf. [17]). An Eichler order is the intersection of two maximal orders.

Let H =
(
a, b

Q

)
be an indefinite quaternion Q-algebra. Given a maximal

order OH , denote by O1
H the multiplicative group of elements of OH of

reduced norm equal to 1, and let Γ1
H be its image under φ. A Fuchsian group

of the first kind Γ ⊆ GL (2,R) is called arithmetic if it is commensurable
with Γ1

H for some quaternion algebra H.

Proposition 1.1 (cf. [17]). Let O be an Eichler order of H. Then Op =
O ⊗ Zp is a Zp-order of Hp. Moreover, there exists a unique n ≥ 0 such
that Op is conjugated to the Eichler order

On =
{(

a b
cpn d

)
; a, b, c, d ∈ Zp

}
.

The level of the local Eichler order is defined as pn.

To define the global level of O, write O = O′ ∩O′′ with O′,O′′ maximal
orders and tensor by Zp. The global level is then the product of all local
levels.

Proposition 1.2 (Alsina-Bayer [1]). Let N ≥ 1 and p, q be different primes
as in Theorem 1.1.

(i) O0(1, N) =
{(

a b
cN d

)
; a, b, c, d ∈ Z

}
is an Eichler order of level

N in M (2,Q).
(ii) OM (1, N) = Z + Z(J +K)/2 + ZN(−J +K)/2 + Z(1− I)/2 is an

Eichler order of level N in M =
(

1,−1
Q

)
, the matrix algebra.

(iii) If D = 2p, N |(p − 1)/2 and N is square free, then O(2p,N) =
Z + ZI + ZNJ + Z

(
1+I+J+K

2

)
is an Eichler order of level N in(

p,−1
Q

)
, for N |(p− 1)/2, N square free.

(iv) If D = pq, N |(q − 1)/4, (N, p) = 1 and N is square free, then
Z+ZNI +Z(1 + J)/2 +Z(I +K)/2 is an Eichler order of level N
in
(
p, q
Q

)
, for N |(p− 1)/4, p - N , N square free.
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Remark. We denote by O(D,N) an Eichler order of level N in a quater-
nion Q-algebra of discriminant D and by Γ(D,N) the image under φ of the
group of units of reduced norm equal to 1. The groups Γ(D,N) are arith-
metic Fuchsian groups of the first kind. In particular, Γ(1, N) = Γ0(N).

1.2. Shimura curves. Denote by H the complex upper half-plane en-
dowed with the hyperbolic metric

δ(z1, z2) =
∣∣∣∣∣arccosh

(
1 + |z1 − z2|2

2Im(z1)Im(z2)

)∣∣∣∣∣ .
The hyperbolic lines are the semilines which are orthogonal to the real axis
and the semicircles centered at real points.

The group SL(2,R) acts on H by Möbius transformations and its action
factorizes through PSL(2,R).

Definition. Let γ ∈ SL (2,R), γ 6= ±Id. Then
(a) γ is elliptic if it has a fixed point z ∈ H, and the other fixed point

is z.
(b) γ is parabolic if it has a unique fixed point in R ∪ {i∞}.
(c) γ is hyperbolic if it has two distinct fixed points in R ∪ {i∞}.

Proposition 1.3. Let γ ∈ Γ ⊆ SL (2,R), γ 6= ±Id. Then, γ is elliptic if
and only if |Tr(γ)| < 2. If Tr(γ) = 0, then γ has order 2 or 4 depending
on −Id ∈ Γ or −Id 6∈ Γ. If Tr(γ) = 1, then γ has order 3 or 4 depending
on −Id ∈ Γ or −Id 6∈ Γ. These are the two only possibilities for elliptic
transformations with integral traces.

Definition. Let Γ ⊆ SL (2,R) be a discrete subgroup acting on H. A point
z ∈ H is said to be elliptic if its isotropy group in Γ is generated by an
elliptic element of Γ. The order of z is the order of its isotropy group.

Fix an indefinite quaternionQ-algebraH =
(
a, b

Q

)
and let Γ1

H = φ
(
O1
H

)
.

Let Γ be an arithmetic Fuchsian group of the first kind commensurable
with Γ1

H . It acts on H by Möbius transformations and the action factors
through its image in PSL (2,R). The quotient Γ\H has an analytic structure
of Riemann surface. If this Riemann surface is compact, then Γ is said to
be cocompact. The Riemann surface Γ\H is analytically isomorphic to an
open subset of a smooth algebraic curve defined over Q, which is denoted
X (Γ) (cf. [14]).

The following result is well known.

Theorem 1.2. Let Γ be an arithmetic Fuchsian group of the first kind
commensurable with Γ1

H . Then Γ is cocompact if and only if H is a division
algebra.
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Example. The quaternion Q-algebra with discriminant 1 is isomorphic to
M (2,Q) and the maximal order is M (2,Z). As seen in Remark 1.1, the
congruence subgroup Γ0(N) is provided by an Eichler order O(1, N). Thus,
Γ0(N) is not cocompact. The Riemann surface Γ0(N)\H becomes compact
by adding the set of cusps, SL (2,Z) i∞. The compact Riemann surface
corresponds to X0(N) (C), the set of complex points of the modular curve
X0(N).

Example. Let H =
(
a, b

Q

)
be a quaternion Q-algebra of discriminant

D > 1. The group Γ(D,N) is cocompact because it does not have parabolic
elements. The Riemann surface Γ(D,N)\H is compact and analytically
isomorphic to an algebraic curve X(D,N) (cf. [14]). Fundamental domains
for several groups Γ(D, 1) can be consulted at [1].

Let GL (2,R)+ be the multiplicative subgroup of real matrices with

positive discriminant and γ =
(
a b
c d

)
∈ GL (2,R)+ . Define ρ(γ, z) =

det(γ)1/2

cz + d
. Let f : H → C be a holomorphic function. Denote, as usual,

f |kγ(z) = ρ(γ, z)kf(γ(z)).

Definition. An automorphic form of weight k for a cocompact group Γ is
a holomorphic function f on H such that f |kγ = f , for any γ ∈ Γ. The
C-vector space of automorphic forms of weight k for Γ is denoted by Sk (Γ).

From now on, we will restrict ourselves to automorphic forms of weight
equal 2.

Let us denote by Ω the sheaf of holomorphic differentials on X (Γ) and
let g denote the genus of X (Γ). One has an isomorphism

S2 (Γ) ' H0 (X (Γ) ,Ω) .

Hence, in particular, the dimension of S2 (Γ) as a C-vector space is g.

2. The homology of Shimura curves
2.1. The structure of the homology of a Shimura curve. Let Γ be
an arithmetic Fuchsian group of the first kind attached to an indefinite
quaternion Q-algebra of discriminant D > 1. The corresponding Shimura
curve X (Γ) is compact. The homology group H1 (X (Γ) (C) ,R) contains
the maximal lattice H1 (X (Γ) (C) ,Z). We will use the following result to
study the structure of H1 (X (Γ) (C) ,R).
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Theorem 2.1 (Armstrong [2]). Let Γ be a group which acts simplicially on
a simplicial complex U . Let E be the normal subgroup of Γ of elements with
a fixed point in U . Given α ∈ U and g ∈ Γ, define φα(g) as the homotopy
class of an edge path joining α with g(α). Then the map φα factors by a
map fα : Γ/E → π1 (Γ\U,α), which is an isomorphism.

Notice that Möbius transforms are conform; hence, they preserve geo-
desic triangles. In particular, arithmetic Fuchsian groups act simplicially
on H.

Theorem 2.2. Let Γ be an arithmetic Fuchsian group of the first kind.
Denote by E and P the sets of elliptic and parabolic elements of Γ, re-
spectively. Let Γ′ be the commutator of Γ. Let α ∈ H if Γ is cocompact or
α ∈ H ∪ P1 (Q), otherwise. For any g ∈ Γ, define φα(g) = {α, g(α)} ∈
H1 (X (Γ) (C) ,Z). Then

(i) If Γ is not cocompact, then, for any α ∈ H ∪ P1 (Q), there is an
exact sequence of groups

0→ Γ′EP → Γ φα→ H1 (X (Γ) (C),Z)→ 0.

(ii) If Γ is cocompact, then, for any α ∈ H, there is an exact sequence
of groups

0→ Γ′E → Γ φα→ H1 (X (Γ) (C),Z)→ 0.

In both cases, the map φα is independent of α.

Proof. We prove the result for cocompact Γ. The other case is proved in [9].
First, we check that for any α ∈ H, the map φα defined as in Theorem 2.1 is
a group homomorphism. Thus, take g, h ∈ Γ. Since H is simply connected,
we have

{α, gh(α)} = {α, g(α)}+ {g(α), gh(α)} = {α, g(α)}+ {α, h(α)},

hence, φα is a group homomorphism.
Next, we check the independency on α. Let α, β ∈ H. We can decompose

φα(g) = {α, β}+ {β, g(β)}+ {g(β), g(α)}
= {α, β}+ {β, g(β)}+ {β, α} = φβ(g).

We claim that the commutator subgroup of Γ/E is Γ′E/E. To see this, let us
consider the projection p : Γ→ Γ/E, which sends Γ′ onto Γ′E/E. Hence, it
induces a projection p : Γ/Γ′ → Γ/Γ′E, so that Γ/Γ′E ' (Γ/E) / (Γ′E/E)
is abelian. Thus, (Γ/E)′ ⊆ Γ′E/E. On the other hand, for any a, b ∈ Γ,
one has that aba−1b−1E = aEbE(aE)−1(bE)−1, by normality of E. This
shows the reverse inclusion. According to Theorem 2.1, there is an isomor-
phism ψ : H1 (X (Γ) (C) ,Z) → Γ/Γ′E such that the following diagram is
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commutative:

Γ φα−→ H1 (X (Γ) (C) ,Z)
↓ ↓ ψ

Γ/E −→ (Γ/E) / (Γ′E/E) −→ 0.

It follows that Ker(φα) = Γ′E; thus, the result follows.
�

Let G be a set of generators of Γ. If Γ is cocompact, denote by H(G) the
set of elements of G which are neither elliptic nor commutators. If Γ is not
cocompact, we define H(G) as the set of elements of G which are neither
elliptic nor parabolic, nor commutators. Let i ∈ H denote the imaginary
unit.

Definition. A family of quadratic distinguished classes is

{i, σ(i)}σ∈H(G),

with G a set of generators of Γ.

We have the following

Proposition 2.1. Any class in H1 (X (Γ) (C),Z) can be represented as a
sum of quadratic distinguished classes. In particular, the quadratic distin-
guished classes generate H1 (X (Γ) (C),R) as a real vector space.

Proof. By Theorem 2.2, any class inH1 (X (Γ) (C),Z) is of the form {i, g(i)}
for some g ∈ Γ. Decompose g = η1 · · · ηl where the ηk are generators of Γ.
Notice that

{i, g(i)} = {i, η1(i)}+ {η1(i), g(i)} = {i, η1(i)}+ {i, η2η3 · · · ηl(i)}.

Iterating, we have

{i, g(i)} =
l∑

k=1
{i, ηk(i)}.

If ηk 6∈ H(G), we can consider its fixed point τ ∈ H and have

{i, ηk(i)} = {i, τ}+ {τ, ηk(i)} = {i, τ}+ {ηk(τ), ηk(i)} = {i, τ}+ {τ, i} = 0.

�

Remark. For any arithmetic Fuchsian group of the first kind Γ, it is pos-
sible to find a set of generators of Γ of the form {η1, ..., η2g, ε1, ..., εt} with
ηk hyperbolic and εj elliptic, parabolic or commutator for any k, j (cf. [16]).
Thus, the set {{i, η1(i)}, ..., {i, η2g(i)}} is a basis of H1 (X (Γ) (C) ,Z). We
illustrate this fact numerically by showing a basis of the homology for sev-
eral Shimura curves.



Quadratic modular symbols on Shimura curves 269

Example. Let us define the matrices

Vk =
(

k
′ 1

−(k′k + 1) −k

)
,

with 1 ≤ k, k′ ≤ p− 1 and kk′ ≡ −1 (mod p). Denote the unitary transla-
tion by T . Table 2.1 shows generators and fundamental relations of Γ0(N)
(with N = p prime).

Table 2.1

p Minimal set of generators of Γ0(p) Relations Genus of X0(p)

2 T, V1 V 2
1 = 1 0

3 T, V2 V 3
2 = 1 0

5 T, V2, V3 V 2
2 = V 3

3 = 1 0
7 T, V3, V5 V 3

3 = V 3
5 = 1 0

11 T, V4, V6 1
13 T, V4, V5, V8, V10 V 2

5 = V 2
8 = V 3

4 = V 3
10 = 1 0

17 T, V4, V7, V9, V13 V 2
4 = V 2

13 = 1 1
19 T, V5, V8, V12, V13 V 2

8 = V 2
12 = 1 1

23 T, V8, V10, V12, V14 2
29 T, V6, V12, V13, V15, V17, V22 V 2

12 = V 2
17 = 1 2

31 T, V6, V9, V13, V17, V21, V26 V 3
6 = V 3

26 = 1 2
37 T, V6, V8, V11, V16, V20, V27, V28, V31 V 2

6 = V 2
31 = V 3

11 = V 3
27 = 1 2

41 T, V7, V9, V16, V19, V21, V24, V32, V33 V 2
9 = V 2

32 = 1 3
43 T, V7, V13, V15, V18, V24, V27, V29, V37 V 3

7 = V 3
37 = 1 3

47 T, V13, V16, V19, V22, V24, V27, V30, V33 4

53
T, V12, V14, V20, V23, V25, V27, V30, V32
V38, V40

V 2
23 = V 2

30 = 1 4

59
T, V12, V15, V20, V26, V28, V30, V32, V38
V43, V46

5

61
T, V9, V11, V14, V18, V25, V28, V32, V35
V42, V48, V50, V51

V 2
11 = V 2

50 = V 3
14 = V 3

48 = 1 4

67
T, V10, V18, V21, V24, V30, V31, V35, V38
V42, V45, V48, V56

V 3
30 = V 3

28 = 1 5

71
T, V9, V13, V24, V26, V28, V34, V36, V42
V44, V46, V57, V61

6

73
T, V9, V11, V17, V22, V25, V27, V33, V39
V46, V47, V50, V55, V61, V65

V 2
27 = V 2

46 = V 3
9 = V 3

65 = 1 5

79
T, V12, V20, V24, V25, V30, V34, V36, V42
V44, V48, V53, V56, V58, V66

V 3
24 = V 3

56 = 1 6

83
T, V14, V22, V28, V30, V32, V37, V40, V42
V45, V50, V52, V54, V60, V68

7

89
T, V10, V18, V21, V31, V34, V36, V39, V43
V45, V49, V52, V55, V57, V67, V70, V78

V 2
34 = V 2

55 = 1 7

97
T, V11, V15, V22, V23, V28, V30, V36, V40
V46, V50, V56, V62, V66, V68, V73, V75, V81, V85

V 2
22 = V 2

75 = V 3
36 = V 3

62 = 1 7

101
T, V10, V19, V23, V27, V30, V35, V40, V43
V49, V51, V57, V60, V65, V70, V73, V77, V81, V91

V 2
10 = V 2

91 = 1 8

Example. The Shimura curveX(6, 1) has genus 0 and Γ(6, 1) can be gener-
ated by six elliptic matrices. The Shimura curve X(10, 1) has genus 0 and
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Γ(10, 1) can be generated by three elliptic matrices. The Shimura curve
X(15, 1) has genus 1 and Γ(15, 1) has the following minimal set of genera-
tors:

α = 1
2

(
3 1
5 3

)
, h =

(
2 +
√

3 0
0 2−

√
3

)
,

β = 1
2

(
1 + 2

√
3 3− 2

√
3

15 + 10
√

3 1− 2
√

3

)
.

The matrices α, h are hyperbolic and β is elliptic of order 6.

2.2. Modular integrals. In what follows, Γ will denote an arithmetic
Fuchsian group commensurable with Γ1

H for some quaternion Q-algebra H.

Definition. Let f be an automorphic form of weight 2 for Γ and τ ∈ H
a quadratic imaginary point. The modular integral attached to f and τ is
the map

φτf : Γ1
Hτ −→ C

γ(τ) 7→
∫ τ

γ(τ)
f.

We will denote φf = φif when τ = i, the imaginary unit.

Remark. If Γ = Γ0(N) and instead of a quadratic imaginary point we
consider τ = i∞ we have the classical modular integral as in [10].

Let Γ be an arithmetic Fuchsian group of the first kind commensurable
with Γ1

H for some quaternion Q-algebra H. In particular, there is a finite
number of coset representatives of (Γ1

H ∩ Γ)\Γ1
H .

Lemma 2.1. Let f ∈ S2 (Γ) and let A, γ ∈ GL (2,R)+. Then

φτf (Aγ(τ)) = φτf |A(γ(τ)) + φτf (A(τ)),

where φτf |A(γ(τ)) =
∫ τ
γ(τ) f |A.

Proof. Suppose τ = i. First, notice that dA(z) = ρ(A, z)2dz, hence

φf |A(γ(i)) =
∫ i

γ(i)
ρ(A, z)2f(A(z))dz =

∫ A(i)

Aγ(i)
f(w)dw.

Since f is holomorphic in the upper half-plane, the integral along the tri-
angle with vertices A(i), Aγ(i) and i vanishes. Hence

φf |A(γ(i)) =
∫ i

Aγ(i)
f(z)dz +

∫ A(i)

i
f(z)dz,

and the result holds. �

As a corollary we have the following
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Proposition 2.2. The Z-module Σf = 〈φf (γ(i)); γ ∈ Γ1
H〉Z is finitely

generated and torsion-free. Given G a minimal set of generators of Γ, then

rk (Σf ) ≤ card (G) +
[
Γ1
H : Γ ∩ Γ1

H

]
.

Proof. Let {Al}1≤l≤n be a set of coset representatives of (Γ∩ Γ1
H)\Γ1

H and
let G = {Bj}1≤j≤m be a minimal set of generators of Γ.

Let A ∈ Γ1
H . There exists B ∈ Γ ∩ Γ1

H and l0 ∈ {1, ..., n} such that
A = BAl0 . Hence

φf (BAl0(i)) = φf |B(Al0(i)) + φf (B(i)) = φf (Al0(i)) + φf (B(i)).

Now, write B = Bj1 ...Bjr with {j1, ..., jr} ⊆ {1, ...,m}. Hence

φf (B(i)) = φ(Bj2 ...Bjr(i)) + φf (Bj1(i)),

and
φf (A(i)) ∈ 〈φf (Al(i)), φf (Bj(i)); 1 ≤ l ≤ n, 1 ≤ j ≤ m〉Z.

�

3. Modular symbols
3.1. Classical modular symbols. We begin by recalling the following

Definition (Manin [9], Pollack-Stevens [11]). Denote ∆0 = SL (2,Z) i∞.
Let K = C or Qp and V be a K-vector space. A V -valued modular symbol
is a map F from the set ∆0 ×∆0 to V such that for any P,Q,R ∈ ∆0,

F (P,Q) = F (P,R) + F (R,Q).

Denote by Symb (∆0, V ) the K-vector space of V -valued modular symbols.

Notice that Γ0(N) acts by the left on Symb (∆0, V ). The K-vector space
of Γ0(N)-invariant modular symbols will be denoted by Symb (∆0, V )Γ0(N).

Via Theorem 2.2 and the Manin continued fraction trick, one can con-
structively show (cf. [7]) that any closed path ω ∈ H1 (X (Γ0(N)) ,Z) can
be expressed as a Z-linear combination of paths of the form {g(0), g(i∞)},
with g ∈ SL (2,Z). These paths are called M -paths and they suffice to de-
termine a modular symbol. The K-valued modular symbols supported on
the M -paths are normally referred to as M -symbols.

The action of the Hecke algebra on Symb (∆0,Qp)Γ0(N) is determined by
the following double coset decomposition of the orbit space

Γ0(N)\Γ0(N)
(
p 0
0 1

)
Γ0(N)

(cf. [7], Proposition 1.6):
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(i) If p - N , then

Γ0(N)\Γ0(N)
(
p 0
0 1

)
Γ0(N) =

p−1⋃
u=0

Γ0(N)
(

1 u
0 p

)
Γ0(N)

⋃(
p 0
0 1

)
Γ0(N).

(ii) If p|N , then

Γ0(N)\Γ0(N)
(
p 0
0 1

)
Γ0(N) =

p−1⋃
u=0

(
1 u
0 p

)
Γ0(N).

The action on paths is:
(i) if p - N , then

{g(0), g(i∞)}|Tp =
p−1∑
u=0
{(g(0) + u)p−1, (g(i∞) + u)p−1}+ {pg(0), pg(i∞)}.

(ii) If p|N , then

{g(0), g(i∞)}|Tp =
p−1∑
u=0
{(g(0) + u)p−1, (g(i∞) + u)p−1}.

Notice that, since Tp acts on the rational numbers, it is again possible
to decompose each path in the above sum as a Z-linear combination of
M -paths.
Remark. If K is a field, denote by Kalg an algebraic closure of K. Fix
compatible embeddings of Q in Qalg and in Qalg

p . By Proposition 2.2, given
f ∈ S2 (Γ0(N)), the classical modular integral φf can be seen both as
a modular symbol with values in C or in a finite dimensional Qp-vector
space.

An important application of classical modular symbols is the explicit
computation of spaces of modular forms. This topic is treated in detail in
[7]. In particular, one has the following result:
Proposition 3.1 (Pollack-Stevens [11]). There exists an injection as
Hecke-modules

S2 (Γ0(N)) ↪→ Symb (∆0)Γ0(N) .

The method for computing modular forms consists in the determina-
tion of the eigenvalues of the Hecke operators acting on Symb (∆0,C)Γ0(N).
These eigenvalues determine spaces of newforms for Γ0(N). The Manin con-
tinued fraction trick grants that it is easy to determine the eigenvalues by
working on modular symbols. Hence, the Fourier expansion at infinity of
such an eigenform has as n-th Fourier coefficient the computed eigenvalue
for Tn.
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3.2. Quadratic modular symbols. Let Γ be an arithmetic Fuchsian
group of the first kind commensurable with Γ1 = φ(O1

H) for some indefinite
quaternion Q-algebra H and let τ ∈ H be a quadratic imaginary point. If
Γ1 = SL (2,Z) and Γ = Γ0(N) we allow τ ∈ Q ∪ {i∞}.

Let p be a prime. Choose a quaternion ωp ∈ O1
H of reduced norm p

and set γp = φ(ωp). In [15] it is proved that there exists d ∈ N such that
[Γ : Γ ∩ γpΓγ−1

p ] = d. Hence, there is a coset decomposition

ΓγpΓ =
d⋃
a=1

γaΓ.

Let us denote

∆τ,p
0 =

∞⋃
n=0

⋃
1 ≤ ij ≤ d
1 ≤ j ≤ n

γi1 ...γinΓ1τ

and
Γ(∆τ,p

0 ×∆τ,p
0 ) = {(γσ1, γσ2); γ ∈ Γ, σ1, σ2 ∈ ∆τ,p

0 }.

Definition. Let K = C or Qp and V a K-vector space. A V -valued
τ -modular symbol is a map F from the set Γ(∆τ,p

0 ×∆τ,p
0 ) to V such that

for any P,Q,R ∈ ∆τ,p
0 and for any γ ∈ Γ,

F (γP, γQ) = F (γP, γR) + F (γR, γQ).

Denote by Symb (∆τ,p
0 , V )Γ the K-vector space of τ -modular symbols which

are invariant under Γ. If τ is quadratic imaginary we will refer to the ele-
ments of Symb (∆τ,p

0 , V )Γ as quadratic modular symbols.

Remark. Notice that Γ acts trivially on Symb (∆τ,p
0 , V )Γ. The motivation

for our definition is that we want the matrices attached to the Hecke oper-
ator Tp to act on Symb (∆τ,p

0 , V )Γ. Notice that for τ = i∞, for any prime
p, for Γ1 = SL (2,Z) and Γ = Γ0(N), ∆i∞,p

0 = ∆0 and Γ(∆i∞,p
0 ×∆i∞,p

0 ) =
∆0 ×∆0.

Let us turn to the modular case. Let τ ∈ H be a quadratic imaginary
point satisfying τ2 +D = 0 with D square free and τ non-elliptic. We have
the following

Proposition 3.2. Let p be a prime number such that
(
−D
p

)
= −1. There

is an injection

Symb (∆0, V )Γ0(N) ↪→ Symb (∆τ,p
0 , V )Γ0(N)

.



274 Pilar Bayer, Iván Blanco-Chacón

Proof. Given 0 ≤ a ≤ pn − 1, let us denote γa,pn =
(

1 a
0 pn

)
. Define a

map
I : Symb (∆0, V )Γ0(N) → Symb (∆τ,p

0 , V )Γ0(N)

F 7→ I(F ),
where

I(F )(γγa,pnγ1τ, γγb,pmγ2τ) = F (γγa,pnγ1∞, γγb,pnγ1∞).
First, we check that the map is well defined. It suffices to check that if

σ1γa,pnγ1τ = σ2γb,pmγ2τ, with σ1, σ2 ∈ Γ0(N), γ1, γ2 ∈ SL (2,Z) ,
then σ1γa,pnγ1∞ = σ2γb,pmγ2∞.

To prove this fact, suppose that σ1γa,pnγ1τ = σ2γb,pmγ2τ . This would
imply that γτ = τ with γ = γ−1

2 γ−1
b,pmσ

−1
2 σ1γa,pnγ1 ∈ GL (2,Q). Notice

that η = pmγ ∈ GL (2,Z) also fixes τ and has determinant pn+m. If

η =
(
a b
c d

)
, then pn+m would be represented by the binary quadratic

form X2 + DY 2, with discriminant −4D, hence, −4D would be a square
modulo pn−mr2, in particular modulo p, hence,

(
−D
p

)
= 1, which would be

a contradiction. If n = m = 0, then γ ∈ SL (2,Z). Since τ is non-elliptic,
σ1γa,pnγ1 = σ2γb,pnγ2. Linearity and injectivity are obvious. �

Remark. It does not seem easy to prove that the Hecke algebra acts on
Symb (∆τ,p

0 , V )Γ0(N) (the operator Tp certainly does). But since

Symb (∆0, V )Γ0(N) ↪→
⋂(

−D
p

)
=−1

Symb (∆τ,p
0 , V )Γ0(N)

,

we see that the Hecke algebra acts on the image of Symb (∆0, V )Γ0(N) in
the intersection.

4. p-adic L-functions
Classical modular symbols are at the core of the definition of the cyclo-

tomic p-adic L-function. Next we recall this construction, following Mazur-
Tate-Teitelbaum ([10]).

4.1. Cyclotomic p-adic L-functions. Let f ∈ S2 (Γ0(N)) be a normal-
ized newform. It is well known that the field Kf obtained by adjoining to
Q the Fourier coefficients of f is a totally real number field. Denote by Of
the ring of integers of Kf and by Of,p the completion of Of at a prime
over p. Let ap denote the eigenvalue corresponding to the Hecke operator
Tp. The Hecke polynomial of f at p is X2 − apX + p. Fix an embedding of
Q in Qalg and in Qalg

p and consider αp a root of the Hecke polynomial such
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that |α|p > p−1. The fact that f is an eigenvalue for Tp and that αp is a
root of the Hecke polynomial allows to define a p-adic distribution:

Definition (Mazur-Tate-Teitelbaum [10]). The following function on com-
pact open discs of Z∗p extends in a unique way to a p-adic distribution.

(i) If p - N , µf,p = (a+ pnZp) = α−np

(∫ a
pn

+i∞

a
pn

f − α−1
∫ pa

pn
+i∞

pa
pn

f

)
.

(ii) If p|N , µf,p = (a+ pnZp) = a−np

∫ a
pn

+i∞

a
pn

f.

If αp ∈ O∗f,p, then µf,p is uniformly bounded on compact-open subsets of
Zp and f is said to be ordinary at p. Otherwise, f is called supersingular
at p.

Denote X = Homcont
(
Z∗p,C∗p

)
the group of C∗p-valued continuous char-

acters of Z∗p.

Definition (Mazur-Tate-Teitelbaum [10]). Given f ∈ S2 (Γ0(N)) and χ ∈
X , the p-adic L-function is the Mellin-Mazur transform of µf,p,

Lp(f ;χ) =
∫
Z∗p
χ(x)dµf,p(x).

The key property of this p-adic L-function is that it interpolates values
of the complex L-function attached to f :

Proposition 4.1 (Mazur-Tate-Teitelbaum [10]). Let χ ∈ X be a character
of conductor pn, with n ≥ 0 and τ(χ) its Gauss sum. Then

Lp(f ;χ) = pn

αnτ(χ)L(f ;χ, 1).

The p-adic L-function cannot be identically zero. Indeed, by a theorem of
Rohrlich [13], it is non-zero for an infinite family of characters of conductor
a power of p. In addition, in the ordinary case, it is non-zero for an infinite
family of characters of the form x 7→ xn. Moreover, in the ordinary case,
Lp(f ;χ) = 0 only for a finite number of characters χ. This is true also in the
supersingular case assuming that Lp(f ;χ) 6= 0 for some p-adic character of
infinite order ([6]).

4.2. Coset representatives and p-adic L-functions. To define the
classical p-adic L-function, one considers the standard right coset decom-
position of the operator Tp given in subsection 3.1. Indeed, one fixes a
way of assigning a coset representative to any compact open subset of the
form a + pZp for 1 ≤ a ≤ p − 1. Even if we fix the standard right coset
decomposition, another assignment of right coset representatives yields a
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different p-adic measure. To illustrate this, let us consider a permutation
σ ∈ Bij ({1, ..., p− 1}). Define σ(0) = 0. Denote again by σ the bijection

σ : Z∗p ∩ {1, ..., pn − 1} → Z∗p ∩ {1, ..., pn − 1}
n−1∑
i=0

aip
i 7→

n−1∑
i=0

σ(ai)pi.

Let µ be a Qp-valued p-adic distribution. Define
µσ (a+ pnZp) = µ (σ(a) + pnZp) .

Proposition 4.2. For any p-adic distribution µ and for any permutation
σ ∈ Bij ({1, ..., p− 1}), µσ is a p-adic distribution.

Proof. First notice that for any a =
n−1∑
i=0

aip
i ∈ Z∗p, we have the decomposi-

tion

a+ pnZp =
p−1⋃
j=0

a+ jpn + pn+1Zp.

Hence,

µσ (a+ pnZp) = µ (σ(a) + pnZp) =
p−1∑
j=0

µ
(
σ(a) + jpn + pn+1Zp

)
.

But since σ is a permutation of indices between 1 and p−1, the right hand
side equals

p−1∑
j=0

µ
(
σ(a) + σ(j)pn + pn+1Zp

)
=

p−1∑
j=0

µσ
(
a+ jpn + pn+1Zp

)
.

�

Let χ ∈ X a continuous p-adic character. We can define

χσ(a) = χ(aσ−1
a−1).

It is not difficult to see that χσ ∈ X . Denote by Lσp (f ;χ) the Mellin-Mazur
transform of µσ at χ. We have the following result:
Proposition 4.3. For any χ ∈ X , Lσp (f ;χ) = Lp(f ;χχσ). In particular,
Lσp is not identically zero.

Proof. By definition,
∫
Z∗p χ(x)dµσ(x) = lim

∑
a

χ(a)µσ(a+ pnZp) where the

limit is taken as {a+ pnZp} runs over the partitions of Z∗p. Hence,

Lσp (f ;χ) = lim
∑
a

χ(σ(a))χ(aσ(a−1))µ(aσ + pnZp)

= lim
∑
a

χ(a)χσ(a)µ(a+ pnZp).
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The right hand side equals Lp(f ;χχσ). As for the fact that it does not
vanish, notice that the conductor of χσ is a power of p and apply the main
result of [13]. �

As we can see, the Mazur-Mellin transforms of µσ and µ are not equal.
However, we have

Corollary 4.1. For any σ ∈ Bij ({1, ..., p− 1}), Lp(f ; 1) = Lσp (f ; 1).

4.3. Quadratic p-adic L-functions. In [3], we have constructed p-adic
L-functions based on quadratic modular symbols. The construction is as
follows.

For any a ∈ Z with |a| ∈ {1, ..., p − 1}, there exists a unique couple of
integers x, y ∈ Z such that ax− py = 1 and x ∈ {0, ..., p− 1}. Denote

γa,p =
(
a y
p x

)
.

For any u ∈ Z such that 0 ≤ |u| ≤ p− 1, define

γu =
(

1 u
0 p

)
.

For any 0 ≤ |a| < pn coprime to p, consider the expansion

a = a0 +
n−1∑
i=1

uip
i.

Define
γa,pn = γun−1γun−2 ...γu1γa0,p.

If n ≥ 2, denote γpa,pn = γa,pn−1 and for n = 1, denote γa,1 = pγa,p.
Notice that γa+upn,pn+1 = γuγa,pn . Let f ∈ S2 (Γ0(N)) an eigenform for Tp,
ap the corresponding eigenvalue and αp and admissible root of the Hecke
polynomial. If p||N , the only choice is αp = ap. We propose the following

Definition. For any a ∈ Z coprime to p and for any n ≥ 0, denote by
δf (γa,pn(i)) = φf (γa,pn(i))− φf (γ−a,pn(i)). Let n ≥ 1.

(a) If p ‖ N , we define

µQ (a+ pnZp) = 1
anp
δf (γa,pn(i)) .

(b) If p - N , we define

µQ (a+ pnZp) = 1
αnp

(
δf (γa,pn(i))− α−1

p δf
(
γa,pn−1(i)

))
.
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Define

µQ
(
Z∗p
)

=
p−1∑
a=0

µQ (a+ pZp)

and
µQ (pZp) = 0.

The fact that f is an eigenfunction for Tp and that αp is a root of the
Hecke polynomial grants that µQ is a p-adic distribution. This distribution
takes values in the Banach Cp-vector space

c∞ (Cp) =
{
x = (xn)n≥1 ∈ CN

p ; there exists Cx s. t.
|xn| ≤ Cx for all n ≥ 1

}
.

If αp ∈ O∗f,p, then all the Of,p-linear combinations of the integrals
δf (γa,pn(i)) are uniformly bounded by 1. In this case, as usual, we say
that f is ordinary at p. Otherwise we say that f is supersingular at p.
Definition. Let f ∈ S2 (Γ0(N)) be ordinary at p. The quadratic p-adic
L-function attached to f is

Lp(f ;χ) =
∫
Z∗p
χ(x)dµQ(x),

where χ ∈ X .
Since, for f ordinary at p, µQ is a p-adic measure, we can integrate

continuous functions against µQ, and the integral belongs to c∞ (Cp). We
are interested in integrating continuous p-adic characters. Recall that for
any x ∈ Z∗p we can write

x = ω(x)〈x〉,
where ω(x) is the unique p− 1-th root of unity in Z∗p congruent to x mod
p− 1. Given s ∈ Zp, let us consider the p-adic character:

χs(x) = expp
(
s logp (〈x〉)

)
, x ∈ Z∗p.

Here, the function expp is the p-adic exponentiation, which is p-adically
holomorphic in the disc D(0, p

−1
p−1 ), and logp is the p-adic logarithm, which

is holomorphic in the disc D(1, p
−1
p−1 ) (for details cf. [12]).

It is not difficult to obtain the following expansion:

(4.1) χs(x) =
∞∑
n=0

logp (〈x〉)n

n! sn.

Given s ∈ Zp, let us denote
Lp(f ; s) = Lp(f ;χs).

Proposition 4.4. The quadratic p-adic L-function Lp(f ; s) is p-adically
holomorphic in the disc D(0, p−1).
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Proof. For any integer n ≥ 1, lt us denote by σn the sum of its digits in base
p. Given α ∈ Qp, let us denote by |α| the p-adic valuation of α (normalized
such that |p| = p−1). It is well known (cf. [12]) that |n!| = p

−n+σn
p−1 . Thus,

there exists C > 0 such that∣∣∣∣∣ logp (〈x〉)n

n!

∣∣∣∣∣ ≤ C.
Since µQ is uniformly bounded on the compact subsets of Zp, say, by M ,
we have that ∣∣∣∣∣

∫
Z∗p

logp (〈x〉)n

n! dµQ(x)
∣∣∣∣∣ ≤MC.

Hence, for any s ∈ D(0, p−1)∫
Z∗p
〈x〉sdµQ(x) =

∞∑
n=0

sn
∫
Z∗p

logp (〈x〉)n

n! dµQ(x).

�

Let E be an elliptic curve defined over Q of conductor N . Let fE be its
corresponding weight 2 newform. There is a modular parametrization

ΨE : Γ0(N)\H −→ C/ΛE
τ 7→

∫ τ

∞
fE .

Definition. The quadratic p-adic L-function attached to E is
Lp(E; s) = Lp(fE ;χs−1),

Denote by φE =
(
℘ΛE , ℘

′
ΛE

)
the Weierstrass uniformization map. The

following result is well known

Theorem 4.1 (Birch [5]). Let K be a quadratic imaginary field. If τ ∈
K ∩H, then

φE (ΨE(τ)) ∈ E
(
Kab

)
.

Here Kab denotes the maximal abelian extension of K.

The quadratic p-adic L-function satisfies the following

Theorem 4.2. Let E be an elliptic curve defined over Q of conductor N
and αp an admissible root of the Hecke polynomial of the corresponding
newform fE. Let p be a prime number and ap the eigenvalue of Tp corre-
sponding to fE. Suppose that fE is ordinary at p.

(i) If p - N and αp = 1, then, for any a coprime to p and for any
n ≥ 0,

φE (µQ (a+ pnZp)) ∈ E
(
Q(τ)ab

)
.
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In particular,

φE (Lp(E; 1)) ∈ E
(
Q(τ)ab

)
.

(i) If p ‖ N , then, for any any a coprime to p and for any n ≥ 0,

φE
(
anpµQ (a+ pnZp)

)
∈ E

(
Q(τ)ab

)
.

In particular,

φE (apLp(E; 1)) ∈ E
(
Q(τ)ab

)
.

Here µQ stands for the quadratic p-adic measure attached to fE.

Proof. Suppose that p ‖ N (the other case is analogous). We have:
µQ (a+ pnZp) = a−np δf (γa,pn(τ)) = a−np (ΨE (γa,pn(τ))−ΨE (γ−a,pn(τ))) .
The arguments of the modular parametrization belong to the quadratic

imaginary field Q(τ). Hence, by using Theorem 4.1,

φE (ΨE (γa,pn(τ))) , φE (ΨE (γ−a,pn(τ))) ∈ E
(
Q(τ)ab

)
.

Since φE is an isomorphism of groups the result holds. �

4.4. p-adic L-functions for certain Shimura curves. Let H be a
quaternion Q-algebra of discriminant D > 1, O an Eichler order of level
N ≥ 1 and O∗ the group of units of reduced norm 1 in O. Denote by Γ the
group φ(O∗). Let p be a prime. The Hecke operator Tp is defined as the
double coset ΓηpΓ acting of S2 (Γ), where ηp = φ(ωp) with ωp a quaternion
of reduced norm p (see [15]). We thank Professor Y.Yang for showing us
the following

Proposition 4.5. Let p be a prime.
(i) If p - ND, then [Γ : Γ ∩ γ−1

p Γγp] = p+ 1.
(ii) If p|N and p - D, then [Γ : Γ ∩ γ−1

p Γγp] = p.
(iii) If p|D, then [Γ : Γ ∩ γ−1

p Γγp] = 1.

Proof. The number of coset representatives is finite in any case (see [15])
and it is enough to count it locally, since H splits at infinity. If p - ND, the

Eichler order O ⊗ Zp is conjugated to the local Eichler order
(

Zp Zp
Zp Zp

)
.

The matrices
(
p 0
0 1

)
and

(
1 j
0 p

)
with 0 ≤ j ≤ p − 1 are a family of

coset representatives. If p|N but p - D, the Eichler order O ⊗ Zp is con-

jugated to the local Eichler order
(

Zp Zp
NZp Zp

)
. The matrices

(
1 j
0 p

)
with 0 ≤ j ≤ p−1 are a family of coset representatives in this case. Finally,
if p|D, the Eichler order O⊗Zp is a discrete valuation ring and we can take
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as element of norm p any uniformizer of the Eichler order, and any element
of norm p of this Eichler order is a uniformizer, which differs from the first
in a unit, hence, there is only one class. �

Next we propose a definition of a p-adic L-function for the Shimura curve
X(D,N) provided that p|N but p - D. Before doing this, note that the
decomposition in coset representatives is not unique (both for cocompact
and non-cocompact Shimura curves). In the non-cocompact case, having
fixed the standard decomposition of the Hecke double coset operator, one
has to assign a coset representative to any compact-open subset D

(
j, p−1),

1 ≤ j ≤ p − 1, and for different assignments, the corresponding p-adic L-
functions are different. Hence, fix a family of coset representatives {γj} for
the orbit space Γ\ΓηpΓ. Let f ∈ S2 (Γ) be a weight 2 automorphic form
which is an eigenform for the operator Tp, which is defined as

Tp(f) =
p∑
j=1

f |2γj .

Let a be a natural number less than pn. Write a =
n−1∑
i=0

aip
i with 0 ≤ ai ≤

p− 1. Fix a permutation σ of the set {1, ...p− 1} and set σ(0) = 0. Denote

δ(f, τ, σ, a) = φτf

(
γσ(an−1) · · · γσ(a0)(τ)

)
− φτf

(
γσ(p−an−1) · · · γσ(p−a0)(τ)

)
.

Definition. Let σ be a bijection of the set {0, ..., p− 1} with σ(0) = 0 and
let f ∈ S2 (Γ) be an eigenform for Tp with eigenvalue ap. Let τ ∈ H be a
quadratic imaginary point. The quadratic p-adic distribution attached to
f , τ and σ is defined by

µσQ (D (a, pn)) = a−np δ(f, τ, σ, a),

µσQ

(
Z∗p
)

=
p−1∑
a=1

µσQ (D (a, p)) ,

µσQ (pZp) = 0.

The following notation is usual in p-adic functional analysis and we will
need it:
c00 (Cp) =

{
(xn) ∈ CN

p ; s. t. there exists n0 ≥ 1, with xn = 0 for n ≥ n0
}
.

Proposition 4.6. The function µQ extends, in a unique way, to a c00 (Cp)-
valued p-adic distribution.

Proof. Notice that µQ (a+ pnZp) ∈ Σf,n ⊗ Zp[a−1
p ]. Since each compact

open subset can be covered by a finite number of discs, µQ takes values on
c00 (Cp).
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To prove the distribution property, denote by γj(z) the action of γj on
z by Möbius transformation. Since f is an eigenform for Tp, we have

apφ
τ
f

(
γσ(an−1) · · · γσ(a0)(τ)

)
= p−1

p∑
j=1

∫ τ

γσ(an−1)···γσ(a0)(τ)
f (γj(z)) dz.

After changing variables, and taking into account that j is a mute index,
we have
(4.2)

apφ
τ
f

(
γσ(an−1) · · · γσ(a0)(τ)

)
=

p∑
j=1

φτf

(
γσ(j)γσ(an−1) · · · γσ(a0)(τ)

)
+K,

where

K = −
p∑
j=1

∫ τ

γj(τ)
f(z)dz.

In addition

(4.3) apφ
τ
f

(
γσ(p−an−1) · · · γσ(p−a0)(τ)

)
=

p∑
j=1

φτf

(
γσ(p−j)γσ(p−an−1) · · · γσ(p−a0)(τ)

)
+K.

Now, by subtracting equation 4.2 from 4.3, the result follows. �

To distinguish between ordinary and supersingular forms, we need the
following result on algebraicity:

Theorem 4.3 (Shimura [15]). Let H be a quaternion Q-algebra of discrim-
inant D and let O be an Eichler order of level N . Let p be a prime. Then
the eigenvalue of the Hecke operator Tp acting on S2(Γ) is an algebraic
integer.

Let ap be the eigenvalue of Tp attached to f . By Theorem 4.3, ap is an
algebraic integer. We say that f is ordinary at p if |ap| = 1, otherwise we
say that f is supersingular at p.

Definition. Denote by Σp−1 the symmetric group of order p− 1. Let f ∈
S2 (Γ(D,N)) be an eigenform for the Hecke operator Tp, for p - D, p|N .
Let τ ∈ H be a quadratic imaginary point. If f is ordinary at p, the p-adic
L-function attached to f and τ is

Lp(f ;σ, χ) =
∫
Z∗p
χ(x)dµσQ(x).
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