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Lower bounds on the class number of algebraic
function fields defined over any finite field

par Stéphane BALLET et Robert ROLLAND

Résumé. Nous donnons des bornes inférieures sur le nombre
de diviseurs effectifs de degré ≤ g − 1 par rapport au nombre
de places d’un certain degré d’un corps de fonctions algébriques
de genre g défini sur un corps fini. Nous déduisons des bornes
inférieures du nombre de classes qui améliorent les bornes de
Lachaud-Martin-Deschamps et des bornes inférieures asympto-
tiques atteignant celles de Tsfasman-Vladut. Nous donnons des
exemples de tours de corps de fonctions algébriques ayant un grand
nombre de classes.

Abstract. We give lower bounds on the number of effective di-
visors of degree ≤ g − 1 with respect to the number of places of
certain degrees of an algebraic function field of genus g defined
over a finite field. We deduce lower bounds for the class num-
ber which improve the Lachaud - Martin-Deschamps bounds and
asymptotically reaches the Tsfasman-Vladut bounds. We give ex-
amples of towers of algebraic function fields having a large class
number.

1. Introduction

1.1. General context. We recall that the class number h(F/Fq) of an
algebraic function field F/Fq defined over a finite field Fq is the cardinality
of the Picard group of F/Fq. This numerical invariant corresponds to the
number of Fq-rational points of the Jacobian of any curve X(Fq) having
F/Fq as algebraic function field. Estimating the class number of an algebraic
function field is a classic problem. By the standard estimates deduced from
the results of Weil [16] [17], we know that

(√q − 1)2g ≤ h(F/Fq) ≤ (√q + 1)2g,

where g is the genus of F/Fq. Moreover, these estimates hold for any Abelian
variety. Finding good estimates for the class number h(F/Fq) is a difficult
problem. For g = 1, namely for elliptic curves, the class number Fq is the
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number of Fq-rational points of the curve and this case has been extensively
studied. So, from now on we assume that g ≥ 2. In [8], Lachaud - Martin-
Deschamps obtain the following result:

Theorem 1.1. Let X be a smooth absolutly irreducible projective algebraic
curve of genus g defined over Fq; Let JX be the Jacobian of X and h =
| JX(Fq) |. Then:

(1)

h ≥ qg−1 (q − 1)2

(q + 1)(g + 1);

(2)

h ≥ (√q − 1)2 q
g−1 − 1
g

| X(Fq) | +q − 1
q − 1 ;

(3) if g >
√
q

2 and if X has at least a rational point over Fq , then

h ≥ (qg − 1) q − 1
q + g + gq

.

This result was improved in certain cases by the following result of Perret
in [10]:

Theorem 1.2. Let JX the Jacobian variety of the projective smooth irre-
ducible curve X of genus g defined over Fq. Then

#JX(Fq) ≥
(√

q + 1
√
q − 1

)#X(Fq)−(q+1)
2√q

−2δ

(q − 1)g

with δ = 1 if #X(Fq)−(q+1)
2√q /∈ Z and δ = 0 otherwise.

Moreover, Tsfasman [12] and Tsfasman-Vladut [13] [14] obtain asymp-
totics for the Jacobian; these best known results can also be found in [15].
We recall the following three important theorems contained in this book.
The first one concerns the so-called asymptotically good families.

Theorem 1.3. Let {Xi}i be a family of curves over Fq (called asymptoti-
cally good) of growing genus such that

lim
i→+∞

N(Xi)
g(Xi)

= A > 0,

where N(Xi) denotes the number of rational points of Xi over Fq. Then

lim inf
g→+∞

logqh(Xi)
g(Xi)

≥ 1 +A logq
(

q

q − 1

)
.
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The second important result, established by Tsfasman in [12, Corol-
lary 2], relates to particular families of curves, which are called asymp-
totically exact, namely the families of (smooth, projective, absolutly irre-
ducible) curves X/Fq = {Xi}i defined over Fq such that g(Xi)→ +∞ and
for any m ∈ N the limit

βm = βm(X/Fq) = lim
i→+∞

Bm(Xi)
g(Xi)

exists, where Bm(Xi) denotes the number of points of degree m of Xi

over Fq (in term of the dual language of algebraic function field theory, it
corresponds to the number of places of degree m of the algebraic function
field F (Xi)/Fq of the curve Xi/Fq).

Theorem 1.4. For an asymptotically exact family of curves X/Fq = {Xi}i
defined over Fq, the limit

H(X/Fq) = lim
i→+∞

1
g(Xi)

logq h(Xi)

exists and equals

H(X/Fq) = 1 +
∞∑
m=1

βm. logq
qm

qm − 1 .

The third theorem (cf. [12, Theorem 5], [13, Theorem 3.1]) is a general
result concerning the family of all curves defined over Fq.

Theorem 1.5. Let {Xi}i be the family of all curves over Fq (one curve
from each isomorphism class). Then, we have

1 ≤ lim inf
g→+∞

logq h(Xi)
g(Xi)

≤ lim sup
g→+∞

logq h(Xi)
g(Xi)

≤ 1 + (√q − 1) logq
(

q

q − 1

)
.

Then, Lebacque [9, Theorem 7] obtains an explicit version of the General-
ized Brauer-Siegel theorem valid in the case of smooth absolutly irreducible
abelian varieties defined over a finite field and for the number fields under
GRH. Specialized to the case of smooth absolutly irreducible curves defined
over a finite field, this theorem leads to the following result:

Theorem 1.6. For any smooth absolutly irreducible curve X of genus g
defined over the finite field Fr, one has, as N →∞:

N∑
m=1

Φrm log
(

rm

rm − 1

)
= logN + γ + log(ℵX log r) +O( 1

N
) + gO(r

−N/2

N
)

where Φrm := #{p ∈| X || deg(p) = m}, | X | denotes the set of closed
points of X and ℵX denotes the residue at s = 1 of the zeta function ζX of
X. Moreover, the O constants are effective and do not depend on X.
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Passing to the limit in the previous result gives the asymptotics of
Tsfasman-Vladut [13] [14]. Note also that as the constants are effective,
this result could lead to effective non-asymptotic lower bounds of the class
number h.

1.2. New results.

1.2.1. Quick overview. In this paper, we prove and we extend the results
announced in [2]. First, we obtain in Theorem 3.1 and Corollary 3.2 bounds
for the class number valid for all g ≥ 2, namely mainly:

Theorem 1.7. Let F/Fq be an algebraic function field defined over Fq of
genus g ≥ 2 and h the class number of F/Fq. Suppose that the numbers B1
and Br of places of degree respectively 1 and r are strictly positive. Then:

h ≥ (q − 1)2

(g + 1)(q + 1)q
g−1

 qrb
(g−2)

r
c − 1

qr(b
(g−2)

r
c−1)(qr − 1)

+ (Br − 1)
qr

fr

 ;

where

fr =


0 if g−2

2 < r ≤ g − 2;
1 if r ≤ g−2

2 and Br < qr;
min

(
bBr−qr

qr−1 c+ 1, b (g−2)
r c − 1

)
if r ≤ g−2

2 and Br ≥ qr;
.

Note that the estimate of Theorem 1.7 is completely effective in contrast
to that of Theorem 1.6 for which the computation of the O constants is far
from straightforward. Next, we obtain as direct consequence of Theorems
4.9 and 4.10 the following asymptotical result announced in [2]:

Theorem 1.8. Let F/Fq = (Fk/Fq)k be a sequence of algebraic functions
fields defined over a finite field Fq and G/Fqr = (Gk/Fq)k be the sequence
of functions fields over Fqr obtained from F/Fq by constant field exten-
sion. Set gk the genus of Fk, h(Fk/Fq) the class number of Fk/Fq and
Bi(Fk/Fq) the number of places of degree i of Fk/Fq. Suppose for any in-
teger k, B1(Fk/Fq) ≥ 1.

Let α > 0 be a real number. Suppose there exists an integer r ≥ 1 such
that one of two following conditions is satisfied:

(1) lim infk→∞ Br(Fk/Fq)
gk

= µr(F/Fq) > α.

(2) 1
r lim infk→∞

∑
i|r

iBi(Fk/Fq)
gk

= 1
rµ1(G/Fqr ) > α.

Then

h(Fk/Fq) ≥ C
((

qr

qr − 1

)α
q

)gk

,

where C > 0 is a constant with respect to k.
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This asymptotical lower bound of the class number of a sequence of alge-
braic functions fields could be possibly obtained without the assumption of
a "asymptotically exact sequence" from the sophisticated proof of Theorem
1.4 of Tsfasman [12, Corollary 2] by using the lower limit instead of the as-
sumption "asymptotically exact". We give here a completely different proof
based upon elementary combinatorial considerations. Moreover, we extend
Theorem 1.3 by using points of degree r and assuming only that Br(k)

gk
has a

strictly positive lower limit, where Br(k) is the number of places of degree
r of Fk; in particular this shows that the lower bound 1 of Theorem 1.5 can
be widely improved if there is at least a place of degree 1 in each Fk and
an integer r ≥ 1 such that lim infk→+∞

Br(k)
gk

> 0.

1.2.2. Details and methods. We remark that Theorems 1.1 and 1.2 in
the non-asymptotic case and Theorem 1.3 in the asymptotic case involve
rational points of the curve. But in many cases the number of rational
points is low while the number of places of a certain degree r is large. Then
it may be interesting to give formulas that are based on the number of
points of degree r ≥ 1. This is the main idea of the article, even if the
formula applied with r = 1 gives in many cases better lower bounds for the
class number than Theorems 1.1 and 1.2.

In this paper we give lower bounds on the class number of an algebraic
function field of one variable over the finite field Fq in the two following
situations:

- in the non-asymptotic case, namely when the function field is fixed; in
this context, we extend the formulas of Theorem 1.1 which is given under
very weak assumptions, to obtain more precise bounds taking into account
the number of points of a given degree r ≥ 1, possibly of degree one.

- in the asymptotic case, where we consider a sequence of function fields
Fk of genus gk growing to infinity.

Let An = An(F/Fq) be the number of effective divisors of degree n
of an algebraic function field F/Fq defined over Fq of genus g ≥ 2 and
h = h(F/Fq) the class number of F/Fq. Let Bn = Bn(F/Fq) the number of
places of degree n of F/Fq.

Let us set

S(F/Fq) =
g−1∑
n=0

An +
g−2∑
n=0

qg−1−nAn and R(F/Fq) =
g∑
i=1

1
| 1− πi |2

,

where (πi, πi)1≤i≤g are the reciprocal roots of the numerator of the zeta-
function Z(F/Fq, T ) of F/Fq. By a result due to G. Lachaud and M. Martin-
Deschamps [8], we know that

(1.1) S(F/Fq) = hR(F/Fq).
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Therefore, to find good lower bounds on h, just find a good lower bound
on S(F/Fq) and a good upper bound on R(F/Fq).

It is known by [8] that the quantity R(F/Fq) is bounded by the following
upper bound:

(1.2) R(F/Fq) ≤
g

(√q − 1)2 ,

or with this best inequality:

(1.3) R(F/Fq) ≤
1

(q − 1)2
(
(g + 1)(q + 1)−B1(F/Fq)

)
.

Moreover, the inequality (1.3) is obtained as follows:

R(F/Fq) =
g∑
i=1

1
(1− πi)(1− πi)

=
g∑
i=1

1
1 + q − (πi + πi)

.

Multiplying the denominators by the corresponding conjugated quantities,
we get:

R(F/Fq) ≤
1

(q − 1)2

g∑
i=1

(1 + q + πi + πi).

This last inequality associated to the following formula deduced from the
Weil’s formulas:

g∑
i=1

(πi + πi) = 1 + q −B1(F/Fq)

gives the inequality (1.3). This inequality cannot be improved in the general
case.

Hence, in this paper, we propose to study some lower bounds on S(F/Fq).
In this aim, we determine some lower bounds on the number of effective
divisors of degree n ≤ g−1 obtained from the number of effective divisors of
degree n ≤ g − 1 containing in their support a maximum number of places
of a fixed degree r ≥ 1. We deduce lower bounds on the class number. It is a
successful strategy that allows us to improve the known lower bounds on h
in the general case (except if there is no place of degree one). It also allows
us to obtain the best known asymptotics for h when we specialize our study
to some families of curves having asymptotically a large number of places
of degree r for some value of r, namely when lim infg→+∞

Br(g)
g > 0.

1.3. Organization of the paper. In Section 2 we study the number of
effective divisors of an algebraic function field over the finite field Fq. As
we saw in the introduction, this is the main point to estimate the class
number. By combinatorial considerations, we give a lower bound on the
number of these divisors. Then we estimate the two terms Σ1 =

∑g−1
n=0An

and Σ2 =
∑g−2
n=0 q

g−1−nAn of the number S(F/Fq) introduced in Paragraph
1.2. Then, in Sections 3 and 4, we deduce lower bounds on the class number
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and asymptotical class number, respectively. The final section 5 presents
several examples where we obtain asymptotical lower bounds on the class
number.

2. Lower bounds on the number of effective divisors

In this section, we obtain a lower bound on the number of effective divi-
sors of degree ≤ g − 1. We derive a lower bounds on S(F/Fq).

Let Br(F/Fq) be the number of places of degree r. In the first time,
we determine lower bounds on the number of effective divisors of degree
≤ g − 1.

By definition, we have S(F/Fq) =
∑g−1
n=0An +

∑g−2
n=0 q

g−1−nAn. We will
denote by Σ1 the first sum of the right member and Σ2 the second one:

(2.1) Σ1 =
g−1∑
n=0

An and Σ2 =
g−2∑
n=0

qg−1−nAn.

Let us fix a degree n and set

Un =
{
b = (b1, · · · , bn) | bi ≥ 0 et

n∑
i=1

ibi = n

}
.

Note first that if Bi ≥ 1 and bi ≥ 0, the number of solutions of the equation
n1 + n2 + · · ·+ nBi = bi with integers ≥ 0 is:

(2.2)
(
Bi + bi − 1

bi

)
.

Then the number of effective divisors of degree n is given by the following
result, already mentioned in [13]:

Proposition 2.1. The number of effective divisors of degree n of an alge-
braic function field F/Fq is:

An =
∑
b∈Un

[
n∏
i=1

(
Bi + bi − 1

bi

)]
.

Proof. It is sufficient to consider that in the formula, bi is the sum of coef-
ficients that are applied to the places of degree i. So, the sum of the terms
ibi is the degree n of the divisor. The number of ways to get a divisor of
degree ibi with some places of degre i is given by the binomial coefficient
(2.2). For a given b , the product of the second member is the number of
effective divisors for which the weight corresponding to the places of degree
i is ibi. Then it remains to compute the sum over all possible b to get the
number of effective divisors. �
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From Proposition 2.1 we obtain in the next proposition a lower bound
on the number of effective divisors of degree n ≤ g − 1. This lower bound
is constructed using only places of degree 1 and r (possibly 1) as follows:
the weight associated to places of degree r is maximum, namely bnr c. The
weight associated to places of degree 1 is n mod r.

Proposition 2.2. Let r and n be two integers > 0. Suppose that B1 and
Br are different from zero. Then

(2.3) An ≥
(
Br +mr(n)− 1

Br − 1

)(
B1 + sr(n)− 1

B1 − 1

)
where mr(n) and sr(n) are respectively the quotient and the remainder of
the Euclidian division of n by r.

Proof. Let a = (ai)1≤i≤n be the following element of Un:

a = (sr(n), 0, · · · 0,mr(n), 0, · · · , 0).

Then by Proposition (2.1), we have:

An =
∑
b∈Un

n∏
i=1

(
Bi + bi − 1

bi

)

≥
n∏
i=1

(
Bi + ai − 1

ai

)

=
(
Br +mr(n)− 1

Br − 1

)(
B1 + sr(n)− 1

B1 − 1

)
.

�

In particular, if r = 1 we obtain: An ≥
(
B1 + n− 1

n

)
=
(
B1 + n− 1
B1 − 1

)
.

2.1. Lower bound on the sum Σ1. By using the same lower bound for
each term An as in Proposition 2.2, then by associating the r indexes n
with the same mr(n), we obtain:

(2.4) Σ1 ≥
mr(g−1)−1∑

m=0

(
r−1∑
i=0

(
B1 + i− 1
B1 − 1

))(
Br +m− 1
Br − 1

)

+
(
Br +mr(g − 1)− 1

Br − 1

) sr(g−1)∑
i=0

(
B1 + i− 1
B1 − 1

)
which gives the following lemma:
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Lemma 2.3. Suppose B1 > 0 and Br > 0, then we have the following
lower bound on the sum Σ1 =

∑g−1
n=0An:

(2.5) Σ1 ≥ K1(r − 1, B1)
(
Br +mr(g − 1)− 1

Br

)
+K1

(
sr(g − 1), B1

) ( Br +mr(g − 1)− 1
Br − 1

)
where

K1(i, B) =
(
B + i
B

)
.

Proof. It is sufficient to apply three times to the second member of the
inequality (2.4) the following combinational formula: for all the integers k
and l,

l∑
j=0

(
k + j
k

)
=
(
k + l + 1
k + 1

)
.

We obtain

Σ1 =
g−1∑
n=0

An ≥
(
B1 + r − 1

B1

)(
Br +mr(g − 1)− 1

Br

)

+
(
Br +mr(g − 1)− 1

Br − 1

)(
B1 + sr(g − 1)

B1

)
.

�

Remark 2.4. Note that for any B1 ≥ 1 we have K1(r−1, B1) ≥ B1 +r−1,
the value r being reached for B1 = 1.

Remark 2.5. If r = 1 then
mr(n) = n, sr(n) = 0, K1(r − 1, B1) = 1, K1

(
sr(g − 1), B1

)
= 1.

We conclude in this case that:

Σ1 =
g−1∑
n=0

An ≥
(
B1 + g − 1

B1

)
=
(
B1 + g − 1
g − 1

)
= K1(g − 1, B1).

2.2. Lower bound on the sum Σ2. Now let us study the second sum:
Σ2 = qg−1∑g−2

n=0
An
qn . We have:

(2.6) Σ2 ≥ qg−1
(
r−1∑
i=0

1
qi

(
B1 + i− 1
B1 − 1

))mr(g−2)−1∑
m=0

1
qmr

(
Br +m− 1
Br − 1

)

+ qsr(g−2)+1
(
Br +mr(g − 2)− 1

Br − 1

) sr(g−2)∑
i=0

1
qi

(
B1 + i− 1
B1 − 1

)
.
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In order to give a lower bound on Σ2, we need to study more precisely the
following quantity Qr which occurs in the previous inequality (2.6):

Qr =
mr(g−2)−1∑

m=0

1
(qr)m

(
Br +m− 1
Br − 1

)
.

Remark 2.6. For g = 2 and g = 3, we have respectively Qr = 0 and
Qr = 1.

The value Qr depends on the parameters q, g, r and Br. We give several
lower bounds whose accuracy depends on the ranges in which the parame-
ters vary. These lower bounds are specified in the following three lemmas.
Then we can suppose in the study of Qr that g > 3.

Lemma 2.7. Let q and r be two integers > 0 and let g > 3 be an integer.
Suppose that B1 ≥ 1 and Br ≥ 1. Let Qr be the sum defined by:

Qr =
mr(g−2)−1∑

m=0

1
(qr)m

(
Br +m− 1
Br − 1

)
,

where mr(n) denotes the quotient of the Euclidian division of n by r. Let
us set

fr =


0 if g−2

2 < r ≤ g − 2;
1 if r ≤ g−2

2 and Br < qr;
min

(
bBr−qr

qr−1 c+ 1,mr(g − 2)− 1
)

if r ≤ g−2
2 and Br ≥ qr;

then

Qr ≥
qrmr(g−2) − 1

qr(mr(g−2)−1)(qr − 1)
+ (Br − 1)

qr
fr.

Proof. Let us write

Qr =
mr(g−2)−1∑

m=0

1
(qr)m + ∆r,

where

∆r =
mr(g−2)−1∑

m=0

1
(qr)m

[(
Br +m− 1
Br − 1

)
− 1

]
.

Then

Qr = qrmr(g−2) − 1
qr(mr(g−2)−1)(qr − 1)

+ ∆r.

First, if g−2
2 < r ≤ g− 2 then mr(g− 2) = 1, hence ∆r = 0. Let us suppose

now that r ≤ g−2
2 , then mr(g− 2) ≥ 2. Hence, the sum ∆r has at least two
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terms, namely 0 (for m = 0) and 1
qr (Br− 1) (for m = 1). Let us set for any

n ≥ 0:
un = 1

qrn

(
Br + n− 1
Br − 1

)
,

and compute:
un+1
un

= 1
qr
Br + n

n+ 1 .

Let us set n0 = bBr−qr

qr−1 c + 1. Then, if 0 ≤ n < n0, we have un+1 ≥ un

and then un+1 − 1
qr(n+1) ≥ un − 1

qrn . If Br < qr, then n0 ≤ 1. Let us give
in this case a lower bound on the sum ∆r by considering only the sum
of the two first terms i.e (Br − 1)/qr. If Br ≥ qr, then n0 ≥ 1. If we set
fr = min

(
n0,mr(g − 2)− 1

)
, the sequence un − 1

qrn is increasing from the
term of index 1 (which is equal to (Br − 1)/qr) until the term of index fr.
Hence

∆r ≥
(Br − 1)

qr
fr.

�

Remark 2.8. Note that when the genus g is growing to infinity and when
Br > qr, then fr =

⌊
Br−qr

qr−1

⌋
+ 1 for g sufficiently large, by the Drinfeld-

Vladut bound.

Lemma 2.9. Let q and r be two integers > 0 and let g > 3 be an integer.
Suppose that B1 ≥ 1 and Br ≥ 1. Let Qr be the sum defined by:

Qr =
mr(g−2)−1∑

m=0

1
(qr)m

(
Br +m− 1
Br − 1

)
,

where mr(n) denotes the quotient of the Euclidian division of n by r. We
have the following lower bound

Qr ≥


1 if r > g−2

2 ,(
qr

qr−1

)Br−1
if Br ≤ mr(g − 2),(

1 + Br
qr(mr(g−2)−1)

)mr(g−2)−1
if Br > mr(g − 2) and r ≤ g−2

2 .

Proof. Let N and k be two integers such that N ≥ k ≥ 0. Let us study the
following sum:

(2.7) Q(N, k, x) =
N−k∑
i=0

(
k + i
k

)
xi.

By derivating k times the classical equality
N∑
i=0

xi = 1− xN+1

1− x ,
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the following formula holds:

(2.8) Q(N, k, x) = 1
(1− x)k+1 −

xN−k+1

1− x

k∑
i=0

(
N + 1
k − i

)(
x

1− x

)i
.

Let us set j = N + 1− k + i in the previous formula, then

Q(N, k, x) = 1
(1− x)k+1 − (1− x)N−k

N+1∑
j=N+1−k

(
N + 1
j

)(
x

1− x

)j
.

Then

Q(N, k, x) = 1
(1− x)k+1 − (1− x)N−k

N+1∑
j=0

(
N + 1
j

)(
x

1− x

)j

+ (1− x)N−k
N−k∑
j=0

(
N + 1
j

)(
x

1− x

)j
,

Q(N, k, x) = 1
(1− x)k+1 − (1− x)N−k

(
1 + x

1− x

)N+1

+ (1− x)N−k
N−k∑
j=0

(
N + 1
j

)(
x

1− x

)j
,

(2.9) Q(N, k, x) = (1− x)N−k
N−k∑
j=0

(
N + 1
j

)(
x

1− x

)j
.

Let us remark that Qr = Q
(
mr(g − 2) +Br − 2, Br − 1, 1/qr

)
. From

Formula (2.9) we obtain

Qr =
(
qr − 1
qr

)mr(g−2)−1
mr(g−2)−1∑

j=0

(
mr(g − 2) +Br − 1

j

)( 1
qr − 1

)j .
If Br ≤ mr(g − 2) then mr(g − 2) ≥ 1

2
(
mr(g − 2) +Br

)
. Let us set

s =
⌊1

2
(
mr(g − 2) +Br − 1

)⌋
.

Let us remark that
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s∑
j=0

(
mr(g − 2) +Br − 1

j

)( 1
qr − 1

)j

+
( 1
qr − 1

)mr(g−2)+Br−1∑
j=s+1

(
mr(g − 2) +Br − 1

j

)( 1
qr − 1

)j−1


=
(

qr

qr − 1

)mr(g−2)+Br−1
.

But

s∑
j=0

(
mr(g − 2) +Br − 1

j

)( 1
qr − 1

)j

≥
mr(g−2)+Br−1∑

s+1

(
mr(g − 2) +Br − 1

j

)( 1
qr − 1

)j−1
.

Then

s∑
j=0

(
mr(g − 2) +Br − 1

j

)( 1
qr − 1

)j

≥ qr − 1
qr

(
qr

qr − 1

)mr(g−2)+Br−1
.

Therefore

Qr ≥
(
qr − 1
qr

)mr(g−2)−1 qr − 1
qr

(
qr

qr − 1

)mr(g−2)+Br−1

≥
(

qr

qr − 1

)Br−1
.

If Br > mr(g − 2), then

(
mr(g − 2) +Br − 1

j

)
(
mr(g − 2)− 1

j

) =
j−1∏
i=0

mr(g − 2) +Br − 1− i
mr(g − 2)− 1− i

≥
(
mr(g − 2) +Br − 1
mr(g − 2)− 1

)j
.
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Then
mr(g−2)−1∑

j=0

(
mr(g − 2) +Br − 1

j

)( 1
qr − 1

)j

≥
mr(g−2)−1∑

j=0

(
mr(g − 2)− 1

j

)[( 1
qr − 1

)(
mr(g − 2) +Br − 1
mr(g − 2)− 1

)]j

≥
(

1 + mr(g − 2) +Br − 1
(qr − 1)(mr(g − 2)− 1)

)mr(g−2)−1
.

Therefore

Qr ≥
(
qr − 1
qr

)mr(g−2)−1 (
1 + mr(g − 2) +Br − 1

(qr − 1)(mr(g − 2)− 1)

)mr(g−2)−1

≥
(

1 + Br
qr(mr(g − 2)− 1)

)mr(g−2)−1
.

�

Lemma 2.10. Let q and r be two integers > 0 and let g > 3 be an integer.
Suppose that B1 ≥ 1 and Br ≥ 1. Let Qr be the sum defined by:

Qr =
mr(g−2)−1∑

m=0

1
(qr)m

(
Br +m− 1
Br − 1

)
,

where mr(n) denotes the quotient of the Euclidian division of n by r. If
Br + 1 ≤ (mr(g − 2)− 1)(qr − 1) we get the following lower bound

Qr ≥
(

qr

qr − 1

)Br

−Br
(
Br +mr(g − 2)− 1

Br

)( 1
qr

)mr(g−2)
.

Proof. The term
(

qr

qr−1

)Br

is the value of the infinite sum

∞∑
m=0

1
(qr)m

(
Br +m− 1
Br − 1

)
.

As proved later in Lemma 4.2 the term

Br

(
Br +mr(g − 2)− 1

Br

)( 1
qr

)mr(g−2)

is an upper bound of the remainder. �
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3. Lower bounds on the class number

In this section, using the lower bounds obtained in the previous section,
we derive lower bounds on the class number h = h(F/Fq) of an algebraic
function field F/Fq. Let Br = Br(F/Fq) be the number of places of degree r.

Theorem 3.1. Let F/Fq be an algebraic function field defined over Fq of
genus g ≥ 2 and h the class number of F/Fq. Suppose that the numbers B1
and Br of places of degree respectively 1 and r are such that B1 ≥ 1 and
Br ≥ 1. Let us denote by K1(i, B) and K2(q, j, B) the following numbers:

K1(i, B) =
(
B + i
B

)
and K2(q, j, B) =

j∑
i=0

1
qi

(
B + i− 1
B − 1

)
.

Then, the following inequality holds:

h ≥ (q − 1)2K2(q, r − 1, B1)
(g + 1)(q + 1)−B1

qg−1Qr

+
q(q − 1)2K2

(
q, sr(g − 2), B1

)
(g + 1)(q + 1)−B1

(
Br +mr(g − 2)− 1

Br − 1

)
+ (q − 1)2K1(r − 1, B1)

(g + 1)(q + 1)−B1

(
Br +mr(g − 1)− 1

Br

)
(3.1)

+
(q − 1)2K1

(
sr(g − 1), B1

)
(g + 1)(q + 1)−B1

(
Br +mr(g − 1)− 1

Br − 1

)
where Qr can be bounded by any of the three lemmas 2.7, 2.9 and 2.10.

Proof. The result is a direct consequence of the equality (1.1) which gives an
expression of h, the upper bound (1.3), the lower bound (2.5) and Lemmas
2.7, 2.9 and 2.10. Remark that for g = 2 and g = 3, we have respectively
Qr = 0 and Qr = 1 (cf. Remark 2.6). �

Let us give some simplified formulas which are slightly less accurate but
more readable. Note that these simplified formulas are not interesting for
g = 2, hence we have:

Corollary 3.2. Let F/Fq be an algebraic function field defined over Fq of
genus g ≥ 3 and h the class number of F/Fq. Suppose that the numbers B1
and Br of places of degree respectively 1 and r are such that B1 ≥ 1 and
Br ≥ 1. Then the following four results hold:

(1) Let us set

fr =


0 if g−2

2 < r ≤ g − 2;
1 if r ≤ g−2

2 and Br < qr;
min

(
bBr−qr

qr−1 c+ 1,mr(g − 2)− 1
)

if r ≤ g−2
2 and Br ≥ qr;
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then

h ≥ (q − 1)2

(g + 1)(q + 1)q
g−1

(
qrmr(g−2) − 1

qr(mr(g−2)−1)(qr − 1)
+ (Br − 1)

qr
fr

)
;

(2) if Br ≤ mr(g − 2) then

h ≥ (q − 1)2

(g + 1)(q + 1)q
g−1

(
qr

qr − 1

)Br−1
;

(3) if Br > mr(g − 2) and r ≤ g−2
2 then

h ≥ (q − 1)2

(g + 1)(q + 1)q
g−1

(
1 + Br

qr(mr(g − 2)− 1)

)mr(g−2)−1
;

(4) if Br + 1 ≤ (mr(g − 2)− 1)(qr − 1) then

h ≥ (q−1)2

(g+1)(q+1)q
g−1

[(
qr

qr−1

)Br

−Br
(
Br +mr(g − 2)− 1

Br

)(
1
qr

)mr(g−2)
]
.

Remark 3.3. If we set L1 = qg−1 (q−1)2

(q+1)(g+1)−B1
which corresponds, to the

first lower bound on h given in [8, Theorem 2] and if we denote by L′r the
bound (3.1), then

L′r = K2(q, r − 1, B1)QrL1

+
q(q − 1)2K2

(
q, sr(g − 2), B1

)
(g + 1)(q + 1)−B1

(
Br +mr(g − 2)− 1

Br − 1

)
+ (q − 1)2K1(r − 1, B1)

(g + 1)(q + 1)−B1

(
Br +mr(g − 1)− 1

Br

)

+ (q − 1)2K1(sr(g − 1), B1)
(g + 1)(q + 1)−B1

(
Br +mr(g − 1)− 1

Br − 1

)
,

which gives in the case r = 1 and if we choose the lower bound on Qr given
by Lemma 2.7:

L′1 =
(

qg−2 − 1
qg−3(q − 1) + (B1 − 1)f1

q

)
L1

+ q(q − 1)2

(g + 1)(q + 1)−B1

(
B1 + g − 3
B1 − 1

)
+ (q − 1)2

(g + 1)(q + 1)−B1

(
B1 + g − 1

B1

)
.

Remark 3.4. Let us remark that in [8, Theorem 2] Lachaud - Martin-
Deschamps study the worst case (see also Theorem 1.1). In the worst case
r = 1, B1 = 1 and g ≥ 2 (third bound given in [8, Theorem 2]) we obtain
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the same lower bound. More precisely, if we denote by L3 the third bound
in [8, Theorem 2]), namely

L3 = (qg − 1) q − 1
q + g + qg

,

then our bound L′1 obtained using the lower bound of Qr given by Lemma
2.7 satisfies the following inequality:

L′1 ≥ L3 + (q − 1)2qg−1

q + g + gq

B1 − 1
q

f1.

4. Asymptotical bounds with respect to the genus g

We now give asymptotical bounds on the class number of certain se-
quences of algebraic function fields defined over a finite field when g tends
to infinity and when there exists an integer r such that:

lim inf
k→+∞

Br(Fk/Fq)
g(Fk)

> 0.

We consider a sequence of function fields Fk/Fq defined over the finite
field Fq. Let us denote by gk the genus of Fk and by Br(k) the number of
places of degree r of Fk. We suppose that the sequence gk is growing to
infinity and that for a certain r the following holds:

lim inf
k→+∞

Br(k)
gk

= µr > 0.

We also assume that B1(k) ≥ 1 for any k.
Let us denote by mr(x) the Euclidean quotient of x by r. Let a and b be

two constant integers and let η be any given number such that 0 < η < 1.
Then there is an integer k0 > 0 such that for any integer k ≥ k0 the
following inequalities hold:

(4.1) µrgk(1− η) < Br(k) < gk
r

(
q

r
2 − 1

)
(1 + η).

(4.2) gk
r

(1− η) < mr(gk − a)− b < gk
r

(1 + η).

We study the asymptotic behaviour of the binomial coefficient(
Br(k) +mr(gk − a)− b

Br(k)

)
,

and for this purpose we do the following:
(1) we use the generalized binomial coefficients (defined for example

with the Gamma function);
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(2) we remark that if u and v are positive real numbers and if u′ ≥ u and
v′ ≥ v, then the following inequality between generalized binomial
coefficients holds:(

u′ + v′

u′

)
≥
(
u+ v
u

)
;

(3) we use the Stirling formula.
So, we obtain:

Lemma 4.1. For any real numbers ε, η such that ε > 0 and 0 < η < 1,
there exists an integer k1 such that for any integer k ≥ k1 the following
holds:

(4.3) (1− ε) C1√
gk
qgk

1 <

(
Br(k) +mr(gk − a)− b

Br(k)

)
< (1 + ε) C2√

gk
qgk

2 ,

where

C1 =
√

rµr + 1
2πrµr(1− η)

and

C2 =

√√√√ q
r
2

2π(q
r
2 − 1)(1 + η)

are two positive constants depending upon η and where

q1 =


(
µr + 1

r

)µr+ 1
r

µµr
r

(
1
r

) 1
r


1−η

and

q2 =

( q
r
2

q
r
2 − 1

) 1
r

(q
r
2−1)√

q


1+η

.

Proof. By the previous remark we know that:(
gk(1− η)

(
µr + 1

r

)
gk(1− η)µr

)
≤
(
Br(k) +mr(gk − a)− b

Br(k)

)

≤
( gk

r q
r
2 (1 + η)

gk
r

(
q

r
2 − 1

)
(1 + η)

)
.
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Using the Stirling formula we get

(
gk(1− η)

(
µr + 1

r

)
gk(1− η)µr

)
∼

k→+∞

C1√
gk



(
µr + 1

r

)µr+ 1
r

µµr
r

(
1
r

) 1
r


1−η

gk

and

( gk
r q

r
2 (1 + η)

gk
r

(
q

r
2 − 1

)
(1 + η)

)
∼

k→+∞

C2√
gk


( q

r
2

q
r
2 − 1

) 1
r

(q
r
2−1)√

q


1+η

gk

.

�

Let us recall that for evaluating asymptotically the class number hk, we
need to evaluate asymptotically the sums Σ1(k) and Σ2(k), respectively
defined by the formulas (2.5) and (2.6), with respect to the parameter k.

4.1. Asymptotical lower bound on Σ2(k). First, let us consider the
sum

Σ2(k) = qgk−1
gk−2∑
n=0

An
qn
≥ qgk−1K2

(
q, r − 1, B1(k)

)
Qr(k),

where

K2
(
q, r − 1, B1(k)

)
=

r−1∑
i=0

1
qi

(
B1(k) + i− 1
B1(k)− 1

)
and

Qr(k) =
mr(gk−2)−1∑

n=0

1
qnr

(
Br(k) + n− 1
Br(k)− 1

)
.

For evaluating asymptotically the sum Σ2(k), we have to evaluate asymp-
totically Qr(k). Let us set

Tr(X, k) =
Mr(k)∑
n=0

(
Br(k) + n− 1
Br(k)− 1

)
Xn,

where Mr(k) = mr(gk − 2)− 1, then

Qr(k) = Tr

( 1
qr
, k

)
.

Let us set

Sr(X, k) =
∞∑
n=0

(
Br(k) + n− 1
Br(k)− 1

)
Xn,
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then
Sr(X, k) = 1

(1−X)Br(k) .

But Sr(X, k) = Tr(X, k) +Rr(X, k), where

Rr(X, k) =
∑

n>Mr(k)

(
Br(k) + n− 1
Br(k)− 1

)
Xn.

By the Taylor formula the following holds:

Rr(X, k) =
∫ X

0

(X − t)Mr(k)

Mr(k)! S(Mr(k)+1)
r (t, k)dt.

We have to compute the successive derivatives of Sr(X, k):

S(Mr(k)+1)
r (X, k) = Br(k)Mr(k)!

(1−X)Br(k)+Mr(k)+1

(
Br(k) +Mr(k)

Br(k)

)
.

Then

Rr(X, k) = Br(k)
(
Br(k) +Mr(k)

Br(k)

)∫ X

0

(X − t)Mr(k)

(1− t)Br(k)+Mr(k)+1dt

Lemma 4.2. There is an integer k2 such that for k ≥ k2 the function

fk(t) =
( 1
qr − t)Mr(k)

(1− t)Br(k)+Mr(k)+1

is decreasing on [0, 1
qr ].

Proof.
f ′(t) =

( 1
qr − t)Mr(k)−1

(1− t)Mr(k)+Br(k)+2

(
−Mr(k)(1− t) +

(
Mr(k) +Br(k) + 1

) ( 1
qr
− t
))

.

The derivative vanishes for t1 = 1
qr and for

t0 = − Mr(k)
Br(k) + 1

(
1− 1

qr

)
+ 1
qr
.

Let us choose a real number ε such that 0 < ε < 1. From (4.1) and (4.2)
there exists an integer k2 such that for k ≥ k2 the following holds:

Mr(k)
Br(k) + 1 ≥

1− ε
q

r
2 − 1

.

Hence
t0 ≤ −

(1− ε)(qr − 1)
q

r
2 − 1

1
qr

+ 1
qr
.
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If ε is choosen sufficiently small, then
(1− ε)(qr − 1)

q
r
2 − 1

> 1,

and t0 < 0. �

We conclude that

Rr

( 1
qr
, k

)
≤ Br(k)

(
Br(k) +Mr(k)

Br(k)

)( 1
qr

)Mr(k)+1
.

Lemma 4.3. Let q be a prime power and let r ≥ 1 be an integer. Then if
q ≥ 4 or r ≥ 2, the sequence of remainder terms Rr

(
1
qr , k

)
is such that

lim
k→+∞

Rr
(

1
qr , k

)
Sr( 1

qr , k)
= 0

Proof. By Lemma (4.1), for any real number ε and η such that ε > 0 and
0 < η < 1, we get

Rr

( 1
qr
, k

)
< (1 + ε)Br(k) C2√

gk
qgk

2

( 1
qr

)Mr(k)+1

where

q2 =

( q
r
2

q
r
2 − 1

) 1
r

(q
r
2−1)√

q


1+η

and C2 =

√√√√ q
r
2

2π(q
r
2 − 1)(1 + η)

.

But

ln

( q
r
2

q
r
2 − 1

) 1
r

(q
r
2−1)

 = 1
r

(q
r
2 − 1) ln

(
1 + 1

q
r
2 − 1

)
<

1
r
.

Then

(4.4)
(

q
r
2

q
r
2 − 1

) 1
r

(q
r
2−1)

< e
1
r .

A direct computation for the two particular cases q = 2, r = 2 and q =
4, r = 1 shows that for these values we have(

q
r
2

q
r
2 − 1

) 1
r

(q
r
2−1)

= √q.

In all the other cases we derive from the inequality (4.4)
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(
q

r
2

q
r
2 − 1

) 1
r

(q
r
2−1)

<
√
q.

Hence, if
(

q
r
2

q
r
2−1

) 1
r

(q
r
2−1)

<
√
q then for η sufficiently small, q2 < q and so

lim
k→+∞

Br(k)qgk
2

( 1
qr

)Mr(k)+1
= 0.

Moreover,

Sr

( 1
qr
, k

)
=
(

qr

qr − 1

)Br(k)

which tends to the infinity.

Now if
(

q
r
2

q
r
2−1

) 1
r

(q
r
2−1)

= √q (i.e if q = 2 and r = 2 or if q = 4 and

r = 1) we have q2 = q1+η. But Br(k) ≥ αgk where α is a positive constant.
Then for η sufficiently small, we have

1 < q2
q

= qη <

(
qr

qr − 1

)α
,

which implies (
q2
q

)gk

∈ o
(
Sr

( 1
qr
, k

))
.

�

Now, we can establish the following proposition:

Proposition 4.4. Let q be a prime power q and let r ≥ 1 be an integer.
Assume that

lim inf
k→+∞

Br(k)
gk

= µr > 0.

Then, the sum

Qr(k) =
mr(gk−2)−1∑

n=0

1
qnr

(
Br(k) + n− 1
Br(k)− 1

)
satisfies

Qr(k) ∼
k→+∞

(
qr

qr − 1

)Br(k)
.

Hence, there exists a constant C > 0 such that for any k

Σ2(k) = qgk−1
gk−2∑
n=0

An
qn
≥ C

(
qr

qr − 1

)Br(k)
qgk .
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Proof. If q ≥ 4 or r ≥ 2, the result is given by Lemma 4.3. Let us consider
the particular cases of r = 1 and q = 2 or q = 3. In these cases, first assume
that the following limit exists:

µ1 = lim
k→+∞

B1(k)
gk

> 0.

Let us do the same study as in Lemma 4.1. Let a be a constant integer and
let η be any given number such that 0 < η < 1. Then there is an integer
k0 > 0 such that for any integer k ≥ k0 the following inequalities hold:

(4.5) µ1gk(1− η) < B1(k) < µ1gk(1 + η).

We study the asymptotic behaviour of the binomial coefficient:(
B1(k) + gk − a

B1(k)

)
.

For any real numbers ε, η such that ε > 0 and 0 < η < 1, there exists an
integer k1 such that for any integer k ≥ k1 the following holds:

(4.6) (1− ε) C1√
gk
qgk

1 <

(
B1(k) + gk − a

B1(k)

)
< (1 + ε) C2√

gk
qgk

2 ,

where

C1 =
√

µ1 + 1
2πµ1(1− η)

and

C2 =
√

µ1 + 1
2πµ1(1 + η)

are two positive constants depending upon η and where

q1 =
(

(µ1 + 1)µ1+1

µµ1
1

)1−η

and

q2 =
(

(µ1 + 1)µ1+1

µµ1
1

)1+η

.

Hence,

(4.7) lim
k→+∞

R1
(

1
q , k

)
S1(1

q , k)
= 0.
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Indeed, for any real number ε and η such that ε > 0 and 0 < η < 1, we get

R1

(1
2 , k

)
< C2q

2(1 + ε)(1 + η)µ1
√
gk

(
(µ1 + 1)µ1+1

µµ1
1

)gk(1+η) (1
q

)gk

and

S1(1
q
, k) ≥

(
q

q − 1

)µ1gk(1−η)
.

Then

R1
(

1
2 , k

)
S1(1

q , k)
≤ C2q

2(1 + ε)(1 + η)µ1
√
gk

×

((µ1 + 1)µ1+1

µµ1
1

)(1+η) (
q − 1
q

)µ1(1−η) (1
q

)gk

.

Let us study for 0 < µ1 ≤
√
q − 1 the function

f(µ1) =
(

(µ1 + 1)µ1+1

µµ1
1

)(
q − 1
q

)µ1 1
q
.

This function is increasing since the derivative

(log(f(µ1))′ = f ′(µ1)
f(µ1) = log

((
1 + 1

µ1

)(
1− 1

q

))
> 0

with µ1 ≤
√
q − 1. In particular, we have:

(1) for q = 2, f(µ1) < 0.89;
(2) for q = 3, f(µ1) < 0.81.

Then in each case, for η sufficiently small,

(4.8)

((µ1 + 1)µ1+1

µµ1
1

)(1+η) (
q − 1
q

)µ(1−η) (1
q

) < 1,

and consequently we obtain the limit (4.7). Then as

lim
k→+∞

B1(k)
gk

= µ1 > 0,

for any ε > 0 there exists k0 such that for each k ≥ k0

Q1(k) ≥ (1− ε)
(

q

q − 1

)B1(k)
.

Suppose now that we have the weaker assumption

lim inf
k→+∞

B1(k)
gk

= µ1 > 0
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and suppose that there is a real number ε > 0 such that for any k0, there
exists an integer k ≥ k0 such that

Q1(k) < (1− ε)
(

q

q − 1

)B1(k)
.

We can construct an infinite subsequence (Q1(ki))i of (Q1(k))ksuch that
the previous inequality holds for any i. Next we can extract from ki a
subsequence kij such that

lim
j→+∞

B1(kij )
gk

= µ ≥ µ1 > 0.

Using the previous result we conclude that for j sufficiently large

Q1(kij ) ≥ (1− ε)
(

q

q − 1

)B1(k)
,

which gives a contradiction.
�

Corollary 4.5. Let q be a prime power q and let r ≥ 1 be an integer.
Assume that

lim inf
k→+∞

Br(k)
gk

= µr > 0.

For any α such that 0 < α < µr there exists a constant C > 0 such that for
any k:

Σ2(k) ≥ C
[(

qr

qr − 1

)α
q

]gk

.

4.2. Asymptotical lower bound on Σ1(k). Let us consider now the
sum

Σ1(k) =
gk−1∑
n=0

An.

Using the inequality (2.5), we will obtain for this sum a lower bound which
is negligible compared with the one obtained for Σ2(k). More precisely, the
best we can do with this inequality is given by the following proposition:
Proposition 4.6. For any η such that 0 < η < 1, there exists a constant
C > 0 such that for any k

Σ1(k) ≥ C qgk
1√
gk

where

q1 =


(
µr + 1

r

)µr+ 1
r

µµr
r

(
1
r

) 1
r


1−η

.
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Proof. From the inequality (2.5) we know that

Σ1(k) ≥ K1(r,B1(k))
(
Br(k) +mr(gk − 1)

Br(k)

)
+

K1
(
sr(g − 1), B1(k)

) ( Br(k) +mr(gk − 1)
Br(k)− 1

)
.

This inequality can be written in the following way

Σ1(k) ≥
(
K1(r,B1(k)) + Br(k)

mr(gk − 1)K1
(
sr(g − 1), B1(k)

))
×
(
Br(k) +mr(gk − 1)

Br(k)

)
.

As for k sufficiently large the following holds:

rµr

(1− η
1 + η

)
≤ Br(k)
mr(gk − 1) ≤ (q

r
2 − 1)

(1 + η

1− η

)
.

Then, the best we can obtain is

Σ1(k) = Ω
((

Br(k) +mr(gk − 1)
Br(k)

))
.

where big Omega is the standard Landau notation.
Using Lemma 4.1 we obtain

Σ1(k) ∈ Ω
(
qgk

1√
gk

)
,

where

q1 =


(
µr + 1

r

)µr+ 1
r

µµr
r

(
1
r

) 1
r


1−η

.

�

Proposition 4.7. The value q1 introduced in the previous proposition is
such that

• if q ≥ 4 or r ≥ 2 then q1 < q;
• if r = 1 and q = 2 or q = 3 then for η sufficiently small

q1 <

(
qr

qr − 1

)µ1(1−η)
q.

Proof. The function

v(x) =


(
x+ 1

r

)x+ 1
r

xx
(

1
r

) 1
r


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is an increasing function. Then

v(µr) ≤ v
(1
r

(
q

r
2 − 1

))
,

namely,

q1 ≤

( q
r
2

q
r
2 − 1

) 1
r

(q
r
2−1)√

q


1−η

.

We refer to the proof of Lemma 4.3 to see that when q ≥ 4 or r ≥ 2, the
right member of this last formula is ≤ q1−η. When r = 1 and q = 2 or q = 3
the formula (4.8) obtained in the proof of Proposition 4.4 holds and gives
us the result. �

Conclusion 4.8. We conclude that in any case, the lower bound found on
Σ2 is better than the lower bound found on Σ1.

4.3. Asymptotical lower bounds on the class number. In this sec-
tion, we obtain asymptotical lower bounds on the class number of certain
sequences of algebraic function fields as the consequence of the conclusion
of the previous section and of Proposition 4.4.

Theorem 4.9. Let F/Fq = (Fk/Fq)k be a sequence of function fields over
a finite field Fq. Let us denote by gk the genus of Fk, by h(Fk/Fq) the
class number of Fk/Fq and by Bi(Fk/Fq) the number of places of degree i
of Fk/Fq. Let us suppose that for any k we have B1(Fk/Fq) ≥ 1 and that
there is an integer r ≥ 1 such that

lim inf
k→∞

Br(Fk/Fq)
gk

= µr(F/Fq) > 0.

Then for any α such that 0 < α < µr(F/Fq), there exists a constant C > 0
such that for any k

h(Fk/Fq) ≥ C
((

qr

qr − 1

)α
q

)gk

.

Moreover, we can improve the previous theorem in the following way:

Theorem 4.10. Let F/Fq = (Fk/Fq)k be a sequence of function fields
over a finite field Fq and let r ≥ 1 an integer. Let G/Fqr = (Gk/Fqr )k be
the degree r constant field extension sequence of the sequence F/Fq, namely
for any k we have Gk/Fqr = Fk ⊗Fq Fqr . Let us denote by gk the genus of
Fk and Gk, by h(Fk/Fq) the class number of Fk/Fq and by Br(Fk/Fq) the
number of places of degree r of Fk/Fq. Let us suppose that

lim inf
k→∞

∑
i|r

iBi(Fk/Fq)
gk

= µ1(G/Fqr ) > 0.
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Then for any α such that 0 < α < 1
rµ1(G/Fqr ), there exists a constant

C > 0 such that for any k

h(Fk/Fq) ≥ C
((

qr

qr − 1

)α
q

)gk

.

Proof. For r = 1 the result is yet proved by the previous study, then we
suppose r > 1. We know that

B1(Gk/Fqr ) =
∑
i|r
iBi(Fk/Fq),

then

lim inf
k→∞

∑
i|r

iBi(Fk/Fq)
gk

= lim inf
k→∞

B1(Gk/Fqr )
gk

= µ1(G/Fqr ).

Let us consider the families D = (Di)i|r where Di = {Qi,1, · · · , Qi,ci} and
where the ci elements Qi,j are formal symbols. Given a positive integer
n, let us denote by Nn(D) the number of formal combinations

∑
i,j αi,jQi,j

such that all the αi,j are positive and
∑
i i
∑
j αi,j = n. For each k we define

the two following families Dk and D′k:
• for Dk, Di is the set of places of degree i of the function field Fk/Fq
and consequently ci(k) = Bi(Fk/Fq).
• for D′k, we choose c′1(k) = 1 and c′r(k) such that

∑
i|r ici(k) =

rc′r(k) + sk + 1 with 0 ≤ sk ≤ r − 1. For 1 < i < r we choose
ci(k) = 0. Then the following holds:

c′r(k) = 1
r

∑
i|r
iBi(Fk/Fq)− sk − 1

 .
We note that∑

i|n
ic′i(k) = 1 + rc′r(k) ≤

∑
i|r
ici,

namely the total number of points in ∪D′i is less than the number
of points in ∪Di and their degrees are bigger. We conclude that
Nn(Dk) ≥ Nn(D′k).

We also have

lim inf
k→∞

c′r(k)
gk

= 1
r

lim inf
k→∞

∑
i|r iBi(Fk/Fq)− sk − 1

rgk
= µ1(G/Fqr )

r
.
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Using the Drinfeld Vladut bound on the constant field extension (Gk/Fqr )k
of (Fk/Fq)k we get

lim sup
k→∞

c′r(k)
gk

= 1
r

lim sup
k→∞

∑
i|r iBi(Fk/Fq)− sk − 1

rgk

= 1
r

lim sup
k→∞

B1(Gk/Fqr )− sk − 1
rgk

≤ 1
r

(
q

r
2 − 1

)
.

Then we can apply the previous study with µ = µ1(G/Fqr )
r to find an as-

ymptotic lower bound on Nn(D′)k and consequently an asymptotic lower
bound on Nn(D)k and on h(Fk/Fq). �

Remark 4.11. We find the asymptotical bounds of Tsfasman (cf. The-
orem 1.4 [12, Corollary 2]) and those of Lebacque (cf. Theorem 1.6 [9,
Theorem 7]) in the particular case of families reaching the Generalized
Drinfeld-Vladut bound (by attaining the Drinfeld-Vladut of order r [1]).
But we give here a completely different proof based upon elementary com-
binatorial considerations.

5. Examples

In this section, we study the class number of certain known towers
F/Fq = (Fk/Fq) of algebraic functions fields defined over a finite field
Fq. Let r ≥ 1 be an integer. As previously, we consider the limit µr(F/Fq)
for the tower F/Fq, defined as follows:

µr(F/Fq) = lim inf
k→∞

Br(k)
gk

.

5.1. Sequences F/Fq with µr(F/Fq) = 1
r
(q

r
2 −1). In this section, for

any prime power q and for any integer r = 2f such that f is an integer ≥ 1,
we exhibit some examples of sequences of algebraic function fields defined
over Fq reaching the Generalized Drinfeld-Vladut bound of order r [1].

Moreover, we know accurate lower bounds on the number of places of
concerned degree r. Then, by using the results of the previous sections, we
can give lower bounds on the class number for each step of these towers.
Note that we also obtain asymptotical bounds which reach the bounds of
Tsfasman [12]. However, these can be obtained directly from [12, Corollary
2] since it is known that any tower is asymptotically exact by [7].

We consider the Garcia-Stichtenoth’s tower T0/Fqr over Fqr constructed
in [5]. Recall that this tower is defined recursively in the following way. We
set F1 = Fqr (x1) the rational function field over Fqr , and for i ≥ 1 we define

Fi+1 = Fi(zi+1),
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where zi+1 satisfies the equation

zq
r
2

i+1 + zi+1 = xq
r
2 +1
i ,

with
xi = zi

xi−1
for i ≥ 2.

Let us denote by gk the genus of Fk in T0/Fqr . Let T1/Fq r
2 =

(
Gi/Fq r

2

)
be the descent of the tower T0/Fqr on the finite field F

q
r
2 and let T2/Fq =

(Hi/Fq) be the descent of the tower T0/Fqr on the finite field Fq, namely,
for any integer i,

Fi = Gi ⊗F
q

r
2
Fqr and Fi = Hi ⊗Fq Fqr .

Let us prove a proposition establishing that the tower T2/Fq reaches the
Generalized Drinfeld-Vladut Bound of order r.

Proposition 5.1. Let q be prime power and r = 2f where f is an integer
≥ 1. The tower T2/Fq is such that

lim
k→+∞

Br(Hk)
gk

= 1
r

(q
r
2 − 1),

and
B1(Hk) ≥ 1 for any integer k.

Proof. First, note that as the algebraic function field Fk/Fqr is a constant
field extension of Gk/Fq r

2 , above any place of degree one in Gk/Fq r
2 there

exists a unique place of degree one in Fk/Fqr . Consequently, let us use the
classification given in [5, p. 221] of the places of degree one of Fk/Fqr . Let
us remark that the number of places of degree one which are not of type
(A), is less or equal to 2qr (see [5, Remark 3.4]). Moreover, the genus gk
of the algebraic function fields Gk/Fq r

2 and Fk/Fqr is such that gk ≥ qk by
[5, Theorem 2.10], then we can focus our study on places of type (A). The
places of type (A) are built recursively in the following way (cf. [5, p. 220
and Proposition 1.1 (iv)]). Let α ∈ Fqr \ {0} and Pα be the place of F1/Fqr

which is the zero of x1 − α. For any α ∈ Fqr \ {0} the polynomial equation
zq

r
2

2 + z2 = αq
r
2 +1 has q

r
2 distinct roots u1, · · ·uq r

2 in Fqr , and for each ui
there is a unique place P(α,i) of F2/Fqr above Pα and this place P(α,i) is a
zero of z2−ui. We iterate now the process starting from the places P(α,i) to
obtain successively the places of type (A) of F3/Fqr , · · · , Fk/Fqr , · · · ; then,
each place P of type (A) of Fk/Fqr is a zero of zk − u where u is itself a
zero of uq

r
2 + u = γ for some γ 6= 0 in Fqr . Let us denote by Pu this place.

Now, we want to count the number of places P ′u of degree one in Gk/Fq r
2 ,
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that is to say the only places which admit a unique place of degree one Pu
in Fk/Fqr lying over P ′u.

First, note that it is possible only if u is a solution in F
q

r
2 of the equation

uq
r
2 +u = γ where γ is in F

q
r
2 \{0}. Indeed, if u is not in F

q
r
2 , there exists an

automorphism σ in the Galois group Gal(Fk/Gk) of the degree two Galois
extension Fk/Fqr of Gk/Fq r

2 such that σ(Pu) 6= Pu. Hence, the unique place

of Gk/Fq r
2 lying under Pu is a place of degree 2. But uq

r
2 + u = γ has one

solution in F
q

r
2 if p 6= 2 and no solution in F

q
r
2 if p = 2. Hence the number

of places of degree one of Gk/Fq r
2 which are lying under a place of type (A)

of Fk/Fqr is equal to zero if p = 2 and equal to q
r
2 −1 if p 6= 2. We conclude

that

lim
k→+∞

B1(Gk/Fq r
2 )

gk
= 0.

Let us remark that in any case, the number of places of degree one of
Gk/Fq r

2 is less or equal to 2qr. Moreover, as Gk/Fq r
2 is the constant field

extension of Hk/Fq of degree r
2 , any place of Hk/Fq of degree i < r dividing

r is totally decomposed in Gk/Fq r
2 by [11, Lemma 5.1.9] since r = 2f and

so is a place of Hk/Fq lying under only some places of degree one (at most
r
2) belonging to Gk/Fq r

2 . Hence, we have for any integer i dividing r such
that i < r,

lim
k→+∞

Bi(Hk/Fq)
gk

= 0.

Then, as the Garcia-Stichtenoth tower T0/Fqr attains the Drinfeld-Vladut
bound [5], we deduce the first assertion by the relation

∑r
i=1,i|r iBi(Hk/Fq)

= Br(Fk/Fqr ). Now, consider the place P∞ in F1/Fqr of degree one corre-
sponding to the pole of x1 in F1/Fqr . Then, by [5, Lemma 2.1], the place
P∞ is totally ramified in F2/F1. Moreover, the unique place P ′ in F2/Fqr

lying above P∞ has degree one and is totally ramified in Fk/F2 for any
integer k since P ′ is a place of type (B) by [5, Section 3]. Hence, since the
place P∞ is invariant under the action of the Galois group Gal(Fqr/Fq),
the place P∞ ∩ H1/Fq in H1/Fq has degree one and is totally ramified in
Hk/H1 for any integer k, and the proof is complete.

�

Remark 5.2. In the previous example, we explicitly prove that the tower
T2/Fq reaches the Generalized Drinfeld-Vladut Bound of order r for any
integer r such that r = 2f where f is an integer > 0. In fact, it is possible
to prove that the tower T2/Fq reaches the Generalized Drinfeld-Vladut
bound of order r for any even integer r. Indeed, let us set r = 2t, then as
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limk→+∞
B1(Fk/Fq2t )

gk
= qt−1 and B1(Fk/Fq2t) =

∑
i|r iBi(Hk/Fq), we have:

lim inf
gk→+∞

1
gk

2t∑
i=1

iBi(Hk/Fq)
qt − 1 ≥ 1

gk

∑
i|2t

iBi(Hk/Fq)
qt − 1 = lim inf

gk→+∞

B1(Fk/Fq2t)
gk(qt − 1) = 1.

Hence, it shows that for a certain integer m ≥ 1, we have:

lim inf
gk→+∞

1
gk

m∑
i=1

iBi(Hk/Fq)
q

m
2 − 1

≥ 1,

which implies : limgk→+∞
mBm(Hk/Fq)

gk
= q

m
2 − 1 by [3, Lemma IV.3].

Theorem 5.3. Let q be prime power and r = 2f where f is an integer
≥ 1. Let us consider the algebraic function fields Fk/Fqr and Hk/Fq of
genus gk constituting respectively the towers T0/Fqr and T2/Fq. There are
two positive real numbers c and c′ such that the following holds: for any
ε > 0 there exists an integer k0 such that for any integer k ≥ k0, we have

h(Fk/Fqr ) ≥ c
(

qr

qr − 1

)B1(Fk/Fqr )
qrgk ,

where B1(Fk/Fqr ) ≥ (qr − 1).q
r
2 (k−1) + 2q

r
2 and

h(Hk/Fq) ≥ c′
(

qr

qr − 1

)Br(Hk/Fq)
qgk ,

where Br(Hk/Fq) ≥ gk
r

(
q

r
2 − 1

)
(1− ε) and

gk =
{

(qr)n + (qr)n−1 − (qr)
n+1

2 − 2(qr)
n−1

2 + 1 if n is odd ,
(qr)n + (qr)n−1 − 1

2(qr)
n
2 +1 − 3

2(qr)
n
2 − (qr)

n
2−1 + 1 if n is even .

Proof. By a property of the Garcia-Stichtenoth tower [5] and by Proposition
5.1, we have

β1(T0/Fqr ) = lim
gk→+∞

B1(Fk/Fqr )
gk

= q
r
2 − 1

and
βr(T2/Fq) = lim

gk→+∞

Br(Hk/Fq)
gk

= 1
r

(q
r
2 − 1).

Moreover, we have B1(Fk/Fqr ) ≥ (qr − 1).q
r
2 (k−1) + 2q

r
2 by [5] and we have

B1(Hk/Fq) > 0 by Proposition 5.1. Hence, we have also∑
i|r
iBi(Hk/Fq) ≥ (qr − 1).q

r
2 (k−1) + 2q

r
2 .

Then, we can use Theorem 4.9 for the tower T0/Fqr and use Theorem 4.10
for the tower T2/Fq for assertion (2). �
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Remark 5.4. Note that it is absolutely natural to use the descent of the
Garcia-Stichtenoth tower since the recursive equation of this tower is de-
fined over Fq. Another argument would be to use the fact that this tower
is a tower of Drinfeld modular curves by Elkies [4] which implies that it is
defined over Fq.

5.2. Sequences F/Fq with µr(F/Fq) > 0 for certain integers r ≥
1. In this section, we study the class number of few towers defined over
different finite fields Fq, whose we only know that for a certain integer r, we
have µr(F/Fq) > 0 or µ1(F/Fqr ) > 0. Hence, we only obtain asymptotical
lower bounds on the class number of these towers, which could also be
obtained from the Generalized Brauer-Siegel Theorem ([12, Corollary 2],
[14, Part II]). The studied towers are all tame towers exhibited by Garcia
and Stichtenoth in [6]. Let us recall the recursive definition of an arbitrary
tower defined over Fq.

Definition 5.5. A tower T is defined by the equation ψ(y) = φ(x) if ψ(y)
and φ(x) are two rational functions over Fq such that

T = Fq(x0, x1, x2, ...) with ψ(xi+1) = φ(xi) for all i ≥ 0.

5.2.1. Examples 1: some tame towers of Fermat type. Let us recall
some generalities about the towers of Fermat Type [6].

Definition 5.6. A tower T over Fq defined by the equation
ym = a(x+ b)m + c, with (m, q) = 1

is said to be a Fermat tower if for each i ≥ 0, the field Fq is algebraically
closed in Fi and [Fi+1 : Fi] = m.

Now, we can give the following result:

Proposition 5.7. Let l be a power of the characteristic of Fq and let q = lr

with r ≥ 1. Assume that
r ≡ 0 mod 2 or l ≡ 0 mod 2.

Then the equation
yl−1 = −(x+ b)l−1 + 1, with b ∈ F∗l

define a tower F/Fl = (F0, F1, ...Fn, ...) over Fl such that for any α satis-
fying 0 < α < 2

r(l−2) , we have:

h(Fk/Fl) ∈ Ω
(((

q

q − 1

)α
l

)gk
)
.

Proof. By Theorem 3.10 in [6], the equation

yl−1 = −(x+ b)l−1 + 1, with b ∈ F∗l
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defines a Fermat tower T /Fq = (T0, T1, ...Tn, ...) over Fq such that µ1(T /Fq)
= 2

l−2 . Then the tower F/Fl is the tower such that T = Fq ⊗Fl
F is the

constant field extension tower of F of degree r. Hence, the tower F/Fl
satisfies lim infk→∞

∑
i|r

iBi(Fk/Fl)
gk

= µ1(T /Fq) = 2
l−2 and we conclude by

using Theorem 4.10. �

We can obtain a similar result with other examples of Fermat towers
exhibited in Section 3 of [6], in particular Example 3.12.

5.2.2. Examples 2: some tame quadratic towers. Let us give few
other examples of towers for which we are be able to give very good asymp-
totics for the class number.
Proposition 5.8. Let us consider the tower F/F3 defined over F3 recur-
siveley by the equation

y2 = x(x− 1)
x+ 1 .

Then the tower F/F3 = (F0, F1, ...Fn, ...) defined over F3 satisfies

h(Fk/F3) ∈ Ω
((

3
(9

8

) 1
3
)gk

)
.

Proof. By Example 4.3 in [6], the equation y2 = x(x−1)
x+1 defines a tower

T /F9 = (T0, T1, ...Tn, ...) over F9 such that µ1(T /F9) ≥ 2/3. Then the
tower F/F3 is the tower such that T = F9 ⊗F3 F is the constant field
extension tower of F of degree r = 2. Hence, the tower F/F3 satisfies
lim infk→∞

∑
i|r

iBi(Fk/Fl)
gk

= µ1(T /F9) ≥ 2
3 and we conclude by using The-

orem 4.10. �

Now, we also have the following result:
Proposition 5.9. Let us consider the tower F/F3 defined over F3 recur-
sively by the equation

y2 = x(1− x)
x+ 1 .

Then the tower F/F3 = (F0, F1, ...Fn, ...) defined over F3 satisfies

h(Fk/F3) ∈ Ω
((

3
(81

80

) 1
2
)gk

)
.

Proof. By Example 4.5 and Remark 4.6 in [6], the equation y2 = x(1−x)
x+1

defines a tower T /F81 = (T0, T1, ...Tn, ...) over F81 such that µ1(T /F81) ≥
2. Then the tower F/F3 is the tower such that T = F81 ⊗F3 F is the
constant field extension tower of F of degree r = 4. Hence, the tower F/F3
satisfies lim infk→∞

∑
i|r

iBi(Fk/Fl)
gk

= µ1(T /F81) ≥ 1
2 and we conclude by

using Theorem 4.10. �
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Then, we also have:

Proposition 5.10. Let us consider the tower F/F5 defined over F5 recur-
sively by the equation

y2 = x(x+ 2)
x+ 1 .

Then the tower F/F5 = (F0, F1, ...Fn, ...) defined over F3 satisfies

h(Fk/F5) ∈ Ω
((

5
(25

24

) 1
2
)gk

)
.

Proof. By Example 4.8 and Remark 4.6 in [6], the equation y2 = x(x+2)
x+1

defines a tower T /F25 = (T0, T1, ...Tn, ...) over F81 such that µ1(T /F25) ≥
1. Then the tower F/F5 is the tower such that T = F25 ⊗F5 F is the
constant field extension tower of F of degree r = 2. Hence, the tower F/F5
satisfies lim infk→∞

∑
i|r

iBi(Fk/Fl)
gk

= µ1(T /F25) ≥ 1
2 and we conclude by

using Theorem 4.10. �
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