OURNAL de Théorie des Nombres de Bordeaux

Stéphane VIGUIÉ

Invariants and coinvariants of semilocal units modulo elliptic units
Tome 24, no 2 (2012), p. 487-504.
http://jtnb.cedram.org/item?id=JTNB_2012__24_2_487_0
© Société Arithmétique de Bordeaux, 2012, tous droits réservés.
L'accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://jtnb.cedram. org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Invariants and coinvariants of semilocal units modulo elliptic units

par Stéphane VIGUIÉ

Abstract

RÉSumé. Soient p un nombre premier, et k un corps quadratique imaginaire dans lequel p se décompose en deux idéaux maximaux \mathfrak{p} et $\overline{\mathfrak{p}}$. Soit k_{∞} l'unique \mathbb{Z}_{p}-extension de k non ramifiée en dehors de \mathfrak{p}, et soit K_{∞} une extension finie de k_{∞}, abélienne sur k. Soit $\mathcal{U}_{\infty} / \mathcal{C}_{\infty}$ la limite projective du module des unités semi-locales principales modulo le module des unités elliptiques. Nous prouvons que les différents modules des invariants et des co-invariants de $\mathcal{U}_{\infty} / \mathcal{C}_{\infty}$ sont finis. Notre approche utilise les distributions et la fonction $\mathrm{L} p$-adique, définie dans [5].

Abstract. Let p be a prime number, and let k be an imaginary quadratic number field in which p decomposes into two primes \mathfrak{p} and $\overline{\mathfrak{p}}$. Let k_{∞} be the unique \mathbb{Z}_{p}-extension of k which is unramified outside of \mathfrak{p}, and let K_{∞} be a finite extension of k_{∞}, abelian over k. Let $\mathcal{U}_{\infty} / \mathcal{C}_{\infty}$ be the projective limit of principal semi-local units modulo elliptic units. We prove that the various modules of invariants and coinvariants of $\mathcal{U}_{\infty} / \mathcal{C}_{\infty}$ are finite. Our approach uses distributions and the p-adic L-function, as defined in [5].

1. Introduction

Let p be a prime number, and let k be an imaginary quadratic number field in which p decomposes into two distinct primes \mathfrak{p} and $\overline{\mathfrak{p}}$. Let k_{∞} be the unique \mathbb{Z}_{p}-extension of k which is unramified outside of \mathfrak{p}, and let K_{∞} be a finite extension of k_{∞}, abelian over k. Let G_{∞} be the Galois group of K_{∞} / k. We choose a decomposition of G_{∞} as a direct product of a finite group G (the torsion subgroup of G_{∞}) and a topological group Γ isomorphic to \mathbb{Z}_{p}, $G_{\infty}=G \times \Gamma$. For all $n \in \mathbb{N}$, let K_{n} be the field fixed by $\Gamma_{n}:=\Gamma^{p^{n}}$, and let $G_{n}:=\operatorname{Gal}\left(K_{n} / k\right)$. Remark that there may be different choices for Γ, but when p^{n} is larger than the order of the p-part of G, the group Γ_{n} does not depend on the choice of Γ.

Let F / k be a finite abelian extension of k. We denote by \mathcal{O}_{F} the ring of integers of F. Then we write \mathcal{O}_{F}^{\times}for the group of global units of F, and C_{F} for the group of elliptic units of F (see section 3). We set $\mathcal{C}_{F}:=\mathbb{Z}_{p} \otimes_{\mathbb{Z}} C_{F}$.

[^0]For all prime ideal \mathfrak{q} of \mathcal{O}_{F} above \mathfrak{p}, we write $F_{\mathfrak{q}}, \mathcal{O}_{F_{\mathfrak{q}}}$, and $\mathcal{O}_{F_{\mathfrak{q}}}^{\times}$respectively for the completion of F at \mathfrak{q}, the ring of integers of $F_{\mathfrak{q}}$, and the group of units of $\mathcal{O}_{F_{\mathfrak{q}}}$. Then we write \mathcal{U}_{F} for the pro-p-completion of $\prod_{\mathfrak{q} \mid \mathfrak{p}} \mathcal{O}_{F_{\mathfrak{q}}}^{\times}$. The injection $\mathcal{O}_{F}^{\times} \hookrightarrow \prod_{\mathfrak{q} \mid \mathfrak{p}} \mathcal{O}_{F_{\mathfrak{q}}}^{\times}$induces a canonical map $\mathbb{Z}_{p} \otimes_{\mathbb{Z}} \mathcal{O}_{F}^{\times} \rightarrow \mathcal{U}_{F}$. The Leopoldt conjecture, which is known to be true for abelian extensions of k, states that this map is injective. For all $n \in \mathbb{N}$, we write \mathcal{C}_{n} and \mathcal{U}_{n} for $\mathcal{C}_{K_{n}}$ and $\mathcal{U}_{K_{n}}$ respectively. We define $\mathcal{C}_{\infty}:=\lim \mathcal{C}_{n}$ and $\mathcal{U}_{\infty}:=\lim _{\mathcal{U}_{n}}$ by taking projective limit under the norm maps. The injections $\mathcal{C}_{n} \leftrightarrows \mathcal{U}_{n}$ are norm compatible and taking the limit we obtain an injection $\mathcal{C}_{\infty} \hookrightarrow \mathcal{U}_{\infty}$.

For any profinite group \mathcal{G}, and any commutative ring R, we define the Iwasawa algebra

$$
R[[\mathcal{G}]]:=\lim _{\rightleftarrows} R[\mathcal{H}],
$$

where the projective limit is over all finite quotients \mathcal{H} of \mathcal{G}. Then \mathcal{C}_{∞} and \mathcal{U}_{∞} are naturally $\mathbb{Z}_{p}\left[\left[G_{\infty}\right]\right]$-modules. It is well known that they are finitely generated over $\mathbb{Z}_{p}[[\Gamma]]$. Moreover one can show that $\mathcal{U}_{\infty} / \mathcal{C}_{\infty}$ is torsion over $\mathbb{Z}_{p}[[\Gamma]]$ (see [17, Proposition 3.1]). Let us fix a topological generator γ of Γ, and set $T:=\gamma-1$. We denote by \mathbb{C}_{p} the completion of an algebraic closure of \mathbb{Q}_{p}. For any complete subfield L of \mathbb{C}_{p}, finitely ramified over \mathbb{Q}_{p}, we denote by \mathcal{O}_{L} the complete discrete valuation ring of integers of L. Then the ring $\mathcal{O}_{L}[[\Gamma]]$ is isomorphic to $\mathcal{O}_{L}[[T]]$. It is well known that $\mathcal{O}_{L}[[T]]$ is a noetherian, regular, local domain. We also recall that $\mathcal{O}_{L}[[T]]$ is a unique factorization domain. If \mathfrak{u}_{L} is a uniformizer of \mathcal{O}_{L}, then the maximal ideal \mathfrak{M} of $\mathcal{O}_{L}[[T]]$ is generated by \mathfrak{u}_{L} and T, and $\mathcal{O}_{L}[[T]]$ is a complete topological ring with respect to its \mathfrak{M}-adic topology. A morphism $f: M \rightarrow N$ between two finitely generated $\mathcal{O}_{L}[[T]]$-module is called a pseudo-isomorphism if its kernel and its cokernel are finitely generated and torsion over \mathcal{O}_{L}. If a finitely generated $\mathcal{O}_{L}[[T]]$-module M is given, then one may find elements P_{1}, \ldots, P_{r} in $\mathcal{O}_{L}[T]$, irreducible in $\mathcal{O}_{L}[[T]]$, and nonnegative integers n_{0}, \ldots, n_{r}, such that there is a pseudo-isomorphism

$$
M \longrightarrow \mathcal{O}_{L}[[T]]^{n_{0}} \oplus \bigoplus_{i=1}^{r} \mathcal{O}_{L}[[T]] /\left(P_{i}^{n_{i}}\right)
$$

Moreover, the integer n_{0} and the ideals $\left(P_{1}^{n_{1}}\right), \ldots,\left(P_{r}^{n_{r}}\right)$, are uniquely determined by M. If $n_{0}=0$, then the ideal generated by $P_{1}^{n_{1}} \cdots P_{r}^{n_{r}}$ is called the characteristic ideal of M, and is denoted by $\operatorname{char}_{\mathcal{O}_{L}[[T]]}(M)$.

Let χ be an irreducible \mathbb{C}_{p}-character of G. Let $L(\chi) \subset \mathbb{C}_{p}$ be the abelian extension of L generated by the values of χ. The group G acts naturally on $L(\chi)$ if we set, for all $g \in G$ and all $x \in L(\chi), g \cdot x:=\chi(g) x$. For any $\mathcal{O}_{L}[G]$-module Y, we define the χ-quotient Y_{χ} by $Y_{\chi}:=\mathcal{O}_{L(\chi)} \otimes_{\mathcal{O}_{L}[G]} Y$. If Y is an $\mathcal{O}_{L}\left[\left[G_{\infty}\right]\right]$-module, then Y_{χ} is an $\mathcal{O}_{L(\chi)}[[T]]$-module in a natural
way. Moreover if L contains a $\left[K_{0}: k\right.$]-th primitive root of unity, then there is $(a, b) \in \mathbb{N}^{2}$ such that

$$
\begin{equation*}
\mathfrak{u}_{L}^{a} \operatorname{char}_{\mathcal{O}_{L}[[T]]}(M)=\mathfrak{u}_{L}^{b} \prod_{\chi} \operatorname{char}_{\mathcal{O}_{L}[[T]]}\left(M_{\chi}\right) \tag{1.1}
\end{equation*}
$$

where the product is over all irreducible \mathbb{C}_{p}-character on G.
For any profinite group \mathcal{G}, any normal subgroup \mathcal{H} of \mathcal{G} and any $\mathcal{O}_{L}[[\mathcal{G}]]-$ module M, we denote by $M^{\mathcal{H}}$ the module of \mathcal{H}-invariants of M, that is to say the maximal submodule of M which is invariant under the action of \mathcal{H}. We denote by $M_{\mathcal{H}}$ the module of \mathcal{H}-coinvariants of M, which is the quotient of M by the closed submodule topologically generated by the elements $(h-1) m$ with $h \in \mathcal{H}$ and $m \in M$.

In this article, we prove that for all $n \in \mathbb{N}$, the module of Γ_{n}-invariants and the module of Γ_{n}-coinvariants of $\mathcal{U}_{\infty} / \mathcal{C}_{\infty}$ are finite (see Theorem 6.1). It generalizes a part of a result of Coates-Wiles [4, Theorem 1], where this result is shown at the χ^{i}-parts, for $i \not \equiv 0$ modulo $p-1$, and for χ the character giving the action of G on the \mathfrak{p}-torsion points of a certain elliptic curve. But the result of [4] is stated for non-exceptional primes p (in particular $p \notin\{2,3\}$), and under the assumption that \mathcal{O}_{k} is principal. Here we prove the general case.

Moreover we would like to mention an application of Theorem 6.1 to the main conjecture of Iwasawa theory. For all $n \in \mathbb{N}$, we set $\mathcal{E}_{n}:=\mathbb{Z}_{p} \otimes_{\mathbb{Z}} \mathcal{O}_{K_{n}}^{\times}$ and we denote by A_{n} the p-part of the class-group $\mathrm{Cl}\left(\mathcal{O}_{K_{n}}\right)$ of $\mathcal{O}_{K_{n}}$. We define $\mathcal{E}_{\infty}:=\lim \mathcal{E}_{n}$ and $A_{\infty}:=\underset{\longleftarrow}{\lim } A_{n}$, projective limits under the norm maps. A formulation of the (one variable) main conjecture says that $\operatorname{char}_{\mathbb{Z}_{p}(\chi)[[T]]}\left(\mathcal{E}_{\infty} / \mathcal{C}_{\infty}\right)_{\chi}=\operatorname{char}_{\mathbb{Z}_{p}(\chi)[[T]]}\left(A_{\infty, \chi}\right)$, where $\mathbb{Z}_{p}(\chi)$ is the ring of integers of $\mathbb{Q}_{p}(\chi)$. It has been proved in many cases by the use of Euler systems. We refer the reader to the pioneering work of Rubin in [15, Theorem 4.1] and [16, Theorem 2], adapted to the cyclotomic case by Greither in [7, Theorem 3.2]. The method is now classical, applied by many authors, see [2, Theorem 3.1], [11] and [17]. However the result of Gillard [6] which implies the nullity of the μ-invariant of A_{∞} is stated for $p \notin\{2,3\}$, and for $p \in\{2,3\}$ we just obtain a divisibility relation

$$
\begin{equation*}
\operatorname{char}_{\mathbb{Z}_{p}(\chi)[[T]]}\left(A_{\infty, \chi}\right) \quad \text { divides } \quad p^{a} \operatorname{char}_{\mathbb{Z}_{p}(\chi)[[T]]}\left(\mathcal{E}_{\infty} / \mathcal{C}_{\infty}\right)_{\chi} \tag{1.2}
\end{equation*}
$$

for some $a \in \mathbb{N}$ (see [11] and [17]). Following the ideas of Belliard in [1], in [18] we deduce from Theorem 6.1 that for $p \in\{2,3\}$ the $\mathbb{Z}_{p}[[\Gamma]]$-modules $\mathcal{E}_{\infty} / \mathcal{C}_{\infty}$ and A_{∞} have the same Iwasawa's μ and λ invariants. This result, together with (1.2), implies that there is $(a, b) \in \mathbb{N}^{2}$ such that the following raw form of the main conjecture holds,

$$
\mathfrak{u}_{\chi}^{a} \operatorname{char}_{\mathbb{Z}_{p}(\chi)[[T]]}\left(A_{\infty, \chi}\right)=\mathfrak{u}_{\chi}^{b} \operatorname{char}_{\mathbb{Z}_{p}(\chi)[[T]]}\left(\mathcal{E}_{\infty} / \mathcal{C}_{\infty}\right)_{\chi}
$$

where \mathfrak{u}_{χ} is a uniformizer of $\mathbb{Z}_{p}(\chi)$.

2. Distributions.

In this section, let A be a commutative ring and let \mathcal{G} be a profinite group. We denote by $\mathfrak{X}(\mathcal{G})$ the set of compact-open subsets of \mathcal{G}. Remark that for any $X \in \mathfrak{X}(\mathcal{G})$, one can find a finite subset F of X, and an open normal subgroup \mathcal{H} of \mathcal{G}, such that $X=\underset{x \in F}{\cup} x \mathcal{H}$.

Definition 1. An A-distribution on \mathcal{G} is an application $\mu: \mathfrak{X}(\mathcal{G}) \rightarrow A$, such that for all $\left(X_{1}, X_{2}\right) \in \mathfrak{X}(\mathcal{G})^{2}$, if $X_{1} \cap X_{2}=\varnothing$, then

$$
\mu\left(X_{1} \cup X_{2}\right)=\mu\left(X_{1}\right)+\mu\left(X_{2}\right)
$$

We denote by $\mathcal{M}(\mathcal{G}, A)$ the A-module of A-distributions on \mathcal{G}. Moreover for $X \in \mathfrak{X}(\mathcal{G})$ and $\mu \in \mathcal{M}(\mathcal{G}, A)$, we denote by $\mu_{\mid X}$ the A-distribution on \mathcal{G} defined by

$$
\mu_{\mid X}: \mathfrak{X}(X) \longrightarrow A, \quad Y \longmapsto \mu(Y \cap X) .
$$

Let $\pi: \mathcal{G} \rightarrow \mathcal{G}^{\prime}$ be a continuous map between two profinite groups. To any distribution $\mu \in \mathcal{M}(\mathcal{G}, A)$ we attach the unique A-distribution $\pi_{*} \mu$ on \mathcal{G}^{\prime}, such that for all $X \in \mathfrak{X}\left(\mathcal{G}^{\prime}\right)$,

$$
\pi_{*} \mu(X)=\mu\left(\pi^{-1}(X)\right)
$$

For any $\sigma \in \mathcal{G}$, let us also denote by $\sigma_{*} \mu$ the unique A-distribution on \mathcal{G}, such that for all $X \in \mathfrak{X}(\mathcal{G})$,

$$
\sigma_{*} \mu(X)=\mu\left(\sigma^{-1} X\right)
$$

Assume moreover that π is an open (continuous) group morphism, such that $\operatorname{Ker}(\pi)$ is finite. To any distribution $\mu^{\prime} \in \mathcal{M}\left(\mathcal{G}^{\prime}, A\right)$ we attach the unique A-distribution $\pi^{\sharp} \mu^{\prime}$ on \mathcal{G}, such that for all $g \in \mathcal{G}$, and all open subgroup \mathcal{H} of \mathcal{G},

$$
\begin{equation*}
\pi^{\sharp} \mu^{\prime}(g \mathcal{H})=\#(\mathcal{H} \cap \operatorname{Ker}(\pi)) \mu^{\prime}(\pi(g \mathcal{H})) . \tag{2.1}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\pi^{\sharp} \pi_{*} \mu=\sum_{\sigma \in \operatorname{Ker}(\pi)} \sigma_{*} \mu \quad \text { and } \quad \pi_{*} \pi^{\sharp} \mu^{\prime}=\#(\operatorname{Ker}(\pi)) \mu_{\mid \operatorname{Im}(\pi)}^{\prime} . \tag{2.2}
\end{equation*}
$$

For $\left(\alpha_{1}, \alpha_{2}\right) \in \mathcal{M}(\mathcal{G}, A)^{2}$, there is a unique A-distribution β on $\mathcal{G} \times \mathcal{G}$ such that for all $\left(X_{1}, X_{2}\right) \in \mathfrak{X}(\mathcal{G})^{2}, \beta\left(X_{1} \times X_{2}\right)=\alpha_{1}\left(X_{1}\right) \alpha_{2}\left(X_{2}\right)$. Then the convolution product $\alpha_{1} \alpha_{2}$ of α_{1} and α_{2} is defined by $\alpha_{1} \alpha_{2}:=m_{*} \beta$, where $m: \mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G},\left(\sigma_{1}, \sigma_{2}\right) \mapsto \sigma_{1} \sigma_{2}$. Once equipped with the convolution product, $\mathcal{M}(\mathcal{G}, A)$ is an A-algebra. For any A-distribution μ on \mathcal{G}, let us denote by $\underline{\mu}$ the unique element in $A[[\mathcal{G}]]$ such that for all open normal
subgroup \mathcal{H} of \mathcal{G}, the image $\underline{\mu}_{\mathcal{H}}$ of $\underline{\mu}$ in $A[\mathcal{G} / \mathcal{H}]$ is given by

$$
\underline{\mu}_{\mathcal{H}}=\sum_{g \in \mathcal{G} / \mathcal{H}} \mu(\tilde{g} \mathcal{H}) g
$$

where for any $g \in \mathcal{G} / \mathcal{H}, \tilde{g} \in \mathcal{G}$ is an arbitrary preimage of g. Then we have a canonical isomorphism

$$
\mathcal{M}(\mathcal{G}, A) \xrightarrow{\sim} A[[\mathcal{G}]], \quad \mu \longmapsto \underline{\mu},
$$

and for any $\mu \in \mathcal{M}(\mathcal{G}, A)$ and any $\sigma \in \mathcal{G}$, we have $\underline{\sigma_{*}} \mu=\sigma \underline{\mu}$. Also we mention that if $\tilde{\pi}: A[[\mathcal{G}]] \rightarrow A\left[\left[\mathcal{G}^{\prime}\right]\right]$ is the canonical morphism defined by π, then we have the following commutative squares,

where for all $g \in \mathcal{G}^{\prime}, \Sigma h$ is the sum over all $h \in \mathcal{G}$ such that $\pi(h)=g$.
Proposition 2.1. Let $\pi: \mathcal{G}_{1} \rightarrow \mathcal{G}_{2}$ be an open continuous morphism of profinite groups, such that $\operatorname{Ker}(\pi)$ is finite. The morphism $\pi^{\sharp}: \mathcal{M}\left(\mathcal{G}_{2}, A\right) \rightarrow$ $\mathcal{M}\left(\mathcal{G}_{1}, A\right)$ is injective if and only if π is surjective. Moreover if $\#(\operatorname{Ker}(\pi))$ is not a zero divisor in A, then the image of π^{\sharp} is $\mathcal{M}\left(\mathcal{G}_{1}, A\right)^{\operatorname{Ker}(\pi)}$.

Proof. Let $\mu_{2} \in \mathcal{M}\left(\mathcal{G}_{2}, A\right)$. From (2.1) it is straightforward to check that $\pi^{\sharp} \mu_{2}=0$ if and only if $\mu_{2}(X)=0$ for all $X \in \mathfrak{X}(\operatorname{Im}(\pi))$, and then we deduce that π^{\sharp} is injective if and only if π is surjective. For any $\sigma \in \operatorname{Ker}(\pi)$, any $g \in \mathcal{G}_{1}$, and any open subgroup \mathcal{H} of \mathcal{G}_{1}, we have

$$
\begin{aligned}
\sigma_{*} \pi^{\sharp} \mu_{2}(g \mathcal{H}) & =\#(\mathcal{H} \cap \operatorname{Ker}(\pi)) \mu_{2}\left(\pi\left(\sigma^{-1} g \mathcal{H}\right)\right) \\
& =\#(\mathcal{H} \cap \operatorname{Ker}(\pi)) \mu_{2}(\pi(g \mathcal{H})) \\
& =\pi^{\sharp} \mu_{2}(g \mathcal{H}),
\end{aligned}
$$

hence $\sigma_{*} \pi^{\sharp} \mu_{2}=\pi^{\sharp} \mu_{2}$, and $\operatorname{Im}\left(\pi^{\sharp}\right) \subseteq \mathcal{M}\left(\mathcal{G}_{1}, A\right)^{\operatorname{Ker}(\pi)}$.
Now let $\mu_{1} \in \mathcal{M}\left(\mathcal{G}_{1}, A\right)^{\operatorname{Ker}(\pi)}$. Let \mathcal{H} be an open subgroup of $\operatorname{Im}(\pi)$, and $g \in \mathcal{G}_{1}$. Let \mathcal{W} be an open normal subgroup of $\pi^{-1}(\mathcal{H})$ such that $\mathcal{W} \cap \operatorname{Ker}(\pi)$ is trivial. Let R be a complete representative system of $\pi^{-1}(\mathcal{H})$ modulo $\mathcal{W} \operatorname{Ker}(\pi)$. Then $(\sigma r)_{(\sigma, r) \in \operatorname{Ker}(\pi) \times R}$ is a complete representative system of
$\pi^{-1}(\mathcal{H})$ modulo \mathcal{W}, and we have

$$
\begin{aligned}
\mu_{1}\left(\pi^{-1}(\mathcal{H}) g\right) & =\sum_{(\sigma, r) \in \operatorname{Ker}(\pi) \times R} \mu_{1}(\sigma r \mathcal{W} g) \\
& =\sum_{(\sigma, r) \in \operatorname{Ker}(\pi) \times R}\left(\sigma^{-1}\right)_{*} \mu_{1}(r \mathcal{W} g) \\
& =\sum_{(\sigma, r) \in \operatorname{Ker}(\pi) \times R} \mu_{1}(r \mathcal{W} g) \\
& =\#(\operatorname{Ker}(\pi)) \sum_{r \in R} \mu_{1}(r \mathcal{W} g)
\end{aligned}
$$

Hence $\pi_{*} \mu_{1}$ takes values in $\#(\operatorname{Ker}(\pi)) A$, and we deduce the equality $\mu_{1}=$ $\pi^{\sharp}\left(\#(\operatorname{Ker}(\pi))^{-1} \pi_{*} \mu_{1}\right)$ from (2.2).

Now assume $A:=\mathcal{O}_{L}$ for some complete subfield L of \mathbb{C}_{p}, finitely ramified over \mathbb{Q}_{p}. An A-distribution on \mathcal{G} is called a measure. Let $\mu \in \mathcal{M}(\mathcal{G}, A)$ be such a measure, and let V be a complete separated topological A-module, such that the open submodules of V form a neighborhood basis for 0 . Let $\mathcal{C}(\mathcal{G}, V)$ be the A-module of continuous maps from \mathcal{G} to V, equipped with the uniform convergence topology. For any $X \in \mathfrak{X}(\mathcal{G})$, we denote by $1_{X}: \mathcal{G} \rightarrow A$ the map such that $1_{X}(x)=1$ for $x \in X$ and $1_{X}(x)=0$ for $x \in \mathcal{G} \backslash X$. Then there is a unique continuous A-linear map

$$
\mathcal{C}(\mathcal{G}, V) \longrightarrow V, \quad f \longmapsto \int f(t) \cdot \mathrm{d} \mu(t),
$$

such that for all $X \in \mathfrak{X}(\mathcal{G})$ and all $v \in V, \int 1_{X}(t) v . \mathrm{d} \mu(t)=\mu(X) v$ (see [9, Chapter 4, §1]). For $X \in \mathfrak{X}(\mathcal{G})$ and $f \in \mathcal{C}(\mathcal{G}, V)$, we write $\int_{X} f . \mathrm{d} \mu$ for $\int 1_{X} f . \mathrm{d} \mu$. Then for $\sigma \in \mathcal{G}$, we have

$$
\begin{equation*}
\int_{X} f(t) \cdot \mathrm{d} \sigma_{*} \mu(t)=\int_{\sigma^{-1} X} f(\sigma t) \cdot \mathrm{d} \mu(t) \tag{2.3}
\end{equation*}
$$

the equality being obvious if f is locally constant, and then extended to all $f \in \mathcal{C}(\mathcal{G}, V)$ by continuity. Then for $\mu \in \mathcal{M}(\Gamma, A)$, we have

$$
\begin{equation*}
\underline{\mu}=\int(1+T)^{\kappa(\sigma)} \cdot \mathrm{d} \mu(\sigma) \quad \text { in } \quad A[[T]], \tag{2.4}
\end{equation*}
$$

where $\kappa: \Gamma \rightarrow \mathbb{Z}_{p}$ is the unique isomorphism of profinite groups such that $\kappa(\gamma)=1$. Moreover if we write $\mathfrak{m}_{\mathbb{C}_{p}}$ for the maximal ideal of $\mathcal{O}_{\mathbb{C}_{p}}$, then for any $x \in \mathfrak{m}_{\mathbb{C}_{p}}$ we have

$$
\begin{equation*}
\underline{\mu}(x)=\int(1+x)^{\kappa(\sigma)} \cdot \mathrm{d} \mu(\sigma) \quad \text { in } \quad \mathbb{C}_{p} \tag{2.5}
\end{equation*}
$$

see [9, Chapter 4, §1, Theorem 1.2, p. 98].

3. Elliptic units.

For L and L^{\prime} two \mathbb{Z}-lattices of \mathbb{C} such that $L \subseteq L^{\prime}$ and $\left[L^{\prime}: L\right]$ is prime to 6 , we denote by $z \mapsto \psi\left(z ; L, L^{\prime}\right)$ the elliptic function defined in [14]. For \mathfrak{m} a nonzero proper ideal of \mathcal{O}_{k}, and \mathfrak{a} a nonzero ideal of \mathcal{O}_{k} prime to $6 \mathfrak{m}$, G. Robert proved that $\psi\left(1 ; \mathfrak{m}, \mathfrak{a}^{-1} \mathfrak{m}\right) \in k(\mathfrak{m})$, where $k(\mathfrak{m})$ is the ray class field of k, modulo \mathfrak{m}. If $\varphi_{\mathfrak{m}}(1) \in k(\mathfrak{m})^{\times}$is the Robert-Ramachandra invariant, as defined in [12, p. 15], or in [5, p. 55], we have by [13, Corollaire 1.3, (iii)]

$$
\begin{equation*}
\psi\left(1 ; \mathfrak{m}, \mathfrak{a}^{-1} \mathfrak{m}\right)^{12 m}=\varphi_{\mathfrak{m}}(1)^{N(\mathfrak{a})-(\mathfrak{a}, k(\mathfrak{m}) / k)}, \tag{3.1}
\end{equation*}
$$

where m is the positive generator of $\mathfrak{m} \cap \mathbb{Z}, N(\mathfrak{a}):=\#\left(\mathcal{O}_{k} / \mathfrak{a}\right)$ and $(\mathfrak{a}, k(\mathfrak{m}) / k)$ is the Artin automorphism of $k(\mathfrak{m}) / k$ defined by \mathfrak{a}. Let $S(\mathfrak{m})$ be the set of maximal ideals of \mathcal{O}_{k} which divide \mathfrak{m}. Then $\psi\left(1 ; \mathfrak{m}, \mathfrak{a}^{-1} \mathfrak{m}\right)$ and $\varphi_{\mathfrak{m}}(1)$ are units if and only if $|S(\mathfrak{m})| \geq 2$. More precisely, if we denote by $w_{\mathfrak{m}}$ the number of roots of unity of k which are congruent to 1 modulo \mathfrak{m}, and if we write w_{k} for the number of roots of unity in k, then by [13, (iv'), p. 21], we have

$$
\varphi_{\mathfrak{m}}(1) \mathcal{O}_{k(\mathfrak{m})}=\left\{\begin{array}{lll}
(1) & \text { if } & 2 \leq|S(\mathfrak{m})| \tag{3.2}\\
(\mathfrak{q})_{k(\mathfrak{m})}^{12 m w_{\mathfrak{m}}} / w_{k} & \text { if } & S(\mathfrak{m})=\{\mathfrak{q}\}
\end{array}\right.
$$

where $(\mathfrak{q})_{k(\mathfrak{m})}$ is the product of the prime ideals of $\mathcal{O}_{k(\mathfrak{m})}$ which lie above \mathfrak{q}. Moreover, if \mathfrak{a} is prime to $6 \mathfrak{m q}$, then by [13, Corollaire 1.3, (ii-1)] we have

$$
\begin{align*}
& N_{k(\mathfrak{m q}) / k(\mathfrak{m})}\left(\psi\left(1 ; \mathfrak{m q}, \mathfrak{a}^{-1} \mathfrak{m q}\right)\right)^{w_{\mathfrak{m}} w_{\mathfrak{m} \mathfrak{q}}^{-1}} \tag{3.3}\\
&= \begin{cases}\psi\left(1 ; \mathfrak{m}, \mathfrak{a}^{-1} \mathfrak{m}\right)^{1-(\mathfrak{q}, k(\mathfrak{m}) / k)^{-1}} & \text { if } \mathfrak{q} \nmid \mathfrak{m} \\
\psi\left(1 ; \mathfrak{m}, \mathfrak{a}^{-1} \mathfrak{m}\right) & \text { if } \mathfrak{q} \mid \mathfrak{m}\end{cases}
\end{align*}
$$

Definition 2. Let $F \subset \mathbb{C}$ be a finite abelian extension of k, and write $\mu(F)$ for the group of roots of unity in F. Let \mathfrak{m} be a nonzero proper ideal of \mathcal{O}_{k}. We define the $\mathbb{Z}[\operatorname{Gal}(F / k)]$-submodule $\Psi(F, \mathfrak{m})$ of F^{\times}, generated by the $w_{\mathfrak{m}}$-roots of all $N_{k(\mathfrak{m}) / k(\mathfrak{m}) \cap F}\left(\psi\left(1 ; \mathfrak{m}, \mathfrak{a}^{-1} \mathfrak{m}\right)\right)$, where \mathfrak{a} is any nonzero ideal of \mathcal{O}_{k} prime to $6 \mathfrak{m}$. Also, we set $\Psi^{\prime}(F, \mathfrak{m}):=\mathcal{O}_{F}^{\times} \cap \Psi(F, \mathfrak{m})$.

Then, we let C_{F} be the group generated by $\mu(F)$ and by all $\Psi^{\prime}(F, \mathfrak{m})$, for any nonzero proper ideal \mathfrak{m} of \mathcal{O}_{k}.

Remark 1. Let \mathfrak{m} and \mathfrak{g} be two nonzero proper ideals of \mathcal{O}_{k}, such that the conductor of F / k divides \mathfrak{m}. Let us denote by $\mathfrak{g} \wedge \mathfrak{m}$ the gcd of \mathfrak{g} and \mathfrak{m}. If $\mathfrak{g} \wedge \mathfrak{m}=1$, then $\Psi^{\prime}(F, \mathfrak{g}) \subseteq C_{F} \cap \mathcal{O}_{k(1)}^{\times}$. Else by (3.3) we have $\Psi^{\prime}(F, \mathfrak{g}) \subseteq \Psi^{\prime}(F, \mathfrak{g} \wedge \mathfrak{m})$.

We define $\mathcal{C}_{n}:=\mathbb{Z}_{p} \otimes_{\mathbb{Z}} C_{K_{n}}$, and $\mathcal{C}_{\infty}:=\lim _{\underline{L}}\left(\mathcal{C}_{n}\right)$, projective limit under the norm maps. For any nonzero ideal \mathfrak{g} of $\overleftarrow{\mathcal{O}_{k}}$, we define

$$
\Psi\left(K_{n}, \mathfrak{g p}^{\infty}\right):=\bigcup_{i=1}^{\infty} \Psi\left(K_{n}, \mathfrak{g p}^{i}\right) \quad \text { and } \quad \Psi^{\prime}\left(K_{n}, \mathfrak{g p}^{\infty}\right):=\bigcup_{i=1}^{\infty} \Psi^{\prime}\left(K_{n}, \mathfrak{g p}^{i}\right) .
$$

Then the projective limits under the norm maps are denoted by

$$
\begin{aligned}
\bar{\Psi}\left(K_{\infty}, \mathfrak{g p}^{\infty}\right) & :=\lim _{\omega_{p}}\left(\mathbb{Z}_{p} \otimes_{\mathbb{Z}} \Psi\left(K_{n}, \mathfrak{g p}^{\infty}\right)\right), \\
\bar{\Psi}^{\prime}\left(K_{\infty}, \mathfrak{g p}^{\infty}\right): & :=\lim _{\rightleftarrows}\left(\mathbb{Z}_{p} \otimes_{\mathbb{Z}} \Psi^{\prime}\left(K_{n}, \mathfrak{g p}^{\infty}\right)\right) .
\end{aligned}
$$

Let us write \mathcal{I} for the set of nonzero ideals of \mathcal{O}_{k} which are prime to \mathfrak{p}. For $\mathfrak{g} \in \mathcal{I}$, we set $K_{\mathfrak{g}, \infty}:=k\left(\mathfrak{g p}^{\infty}\right)=\bigcup_{n \in \mathbb{N}} k\left(\mathfrak{g p}^{n}\right)$, and $G_{\mathfrak{g}, \infty}:=\operatorname{Gal}\left(K_{\mathfrak{g}, \infty} / k\right)$. Then we write $G_{\mathfrak{g}}$ for the torsion subgroup of $G_{\mathfrak{g}, \infty}$. We denote by \mathcal{I}^{\prime} the subset of \mathcal{I} containing all the $\mathfrak{g} \in \mathcal{I}$ such that $w_{\mathfrak{g}}=1$. In the sequel, we fix once and for all $\mathfrak{f} \in \mathcal{I}^{\prime}$ such that $K_{\infty} \subseteq K_{\mathfrak{f}, \infty}$. We choose arbitrarily a subgroup of $G_{\mathrm{f}, \infty}$, isomorphic to \mathbb{Z}_{p}, such that its image in G_{∞} is Γ. Then for any $\mathfrak{g} \in \mathcal{I}$ such that $\mathfrak{g} \mid f$, we have the decomposition $G_{\mathfrak{g}, \infty}=G_{\mathfrak{g}} \times \Gamma$.

Remark 2. From Remark $1, \mathcal{C}_{\infty}$ is generated by all the $\bar{\Psi}^{\prime}\left(K_{\infty}, \mathfrak{g p}^{\infty}\right)$, where $\mathfrak{g} \in \mathcal{I}$ is such that $\mathfrak{g} \mid \mathfrak{f}$.

From (3.3), for $\mathfrak{g} \in \mathcal{I}$ such that $\mathfrak{g} \mid \mathfrak{f}$, and for any nonzero ideal \mathfrak{a} of \mathcal{O}_{k} which is prime to $6 \mathfrak{g p}$, there is a unique

$$
\psi\langle\mathfrak{g}, \mathfrak{a}\rangle \in \bar{\Psi}\left(K_{\mathfrak{g}, \infty}, \mathfrak{g p}^{\infty}\right)
$$

such that for large enough $n \in \mathbb{N}$, the canonical image of $\psi\langle\mathfrak{g}, \mathfrak{a}\rangle$ in $\mathbb{Z}_{p} \otimes_{\mathbb{Z}}$ $\Psi\left(k\left(\mathfrak{g p}^{n}\right), \mathfrak{g p}^{\infty}\right)$ is $1 \otimes \psi\left(1 ; \mathfrak{g p}^{n}, \mathfrak{a}^{-1} \mathfrak{g p}^{n}\right)$.

4. From semilocal units to measures.

Let $\mathbb{Q}_{p}^{\mathrm{nr}} \subseteq \mathbb{C}_{p}$ be the maximal unramified algebraic extension of \mathbb{Q}_{p}, and let L be the completion of $\mathbb{Q}_{p}^{\mathrm{nr}}$. We denote by $\mathcal{O}_{\mathfrak{f}}$ the ring $\mathcal{O}_{L}[\zeta]$, where ζ is any primitive $\left[K_{\mathfrak{f}, 0}: k\right]$-th root of unity in \mathbb{C}_{p}. For all $\left(\mathfrak{g}_{1}, \mathfrak{g}_{2}\right) \in \mathcal{I}^{2}$ such that $\mathfrak{g}_{1} \mid \mathfrak{g}_{2}$, we denote by $\pi_{\mathfrak{g}_{2}, \mathfrak{g}_{1}}: G_{\mathfrak{g}_{2}, \infty} \rightarrow G_{\mathfrak{g}_{1}, \infty}$ the restriction map. We write $N_{\mathfrak{g}_{2}, \mathfrak{g}_{1}}: \mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}} \mathcal{U}_{\mathfrak{g}_{2}, \infty} \rightarrow \mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}} \mathcal{U}_{\mathfrak{g}_{1}, \infty}$ for the norm map and we write $v_{\mathfrak{g}_{2}, \mathfrak{g}_{1}}: \mathcal{O}_{\mathfrak{q}} \widehat{\mathbb{Z}}_{\mathbb{Z}_{p}} \mathcal{U}_{\mathfrak{g}_{1}, \infty} \rightarrow \mathcal{O}_{\mathfrak{q}} \widehat{\otimes}_{\mathbb{Z}_{p}} \mathcal{U}_{\mathfrak{g}_{2}, \infty}$ for the canonical injection.

For all $\mathfrak{g} \in \mathcal{I}^{\prime}$, de Shalit defined in [5, I.3.4, II.4.6, and II.4.7] an injective morphism of $\mathbb{Z}_{p}\left[\left[G_{\infty}\right]\right]$-modules $i_{\mathfrak{g}}^{0}: \mathcal{U}_{\mathfrak{g}, \infty} \rightarrow \mathcal{M}\left(G_{\mathfrak{g}, \infty}, \mathcal{O}_{L}\right)$, which we extend by linearity to a morphism $i_{\mathfrak{g}}$ from $\mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}} \mathcal{U}_{\mathfrak{g}, \infty}$ to $\mathcal{M}\left(G_{\mathfrak{g}, \infty}, \mathcal{O}_{\mathfrak{f}}\right)$.

Lemma 4.1. There is a unique way to extend the family $\left(i_{\mathfrak{g}}\right)_{\mathfrak{g} \in \mathcal{I}^{\prime}}$ to \mathcal{I} such that for all $\left(\mathfrak{g}_{1}, \mathfrak{g}_{2}\right) \in \mathcal{I}^{2}$, if $\mathfrak{g}_{1} \mid \mathfrak{g}_{2}$ then the following squares are commutative,

Proof. This was proved by de Shalit in the case $p \neq 2$ (see [5, III.1.2 and III.1.3]). Let $\mathfrak{g}_{1} \in \mathcal{I} \backslash \mathcal{I}^{\prime}$, and let $\mathfrak{g}_{2} \in \mathcal{I}^{\prime}$ be such that $\mathfrak{g}_{1} \mid \mathfrak{g}_{2}$. When $p \neq 2$ de Shalit uses the surjectivity of $N_{\mathfrak{g}_{2}, \mathfrak{g}_{1}}$ in order to construct $i_{\mathfrak{g}_{1}}$. If $p=2, N_{\mathfrak{g}_{2}, \mathfrak{g}_{1}}$ may not be surjective. However we have $\operatorname{Im}\left(i_{\mathfrak{g}_{2}} \circ v_{\mathfrak{g}_{2}, \mathfrak{g}_{1}}\right) \subseteq$ $\mathcal{M}\left(G_{\mathfrak{g}_{2}, \infty}, \mathcal{O}_{\mathfrak{f}}\right)^{\operatorname{Ker}\left(\pi_{\mathfrak{g}_{2}, \mathfrak{g}_{1}}\right)}$. But by Proposition 2.1, $\left(\pi_{\mathfrak{g}_{2}, \mathfrak{g}_{1}}\right)^{\sharp}$ is injective and $\operatorname{Im}\left(\pi_{\mathfrak{g}_{2}, \mathfrak{g}_{1}}\right)^{\sharp}=\mathcal{M}\left(G_{\mathfrak{g}_{2}, \infty}, \mathcal{O}_{\mathfrak{f}}\right)^{\operatorname{Ker}\left(\pi_{\mathfrak{g}_{2}, \mathfrak{g}_{1}}\right) \text {. Hence there is a unique map } i_{\mathfrak{g}_{1}}, ~}$ such that the right hand square of (4.1) is commutative. The rest of the proof is identical to [5].
Lemma 4.2. For all $\mathfrak{g} \in \mathcal{I}$, $i_{\mathfrak{g}}$ is an injective pseudo-isomorphism of $\mathcal{O}_{f}[[T]]$-modules.
Proof. Let $\mathfrak{g}_{1} \in \mathcal{I}$, and let $\mathfrak{g}_{2} \in \mathcal{I}^{\prime}$ be such that $\mathfrak{g}_{1} \mid \mathfrak{g}_{2}$. Then $\left(\pi_{\mathfrak{g}_{2}, \mathfrak{g}_{1}}\right)^{\sharp}, v_{\mathfrak{g}_{2}, \mathfrak{g}_{1}}$, and $i_{\mathfrak{g}_{2}}$ are injective, and by (4.1) we deduce the injectivity of $i_{\mathfrak{g}_{1}}$.

By class field theory, one can show that for any prime \mathfrak{q} of $K_{\mathfrak{g}_{2}, \infty}$ above \mathfrak{p}, the number of p-power roots of unity in $\left(K_{\mathfrak{g}_{2}, n}\right)_{\mathfrak{q}}$ is bounded independantly of n (see [17, Lemma 2.1]). Then it follows from [5, I.3.7, Theorem] that $i_{\mathfrak{g}_{2}}$ is a pseudo-isomorphism. Since $\left(\mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}} \mathcal{U}_{\mathfrak{g}_{2}, \infty}\right)^{\operatorname{Ker}\left(\pi_{\mathfrak{g}_{2}, \mathfrak{g}_{1}}\right)}=\mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}} \mathcal{U}_{\mathfrak{g}_{1}, \infty}$ and since $\left(\pi_{\mathfrak{g}_{2}, \mathfrak{g}_{1}}\right)^{\sharp}$ is injective, it follows from (4.1) that $\mathcal{M}\left(G_{\mathfrak{g}_{1}, \infty}, \mathcal{O}_{\mathfrak{f}}\right) / \operatorname{Im}\left(i_{\mathfrak{g}_{1}}\right)$ is a submodule of $\mathcal{M}\left(G_{\mathfrak{g}_{2}, \infty}, \mathcal{O}_{\mathfrak{f}}\right) / \operatorname{Im}\left(i_{\mathfrak{g}_{2}}\right)$, which is pseudo-nul since $i_{\mathfrak{g}_{2}}$ is a pseudo-isomorphism.

An element of the total fraction ring of $\mathcal{M}\left(G_{\mathfrak{g}, \infty}, \mathcal{O}_{L}\right)$ is called an $\mathcal{O}_{L^{-}}$ pseudo-measure. For $\mathfrak{g} \in \mathcal{I}$, let $\mu(\mathfrak{g})$ be the \mathcal{O}_{L}-pseudo-measure on $G_{\mathfrak{g}, \infty}$ defined in [5, II.4.12, Theorem]. It is a measure if $\mathfrak{g} \neq(1)$, and $\alpha \mu(1)$ is a measure for all $\alpha \in \mathcal{J}_{(1)}$, where we write $\mathcal{J}_{(1)}$ for the augmentation ideal of $\mathcal{O}_{\mathfrak{f}}\left[\left[G_{(1), \infty}\right]\right]$. By definition of $\mu(\mathfrak{g})$, we have

$$
\begin{equation*}
i_{\mathfrak{g}}(\psi\langle\mathfrak{g}, \mathfrak{a}\rangle)=\left(\left(\mathfrak{a}, K_{\mathfrak{g}, \infty} / k\right)_{*}-N(\mathfrak{a})\right) \mu(\mathfrak{g}) . \tag{4.2}
\end{equation*}
$$

Moreover, for $\left(\mathfrak{g}_{1}, \mathfrak{g}_{2}\right) \in \mathcal{I}^{2}$ such that $\mathfrak{g}_{1} \mid \mathfrak{g}_{2}$, we have

$$
\begin{equation*}
\left(\pi_{\mathfrak{g}_{2}, \mathfrak{g}_{1}}\right)_{*} \mu\left(\mathfrak{g}_{2}\right)=\prod_{\substack{\mathfrak{l} \text { prime of } \mathcal{O}_{k} \\ \mathfrak{l} \mid \mathfrak{g}_{2} \text { and } \mathfrak{\mathfrak { g } _ { 1 }}}}\left(1-\left(\mathfrak{l}, K_{\mathfrak{g}_{1}, \infty} / k\right)_{*}^{-1}\right) \mu\left(\mathfrak{g}_{1}\right) . \tag{4.3}
\end{equation*}
$$

Lemma 4.3. For $\mathfrak{g} \in \mathcal{I}$, we denote by $\mu_{p \infty}\left(K_{\mathfrak{g}, \infty}\right)$ the group of p-power roots of unity in $K_{\mathfrak{g}, \infty}$. Then we have

$$
i_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}} \bar{\Psi}^{\prime}\left(K_{\mathfrak{g}, \infty}, \mathfrak{g} \mathfrak{p}^{\infty}\right)\right)=\mathcal{J}_{\mathfrak{g}} \mu(\mathfrak{g})
$$

where $\mathcal{J}_{\mathfrak{g}}$ is the annihilator of the $\mathcal{O}_{\mathfrak{f}}\left[\left[G_{\mathfrak{g}, \infty}\right]\right]$-module $\mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}} \mu_{p \infty}\left(K_{\mathfrak{g}, \infty}\right)$ if $\mathfrak{g} \neq(1)$, and where $\mathcal{J}_{(1)}$ is the augmentation ideal of $\mathcal{O}_{\mathfrak{f}}\left[\left[G_{(1), \infty}\right]\right]$.

Proof. We refer the reader to [5, III.1.4].

5. Generation of the characteristic ideal.

For any $\mathfrak{g} \in \mathcal{I}$ such that $\mathfrak{g} \mid \mathfrak{f}$, and any irreducible $\left(\mathbb{C}\right.$ or $\left.\mathbb{C}_{p}\right)$ character χ of $G_{\mathfrak{g}}$, let $\mathfrak{f}_{\chi} \in \mathcal{I}$ be such that the conductor of χ is $\mathfrak{f}_{\chi} \mathfrak{p}^{n}$ for some $n \in \mathbb{N}$. Then χ defines a character on $G_{f_{\chi}}$, which we denote by χ_{0}. We have

$$
\mathcal{O}_{\mathfrak{f}}\left[\left[G_{\mathfrak{g}, \infty}\right]\right]_{\chi} \simeq \mathcal{O}_{\mathfrak{f}}[[\Gamma]] \quad \text { and } \quad \mathcal{M}\left(G_{\mathfrak{g}, \infty}, \mathcal{O}_{\mathfrak{f}}\right)_{\chi} \simeq \mathcal{M}\left(\Gamma, \mathcal{O}_{\mathfrak{f}}\right)
$$

where the isomorphisms are induced by the following maps,

$$
\tilde{\chi}: \mathcal{O}_{\mathfrak{f}}\left[\left[G_{\mathfrak{g}, \infty}\right]\right] \rightarrow \mathcal{O}_{\mathfrak{f}}[[\Gamma]] \quad \text { and } \quad \chi^{\prime}: \mathcal{M}\left(G_{\mathfrak{g}, \infty}, \mathcal{O}_{\mathfrak{f}}\right) \rightarrow \mathcal{M}\left(\Gamma, \mathcal{O}_{\mathfrak{f}}\right)
$$

such that for any $(g, \sigma) \in G_{\mathfrak{g}} \times \Gamma, \tilde{\chi}(\sigma g)=\chi(g) \sigma$, and such that for any $\mu \in \mathcal{M}\left(G_{\mathfrak{g}, \infty}, \mathcal{O}_{\mathfrak{f}}\right), \underline{\chi^{\prime}(\mu)}=\tilde{\chi}(\underline{\mu})$. Moreover, remark that we have

$$
\begin{equation*}
\chi^{\prime}(\mu)=\chi_{0}^{\prime}\left(\left(\pi_{\mathfrak{g}, \mathfrak{f}_{\chi}}\right)_{*} \mu\right) \quad \text { for all } \quad \mu \in \mathcal{M}\left(G_{\mathfrak{g}, \infty}, \mathcal{O}_{\mathfrak{f}}\right) \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\chi^{\prime} \circ\left(\pi_{\mathfrak{g}, \mathfrak{h}}\right)^{\sharp}=0 \quad \text { for all } \mathfrak{h} \in \mathcal{I} \text { such that } \mathfrak{h} \neq \mathfrak{f}_{\chi} \text { and } \mathfrak{h} \mid \mathfrak{f}_{\chi} . \tag{5.2}
\end{equation*}
$$

For any finite group \mathcal{G}, any irreducible \mathbb{C}_{p}-character χ of \mathcal{G}, and any morphism $f: M \rightarrow N$ of $\mathcal{O}_{\mathfrak{f}}[\mathcal{G}]$-modules, we denote by $f_{\chi}: M_{\chi} \rightarrow N_{\chi}$ the morphism defined by f. For any $x \in M$, we write x_{χ} for the canonical image of x in M_{χ}.

Lemma 5.1. Let $\mathfrak{g} \in \mathcal{I}$ be such that $\mathfrak{g} \mid \mathfrak{f}$. Let $\chi \neq 1$ be an irreducible \mathbb{C}_{p}-character of $G_{\mathfrak{g}}$. Then

$$
\left(i_{\mathfrak{g}}\right)_{\chi}\left(\left(\mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}} \mathcal{C}_{\mathfrak{g}, \infty}\right)_{\chi}\right) \subseteq\left(i_{\mathfrak{f}_{\chi}}\right)_{\chi_{0}}\left(\left(\mathcal{O}_{\mathfrak{f}} \widehat{\mathbb{Z}}_{\mathbb{Z}_{p}} \bar{\Psi}^{\prime}\left(K_{\mathfrak{f}_{\chi}, \infty}, \mathfrak{f}_{\chi} \mathfrak{p}^{\infty}\right)\right)_{\chi 0}\right)
$$

and the quotient is a pseudo-null $\mathcal{O}_{\mathfrak{f}}[[T]]$-module.
Proof. Let $\mathfrak{h} \in \mathcal{I}$ be such that $\mathfrak{h} \mid \mathfrak{g}$, and let $x \in \bar{\Psi}^{\prime}\left(K_{\mathfrak{g}, \infty}, \mathfrak{h} \mathfrak{p}^{\infty}\right)$. From Remark 1, there is $y \in \bar{\Psi}^{\prime}\left(K_{\mathfrak{h} \wedge \mathfrak{f}_{\chi}, \infty},\left(\mathfrak{h} \wedge \mathfrak{f}_{\chi}\right) \mathfrak{p}^{\infty}\right)$ such that $N_{\mathfrak{g}, \mathfrak{f}_{\chi}}(x)=$
$v_{\mathfrak{f}_{\chi}, \mathfrak{h} \wedge \mathfrak{f}_{\chi}}(y)$. From (5.1), and then from (4.1), one has

$$
\begin{align*}
\left(i_{\mathfrak{g}}\right)_{\chi}\left(x_{\chi}\right)=\chi^{\prime} \circ i_{\mathfrak{g}}(x) & =\chi_{0}^{\prime} \circ\left(\pi_{\mathfrak{g}, \mathfrak{f}_{\chi}}\right)_{*} \circ i_{\mathfrak{g}}(x) \\
& =\chi_{0}^{\prime} \circ i_{\mathfrak{f}_{\chi}} \circ N_{\mathfrak{g}, \mathfrak{f}_{\chi}}(x) \\
& =\chi_{0}^{\prime} \circ i_{\mathfrak{f}_{\chi}} \circ v_{\mathfrak{f}_{\chi}, \mathfrak{h} \wedge \mathfrak{f}_{\chi}}(y) \\
& =\chi_{0}^{\prime} \circ\left(\pi_{\mathfrak{f}_{\chi}, \mathfrak{h} \wedge \mathfrak{f}_{\chi}}\right)^{\#} \circ i_{\mathfrak{h} \wedge \mathfrak{f}_{\chi}}(y) . \tag{5.3}
\end{align*}
$$

From (5.2) and (5.3), we deduce $\left(i_{\mathfrak{g}}\right)_{\chi}\left(x_{\chi}\right)=0$ if $\mathfrak{f}_{\chi} \nmid \mathfrak{h}$, and $\left(i_{\mathfrak{g}}\right)_{\chi}\left(x_{\chi}\right)=$ $\chi_{0}^{\prime} \circ i_{\mathfrak{f}_{\chi}}(y)=\left(i_{\mathfrak{f}_{\chi}}\right)_{\chi_{0}}\left(y_{\chi_{0}}\right)$ if $\mathfrak{f}_{\chi} \mid \mathfrak{h}$. By Remark 2 , this states the inclusion $\mathcal{B} \subseteq \mathcal{A}$, where we set

$$
\mathcal{A}:=\left(i_{\mathfrak{f}_{\chi}}\right)_{\chi_{0}}\left(\left(\mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}} \bar{\Psi}^{\prime}\left(K_{\mathfrak{f}_{\chi}, \infty}, \mathfrak{f}_{\chi} \mathfrak{p}^{\infty}\right)\right)_{\chi_{0}}\right)
$$

and

$$
\mathcal{B}:=\left(i_{\mathfrak{g}}\right)_{\chi}\left(\left(\mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}} \mathcal{C}_{\mathfrak{g}, \infty}\right)_{\chi}\right) .
$$

Let $m:=\left[k\left(\mathfrak{g p}^{\infty}\right): k\left(\mathfrak{f}_{\chi} \mathfrak{p}^{\infty}\right)\right]$, and let $x \in \bar{\Psi}^{\prime}\left(K_{\mathfrak{f}_{\chi}, \infty}, \mathfrak{f}_{\chi} \mathfrak{p}^{\infty}\right)$. Then $m x=$ $N_{\mathfrak{g}, \mathfrak{f}_{\chi}} \circ v_{\mathfrak{g}, \mathfrak{f}_{\chi}}(x)$, and from (4.1) and (5.1), we obtain

$$
\begin{aligned}
m\left(i_{\mathfrak{f}_{\chi}}\right)_{\chi_{0}}\left(x_{\chi_{0}}\right) & =\chi_{0}^{\prime} \circ i_{\mathfrak{f}_{\chi}} \circ N_{\mathfrak{g}, \mathfrak{f}_{\chi}} \circ v_{\mathfrak{g}, \mathfrak{f}_{\chi}}(x) \\
& =\chi_{0}^{\prime} \circ\left(\pi_{\mathfrak{g}, \mathfrak{f}_{\chi}}\right)_{*} \circ i_{\mathfrak{g}} \circ v_{\mathfrak{g}, \mathfrak{f}_{\chi}}(x) \\
& =\chi^{\prime} \circ i_{\mathfrak{g}} \circ v_{\mathfrak{g}, \mathfrak{f}_{\chi}}(x) \\
& =\left(i_{\mathfrak{g}}\right)_{\chi}\left(v_{\mathfrak{g}, f_{\chi}}(x)_{\chi}\right),
\end{aligned}
$$

and we deduce that m annihilates $\mathcal{A} / \mathcal{B}$. Let $\alpha:=\prod_{\substack{\mathfrak{l} \text { prime of } \mathcal{O}_{k} \\ \mathfrak{l | g} \text { and } \mathfrak{H f} \chi}}\left(1-\tilde{\chi}_{0}\left(\sigma_{\mathfrak{l}}^{-1}\right)\right)$, where $\sigma_{\mathfrak{l}}$ is the Fröbenius of \mathfrak{l} in $K_{\mathfrak{f}_{\chi}, \infty} / k$. Let $x \in \bar{\Psi}^{\prime}\left(K_{\mathfrak{f} \chi}, \infty, \mathfrak{f}_{\chi} \mathfrak{p}^{\infty}\right)$. From (3.3), there is $y \in \bar{\Psi}^{\prime}\left(K_{\mathfrak{g}, \infty}, \mathfrak{g p}^{\infty}\right)$ such that $\alpha x=N_{\mathfrak{g}, \mathfrak{f}_{\chi}}(y)$. Then by (4.1) and (5.1), we have

$$
\begin{aligned}
\alpha\left(i_{\mathfrak{f}_{\chi}}\right)_{\chi_{0}}\left(x_{\chi_{0}}\right) & =\chi_{0}^{\prime} \circ i_{\mathfrak{f}_{\chi}} \circ N_{\mathfrak{g}, \mathfrak{f}_{\chi}}(y) \\
& =\chi_{0}^{\prime} \circ\left(\pi_{\mathfrak{g}, \mathfrak{f}_{\chi}}\right)_{*} \circ i_{\mathfrak{g}}(y) \\
& =\chi^{\prime} \circ i_{\mathfrak{g}}(y) \\
& =\left(i_{\mathfrak{g}}\right)_{\chi}\left(y_{\chi}\right) .
\end{aligned}
$$

Hence α annihilates $\mathcal{A} / \mathcal{B}$. As a particular case, if there is no maximal ideal \mathfrak{l} of \mathcal{O}_{k} such that $\mathfrak{l | g}$ and $\mathfrak{l} \nmid \mathfrak{f}_{\chi}$, then $\alpha=1, \mathcal{A}=\mathcal{B}$, and Lemma 5.1 is
proved in this case. Now assume that there is a maximal ideal \mathfrak{l} of \mathcal{O}_{k} such that $\mathfrak{l} \mid \mathfrak{g}$ and $\mathfrak{l} \nmid \mathfrak{f}_{\chi}$. By class field theory, the decomposition group of \mathfrak{l} in $K_{\mathfrak{f}_{\chi}, \infty} / k$ has a finite index in $\operatorname{Gal}\left(K_{\mathfrak{f}_{\chi}, \infty} / k\right)$. Hence $\sigma_{\mathfrak{l}} \notin G_{\mathfrak{f}_{\chi}}$, and there are a topological generator $\tilde{\gamma}$ of $\Gamma, n \in \mathbb{N}$, and $g \in G_{\mathfrak{f}_{\chi}}$ such that $\sigma_{\mathfrak{l}}^{-1}=g \tilde{\gamma}^{p^{n}}$. Then

$$
\begin{equation*}
1-\tilde{\chi}_{0}\left(\sigma_{\mathfrak{l}}^{-1}\right)=1-\chi_{0}(g) \tilde{\gamma}^{p^{n}}=1-\chi_{0}(g) \sum_{i=0}^{p^{n}}\binom{p^{n}}{i} \tilde{T}^{j} \tag{5.4}
\end{equation*}
$$

where $\tilde{T}:=\tilde{\gamma}-1$. Since m and $\chi_{0}(g)$ are coprime, and since $-\chi_{0}(g)$ is the coefficient of $\tilde{T}^{p^{n}}$ in the decomposition (5.4), we deduce that m and $1-\tilde{\chi}_{0}\left(\sigma_{\mathfrak{l}}^{-1}\right)$ are coprime. Then m and α are coprime, and annihilate $\mathcal{A} / \mathcal{B}$, so that Lemma 5.1 follows.
Lemma 5.2. Let $\mathfrak{g} \in \mathcal{I}$ be such that $\mathfrak{g} \mid \mathfrak{f}$. Let $\chi \neq 1$ be an irreducible \mathbb{C}_{p}-character of $G_{\mathfrak{g}}$.
(i) If $p \neq 2$ or if $w_{\mathfrak{g}}=w_{\mathfrak{f}_{\chi}}$, then $\operatorname{Im}\left(i_{\mathfrak{g}}\right)_{\chi}=\operatorname{Im}\left(i_{\mathfrak{f}_{\chi}}\right)_{\chi_{0}}$.
(ii) If $p=2$, then $\operatorname{Im}\left(i_{\mathfrak{g}}\right)_{\chi} \subseteq \operatorname{Im}\left(i_{\mathfrak{f}_{\chi}}\right)_{\chi_{0}}$, and the quotient is annihilated by 2.
Proof. For $x \in \mathcal{U}_{\mathfrak{g}, \infty}$, by (5.1) and (4.1), we have

$$
\begin{align*}
\left(i_{\mathfrak{g}}\right)_{\chi}\left(x_{\chi}\right)=\chi_{0}^{\prime} \circ\left(\pi_{\mathfrak{g}, \mathfrak{f}_{\chi}}\right)_{*} \circ i_{\mathfrak{g}}(x) & =\chi_{0}^{\prime} \circ i_{\mathfrak{f}_{\chi}} \circ N_{\mathfrak{g}, \mathfrak{f}_{\chi}}(x) \tag{5.5}\\
& =\left(i_{\mathfrak{f}_{\chi}}\right)_{\chi_{0}}\left(N_{\mathfrak{g}, \mathfrak{f}_{\chi}}(x)_{\chi_{0}}\right) .
\end{align*}
$$

We deduce $\operatorname{Im}\left(i_{\mathfrak{g}}\right)_{\chi} \subseteq \operatorname{Im}\left(i_{\mathfrak{f}_{\chi}}\right)_{\chi_{0}}$. For n large enough, the ramification index of the primes above \mathfrak{p} in $K_{\mathfrak{g}, n} / K_{\mathfrak{f}_{\chi}, n}$ is $w_{\mathfrak{f}_{\chi}} w_{\mathfrak{g}}^{-1}$. If $p \neq 2$, then $w_{\mathfrak{f}_{\chi}} w_{\mathfrak{g}}^{-1}$ is prime to p. Hence in case (i), $K_{\mathfrak{g}, n} / K_{\mathfrak{f}_{\chi}, n}$ is tamely ramified. Then $N_{\mathfrak{g}, \mathfrak{f}_{\chi}}$ is a surjection from $\mathcal{U}_{\mathfrak{g}, \infty}$ onto $\mathcal{U}_{\mathfrak{f}_{\chi}, \infty}$, and we deduce $\operatorname{Im}\left(i_{\mathfrak{g}}\right)_{\chi} \supseteq \operatorname{Im}\left(i_{\mathfrak{f}_{\chi}}\right)_{\chi_{0}}$ from (5.5). If $p=2, \mathcal{U}_{\mathfrak{f} \chi}, \infty / N_{\mathfrak{g}, \mathfrak{f}_{\chi}}\left(\mathcal{U}_{\mathfrak{g}, \infty}\right)$ is annihilated by $w_{\mathfrak{f}_{\chi}} w_{\mathfrak{g}}^{-1}$ which is 1 or 2 , and we deduce (ii) from (5.5).

For $p \neq 2$, Theorems 5.1 and 5.2 below were already proved by de Shalit in [5, III.1.10].
Theorem 5.1. Let $\mathfrak{g} \in \mathcal{I}$ be such that $\mathfrak{g} \mid \mathfrak{f}$. Let \mathfrak{u} be a uniformizer of $\mathcal{O}_{\mathfrak{f}}$. Let $\chi \neq 1$ be an irreducible \mathbb{C}_{p}-character of $G_{\mathfrak{g}}$.
(i) If $p \neq 2$ or if $w_{\mathfrak{g}}=w_{\mathfrak{f}}$, then $\operatorname{char}_{\mathcal{O}_{\mathfrak{f}}[[T]]}\left(\mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}}\left(\mathcal{U}_{\mathfrak{g}, \infty} / \mathcal{C}_{\mathfrak{g}, \infty}\right)\right)_{\chi}$ is generated by $\tilde{\chi}_{0}\left(\underline{\mu\left(\mathfrak{f}_{\chi}\right)}\right)$.
(ii) If $p=2$, then the ideal $\operatorname{char}_{\mathcal{O}_{\mathfrak{f}}[[T]]}\left(\mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}}\left(\mathcal{U}_{\mathfrak{g}, \infty} / \mathcal{C}_{\mathfrak{g}, \infty}\right)\right)_{\chi}$ is generated by $\mathfrak{u}^{-m_{\chi}} \tilde{\chi}_{0}\left(\underline{\mu\left(\mathfrak{f}_{\chi}\right)}\right)$, for some $m_{\chi} \in \mathbb{N}$.
(In case $\mathfrak{f}_{\chi}=(1)$, we have expanded $\tilde{\chi}_{0}$ to the total fraction ring of $\mathcal{O}_{\mathfrak{f}}\left[\left[G_{(1), \infty}\right]\right]$ and to the fraction field of $\mathcal{O}_{f}[[\Gamma]]$. We still have $\tilde{\chi}_{0}(\underline{\mu(1)}) \in$ $\left.\mathcal{O}_{\mathrm{f}}[[\Gamma]].\right)$

Proof. Let us set $\tilde{\mathcal{C}_{\mathfrak{g}}}:=\left(\mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}} \mathcal{C}_{\mathfrak{g}, \infty}\right)_{\chi}$. We have the tautological exact sequence below,

$$
\begin{align*}
0 \rightarrow \operatorname{Im}\left(i_{\mathfrak{g}}\right)_{\chi} /\left(i_{\mathfrak{g}}\right)_{\chi}\left(\tilde{\mathcal{C}_{\mathfrak{g}}}\right) \rightarrow \operatorname{Im}\left(i_{\mathfrak{f} \chi}\right)_{\chi_{0}} & /\left(i_{\mathfrak{g}}\right)_{\chi}\left(\tilde{\mathcal{C}}_{\mathfrak{g}}\right) \tag{5.6}\\
& \rightarrow \operatorname{Im}\left(i_{\mathfrak{f}_{\chi}}\right)_{\chi_{0}} / \operatorname{Im}\left(i_{\mathfrak{g}}\right)_{\chi} \rightarrow 0
\end{align*}
$$

From Lemma 5.2, we deduce the existence of $m_{\chi} \in \mathbb{N}$ such that

$$
\begin{equation*}
\operatorname{char}_{\mathcal{O}_{\mathfrak{f}}[[T]]}\left(\operatorname{Im}\left(i_{\mathfrak{f}_{\chi}}\right)_{\chi_{0}} / \operatorname{Im}\left(i_{\mathfrak{g}}\right)_{\chi}\right)=\left(\mathfrak{u}^{m_{\chi}}\right) \tag{5.7}
\end{equation*}
$$

with $m_{\chi}=0$ in case (i). Since $\operatorname{Im}\left(i_{\mathfrak{g}}\right)_{\chi} /\left(i_{\mathfrak{g}}\right)_{\chi}\left(\tilde{\mathcal{C}}_{\mathfrak{g}}\right) \simeq\left(\mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}}\left(\mathcal{U}_{\mathfrak{g}, \infty} / \mathcal{C}_{\mathfrak{g}, \infty}\right)\right)_{\chi}$, from (5.6) and (5.7), we deduce that

$$
\begin{align*}
& \operatorname{char}_{\mathcal{O}_{\mathfrak{f}}[[T]]}\left(\mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}}\left(\mathcal{U}_{\mathfrak{g}, \infty} / \mathcal{C}_{\mathfrak{g}, \infty}\right)\right)_{\chi} \tag{5.8}\\
&=\mathfrak{u}^{-m_{\chi}} \operatorname{char}_{\mathcal{O}_{\mathfrak{f}}[[T]]}\left(\operatorname{Im}\left(i_{\mathfrak{f}_{\chi}}\right)_{\chi_{0}} /\left(i_{\mathfrak{g}}\right)_{\chi}\left(\tilde{\mathcal{C}}_{\mathfrak{g}}\right)\right) .
\end{align*}
$$

We set $\tilde{\Psi}:=\left(\mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}} \bar{\Psi}^{\prime}\left(K_{\mathfrak{f} \chi}, \infty, \mathfrak{f}_{\chi} \mathfrak{p}^{\infty}\right)\right)_{\chi_{0}}$. From (5.8) and Lemma 5.1, we deduce

$$
\begin{align*}
& \operatorname{char}_{\mathcal{O}_{\mathfrak{f}}[[T]]}\left(\mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}}\left(\mathcal{U}_{\mathfrak{g}, \infty} / \mathcal{C}_{\mathfrak{g}, \infty}\right)\right)_{\chi} \tag{5.9}\\
&=\mathfrak{u}^{-m_{\chi}} \operatorname{char}_{\mathcal{O}_{\mathfrak{f}}[[T]]}\left(\operatorname{Im}\left(i_{\mathfrak{f}_{\chi}}\right)_{\chi_{0}} /\left(i_{\mathfrak{f}_{\chi}}\right)_{\chi_{0}}(\tilde{\Psi})\right) .
\end{align*}
$$

Since $\operatorname{Im}\left(i_{\mathfrak{f}_{\chi}}\right)_{\chi_{0}} /\left(i_{\mathfrak{f}_{\chi}}\right)_{\chi_{0}}(\tilde{\Psi}) \simeq\left(\operatorname{Im}\left(i_{f_{\chi}}\right) /\left(i_{\mathfrak{f}_{\chi}}\right)(\tilde{\Psi})\right)_{\chi_{0}}$ and since $i_{\mathfrak{f}_{\chi}}$ is a pseudo-isomorphism, we deduce from (5.9) and Lemma 4.3 that

$$
\begin{align*}
\operatorname{char}_{\left.\mathcal{O}_{\mathfrak{f}}[[T]]\right]} & \left(\mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}}\left(\mathcal{U}_{\mathfrak{g}, \infty} / \mathcal{C}_{\mathfrak{g}, \infty}\right)\right)_{\chi} \tag{5.10}\\
& =\mathfrak{u}^{-m_{\chi}} \operatorname{char}_{\mathcal{O}_{\mathfrak{f}}[[T]]}\left(\operatorname{Im}\left(i_{\mathfrak{f}_{\chi}}\right) /\left(i_{\mathfrak{f} \chi}\right)(\tilde{\Psi})\right)_{\chi_{0}} \\
& =\mathfrak{u}^{-m_{\chi}} \operatorname{char}_{\mathcal{O}_{\mathfrak{f}}[[T]]}\left(\mathcal{M}\left(G_{\mathfrak{f}, \infty}, \mathcal{O}_{\mathfrak{f}}\right) / \mathcal{J}_{\mathfrak{f}} \mu\left(\mathfrak{f}_{\chi}\right)\right)_{\chi_{0}} \\
& =\mathfrak{u}^{-m_{\chi}} \operatorname{char}_{\mathcal{O}_{\mathfrak{f}}[[T]]}\left(\mathcal{M}\left(\Gamma, \mathcal{O}_{\mathfrak{f}}\right) / \chi_{0}^{\prime}\left(\mathcal{J}_{\mathfrak{f}} \mu\left(\mathfrak{f}_{\chi}\right)\right)\right) .
\end{align*}
$$

First we assume that $\mathfrak{f}_{\chi} \neq(1)$. Then $\chi_{0}^{\prime}\left(\mu\left(\mathfrak{f}_{\chi}\right)\right) \mathcal{M}\left(\Gamma, \mathcal{O}_{\mathfrak{f}}\right) / \chi_{0}^{\prime}\left(\mathcal{J}_{f_{\chi}} \mu\left(\mathfrak{f}_{\chi}\right)\right)$ is isomorphic to $\left(\mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}} \mu_{p^{\infty}}\left(K_{\mathfrak{f}_{\chi}, \infty}\right)\right)_{\chi_{0}}$, hence pseudo-nul since $\mu_{p^{\infty}}\left(K_{\mathfrak{f}_{\chi}, \infty}\right)$
is finite. Then from (5.10) we deduce

$$
\begin{aligned}
\operatorname{char}_{\mathcal{O}_{\mathfrak{f}}[[T]]} & \left(\mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}}\left(\mathcal{U}_{\mathfrak{g}, \infty} / \mathcal{C}_{\mathfrak{g}, \infty}\right)\right)_{\chi} \\
& =\mathfrak{u}^{-m_{\chi}} \operatorname{char}_{\left.\mathcal{O}_{\mathfrak{f}}[[T]]\right]}\left(\mathcal{M}\left(\Gamma, \mathcal{O}_{\mathfrak{f}}\right) / \chi_{0}^{\prime}\left(\mu\left(\mathfrak{f}_{\chi}\right)\right) \mathcal{M}\left(\Gamma, \mathcal{O}_{\mathfrak{f}}\right)\right) \\
& =\mathfrak{u}^{-m_{\chi}} \tilde{\chi}_{0}\left(\underline{\mu\left(\mathfrak{f}_{\chi}\right)}\right) \mathcal{O}_{\mathfrak{f}}[[T]]
\end{aligned}
$$

and Theorem 5.1 follows in this case. Now assume $\mathfrak{f}_{\chi}=(1)$. Then we expand χ_{0}^{\prime} to the total faction ring of $\mathcal{M}\left(G_{(1), \infty}, \mathcal{O}_{f}\right)$ and to the fraction field of $\mathcal{M}\left(\Gamma, \mathcal{O}_{\mathfrak{f}}\right)$. There is $\sigma \in G_{\mathfrak{g}}$ such that $\chi(\sigma) \neq 1$. Then

$$
\chi_{0}^{\prime}(\mu(1)) \mathcal{M}\left(\Gamma, \mathcal{O}_{\mathfrak{f}}\right) / \chi_{0}^{\prime}\left(\mathcal{J}_{(1)} \mu(1)\right)
$$

is pseudo-nul, annihilated by $1-\chi(\sigma)$ and T. Since we have

$$
\chi_{0}^{\prime}\left(\mathcal{J}_{(1)} \mu(1)\right) \subseteq \mathcal{M}\left(\Gamma, \mathcal{O}_{\mathfrak{f}}\right)
$$

we deduce the inclusion $\chi_{0}^{\prime}(\mu(1)) \mathcal{M}\left(\Gamma, \mathcal{O}_{\mathfrak{f}}\right) \subseteq \mathcal{M}\left(\Gamma, \mathcal{O}_{\mathfrak{f}}\right)$ and from (5.10) we obtain

$$
\begin{aligned}
\operatorname{char}_{\left.\left.\mathcal{O}_{\mathfrak{f}}[T]\right]\right]}\left(\mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}}\right. & \left.\left(\mathcal{U}_{\mathfrak{g}, \infty} / \mathcal{C}_{\mathfrak{g}, \infty}\right)\right)_{\chi} \\
& =\mathfrak{u}^{-m_{\chi}} \operatorname{char}_{\mathcal{O}_{\mathfrak{f}}[[T]]}\left(\mathcal{M}\left(\Gamma, \mathcal{O}_{\mathfrak{f}}\right) / \chi_{0}^{\prime}(\mu(1)) \mathcal{M}\left(\Gamma, \mathcal{O}_{\mathfrak{f}}\right)\right)
\end{aligned}
$$

(i) and (ii) follow immediately in this case.

Theorem 5.2. Let $\mathfrak{g} \in \mathcal{I}$ be such that $\mathfrak{g} \mid \mathfrak{f}$. Let χ be the trivial character on $G_{\mathfrak{g}}$.
(i) If $p \neq 2$ or if $w_{\mathfrak{g}}=|\mu(k)|$, then $\operatorname{char}_{\mathcal{O}_{\mathfrak{f}}[[T]]}\left(\mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}}\left(\mathcal{U}_{\mathfrak{g}, \infty} / \mathcal{C}_{\mathfrak{g}, \infty}\right)\right)_{\chi}$ is generated by $\tilde{\chi}_{0}(T \underline{\mu(1)})$.
(ii) If $p=2$, then the ideal $\operatorname{char}_{\mathcal{O}_{\mathfrak{f}}[[T]]}\left(\mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}}\left(\mathcal{U}_{\mathfrak{g}, \infty} / \mathcal{C}_{\mathfrak{g}, \infty}\right)\right)_{\chi}$ is generated by $\mathfrak{u}^{-m_{\chi}} \tilde{\chi}_{0}(T \underline{\mu(1)})$, for some $m_{\chi} \in \mathbb{N}$.

Proof. As in the proof of Theorem 5.1, we have
(5.11) $\operatorname{char}_{\mathcal{O}_{\mathfrak{f}}[[T]]}\left(\mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}}\left(\mathcal{U}_{\mathfrak{g}, \infty} / \mathcal{C}_{\mathfrak{g}, \infty}\right)\right)_{\chi}$

$$
=\mathfrak{u}^{-m_{\chi}} \operatorname{char}_{\mathcal{O}_{\mathfrak{f}}[[T]]}\left(\mathcal{M}\left(\Gamma, \mathcal{O}_{\mathfrak{f}}\right) / \chi_{0}^{\prime}\left(\mathcal{J}_{(1)} \mu(1)\right)\right)
$$

where $m_{\chi} \in \mathbb{N}$ is zero in case (i). But $\chi_{0}^{\prime}\left(\mathcal{J}_{(1)} \mu(1)\right)=\chi_{0}^{\prime}(T \mu(1)) \mathcal{M}\left(\Gamma, \mathcal{O}_{\mathfrak{f}}\right)$, and the theorem follows.

6. Finiteness of invariants and coinvariants.

For any $\mathfrak{h} \in \mathcal{I}$, we write $\mathrm{L}_{p, \mathfrak{h}}$ for the p-adic L-function of k with modulus \mathfrak{h}, as defined in [5, II.4.16]. It is the map defined on the set of all continuous
group morphisms ξ from $\operatorname{Gal}\left(K_{\mathfrak{h}, \infty} / k\right)$ to $\mathbb{C}_{p}^{\times}($with $\xi \neq 1$ if $\mathfrak{h}=(1))$, such that

$$
\begin{equation*}
\mathrm{L}_{p, \mathfrak{h}}(\xi)=\int \xi(\sigma)^{-1} \cdot \mathrm{~d} \mu(\mathfrak{h})(\sigma) \tag{6.1}
\end{equation*}
$$

Let $n \in \mathbb{N}$, and let χ be an irreducible \mathbb{C}_{p}-character on $\operatorname{Gal}\left(k\left(\mathfrak{h} \mathfrak{p}^{n}\right) / k\right)$ (with $\chi \neq 1$ if $\mathfrak{h}=(1)$). We write F_{χ} for the subfield of $k\left(\mathfrak{h p}{ }^{n}\right)$ fixed by $\operatorname{Ker}(\chi)$, and we write χ_{pr} for the character on $\operatorname{Gal}\left(F_{\chi} / k\right)$ defined by χ. By inflation we can consider χ as a group morphism $\operatorname{Gal}\left(K_{\mathfrak{h}, \infty} / k\right) \rightarrow \mathbb{C}_{p}^{\times}$, so that the notation $\mathrm{L}_{p, \mathfrak{h}}(\chi)$ makes sense. As in [5, II.5.2], if $n>0$ we set

$$
\mathrm{L}_{p, \mathfrak{h p}^{n}}(\chi):= \begin{cases}\left(1-\chi_{\mathrm{pr}}\left(\mathfrak{p}, F_{\chi} / k\right)\right) \mathrm{L}_{p, \mathfrak{h}}(\chi) & \text { if } \mathfrak{p} \text { is unramified in } F_{\chi}, \tag{6.2}\\ \mathrm{L}_{p, \mathfrak{h}}(\chi) & \text { if } \mathfrak{p} \text { is ramified in } F_{\chi} .\end{cases}
$$

Lemma 6.1. Let $\mathfrak{g} \notin\{(0),(1)\}$ be an ideal of \mathcal{O}_{k}, and let χ be an irreducible \mathbb{C}_{p}-character on $\operatorname{Gal}(k(\mathfrak{g}) / k)$. If $\chi \neq 1$ and if none of the prime ideals dividing \mathfrak{g} are totally split in F_{χ} / k, then $\mathrm{L}_{p, \mathfrak{g}}(\chi) \neq 0$. If $\chi=1$, if \mathfrak{g} is a power of a prime ideal, and if $\mathfrak{p} \nmid \mathfrak{g}$, then $\mathrm{L}_{p, \mathfrak{g}}(\chi) \neq 0$.

Proof. We set $H:=\operatorname{Gal}(k(\mathfrak{g}) / k)$. For all maximal ideal \mathfrak{r} of $\mathcal{O}_{k(\mathfrak{g})}$, let us denote by $v_{\mathfrak{r}}$ the normalized valuation at \mathfrak{r}. Let $\mathfrak{q} \in\{\mathfrak{p}, \overline{\mathfrak{p}}\}$ be such that $v_{\mathfrak{r}}\left(\varphi_{\mathfrak{g}}(1)\right)=0$ for all maximal ideal \mathfrak{r} of $\mathcal{O}_{k(\mathfrak{g})}$ not lying above \mathfrak{q}. Let $U \subset k(\mathfrak{g})^{\times}$be the subgroup of all the numbers $x \in k(\mathfrak{g})^{\times}$verifying the two following conditions,

- $v_{\mathfrak{r}}(x)=0$ for all maximal ideal \mathfrak{r} of $\mathcal{O}_{k(\mathfrak{g})}$ not lying above \mathfrak{q},
- $v_{\mathfrak{r}}(x)=v_{\mathfrak{s}}(x)$ for all maximal ideals \mathfrak{r} and \mathfrak{s} of $\mathcal{O}_{k(\mathfrak{g})}$ above \mathfrak{q}.

Using Dirichlet's theorem and the product formula, we see that $\mathbb{Q} \otimes_{\mathbb{Z}} U \simeq$ $\mathbb{Q}[H]$. Hence we can fix $u \in U$ such that $\mathbb{Q} \otimes_{\mathbb{Z}} U$ is freely generated by $1 \otimes u$ over $\mathbb{Q}[H]$. Let us fix an embedding $\iota_{p}: k^{\text {alg }} \hookrightarrow \mathbb{C}_{p}$. We define the morphism of $k^{\text {alg }}[H]$-modules below,

$$
\ell_{p}: k^{\mathrm{alg}} \otimes_{\mathbb{Z}} U \rightarrow \mathbb{C}_{p}[H], \quad a \otimes x \mapsto \iota_{p}(a) \sum_{\sigma \in H} \log _{p}\left(\iota_{p}\left(x^{\sigma}\right)\right) \sigma^{-1}
$$

where $\log _{p}$ is the p-adic logarithm, as defined in $[8, \S 4]$. Let us show that ℓ_{p} is injective on $k^{\text {alg }} \otimes_{\mathbb{Z}} U$. We assume that it is not injective, and a contradiction will arise. There is an irreducible \mathbb{C}_{p}-character ξ of H such that $e_{\xi} \ell_{p}(1 \otimes u)=0$, and then the family $\left(\log _{p}\left(\iota_{p}\left(u^{\sigma}\right)\right)\right)_{\sigma \in H}$ is not linearly independant over $\iota_{p}\left(k^{\text {alg }}\right)$. By a theorem of Brumer [3, Theorem 1], we deduce that there are integers $\lambda_{\sigma} \in \mathbb{Z}, \sigma \in H$, with $\lambda_{\sigma_{0}} \neq 0$ for some $\sigma_{0} \in H$, such that

$$
\log _{p}\left(\iota_{p}\left(\prod_{\sigma \in H} u^{\lambda_{\sigma} \sigma}\right)\right)=\sum_{\sigma \in H} \lambda_{\sigma} \log _{p}\left(\iota_{p}\left(u^{\sigma}\right)\right)=0 .
$$

It is well known that $\operatorname{Ker}\left(\log _{p}\right)$ is generated by the roots of powers of p, hence $\prod_{\sigma \in H} u^{\lambda_{\sigma} \sigma}$ is a root of unity. Then we must have $\lambda_{\sigma}=0$ for all $\sigma \in H$, which contradicts $\lambda_{\sigma_{0}} \neq 0$. Thus we have verified the injectivity of ℓ_{p}. Now assume $\mathrm{L}_{p, \mathfrak{g}}(\chi)=0$. From the p-adic version of the Kronecker limit formula $\left[5\right.$, II.5.2, Theorem], we deduce that $e_{\chi^{-1} \ell_{p}}\left(1 \otimes \varphi_{\mathfrak{g}}(1)\right)=0$ in $\mathbb{C}_{p}[H]$. Then

$$
\begin{equation*}
e_{\chi^{-1}}\left(1 \otimes \varphi_{\mathfrak{g}}(1)\right)=0 \quad \text { in } \quad k^{\text {alg }} \otimes_{\mathbb{Z}} U \tag{6.3}
\end{equation*}
$$

where χ is identified to a group morphism $H \rightarrow k^{\text {alg }}$ via ι_{p}. If $\chi \neq 1$, then from [12, Théorème 10] we deduce the existence of a maximal ideal \mathfrak{r} of \mathcal{O}_{k}, unramified in F_{χ} / k, such that $\mathfrak{r} \mid \mathfrak{g}$, and such that $\chi_{\text {pr }}\left(\mathfrak{r}, F_{\chi} / k\right)=1$ (hence totally split in $\left.F_{\chi} / k\right)$. If $\chi=1$, from (6.3) we deduce $N_{k(\mathfrak{g}) / k}\left(\varphi_{\mathfrak{g}}(1)\right) \in \mu(k)$. Then \mathfrak{g} must be divisible by at least two distinct prime ideals in virtue of (3.2).

Theorem 6.1. For all $n \in \mathbb{N}$, the module of Γ_{n}-invariants and the module of Γ_{n}-coinvariants of $\mathcal{U}_{\infty} / \mathcal{C}_{\infty}$ are finite.

Proof. By [10, p. 254, Exercise 3], it is sufficient to verify that
$\operatorname{char}_{\mathbb{Z}_{p}[[T]]}\left(\mathcal{U}_{\infty} / \mathcal{C}_{\infty}\right)$ is prime to $\left((1+T)^{p^{n}}-1\right)$ in $\mathbb{Z}_{p}[[T]]$, for all $n \in \mathbb{N}$.
For n large enough, $K_{\mathfrak{f}, n} / K_{n}$ is tamely ramified if $p \neq 2$, and if $p=2$ the ramification index is 1 or 2 . Hence we deduce that the cokernel of the norm maps $\mathcal{U}_{\mathfrak{f}, \infty} \rightarrow \mathcal{U}_{\infty}$ and $\mathcal{U}_{\mathfrak{f}, \infty} / \mathcal{C}_{\mathfrak{f}, \infty} \rightarrow \mathcal{U}_{\infty} / \mathcal{C}_{\infty}$ are annihilated by 2 . Then we have

$$
\begin{equation*}
\operatorname{char}_{\left.\mathbb{Z}_{p}[T T]\right]}\left(\mathcal{U}_{\infty} / \mathcal{C}_{\infty}\right) \quad \text { divides } \quad 2^{a} \operatorname{char}_{\left.\mathbb{Z}_{p}[T T]\right]}\left(\mathcal{U}_{\mathfrak{f}, \infty} / \mathcal{C}_{\mathfrak{f}, \infty}\right) \tag{6.5}
\end{equation*}
$$

for some $a \in \mathbb{N}$. By (6.5), we are reduced to prove (6.4) in the case $K_{\infty}=$ $K_{\mathfrak{f}, \infty}$. Then by (1.1), in order to verify (6.4) we only have to show that the ideal $\operatorname{char}_{\left.\mathcal{O}_{\mathfrak{f}}[T T]\right]}\left(\mathcal{O}_{\mathfrak{f}} \widehat{\mathbb{Z}}_{\mathbb{Z}_{p}} \mathcal{U}_{\infty} / \mathcal{O}_{\mathfrak{f}} \widehat{\otimes}_{\mathbb{Z}_{p}} \mathcal{C}_{\infty}\right)_{\chi}$ is prime to $\left((1+T)^{p^{n}}-1\right)$ in $\mathcal{O}_{\mathfrak{f}}[[T]]$, for all $n \in \mathbb{N}$, and all irreducible \mathbb{C}_{p}-character χ on $G_{\mathfrak{f}}$. Let χ be such a character, and let $\zeta \in \mu_{p^{\infty}}\left(\mathbb{C}_{p}\right)$. We choose a maximal ideal ℓ of \mathcal{O}_{k}, prime to $\mathfrak{f p}$, such that $\chi_{\mathrm{pr}}\left(\ell, F_{\chi} / k\right) \neq 1$ if $\chi \neq 1$, and such that ℓ is not totally split in k_{1} (the subfield of k_{∞} fixed by Γ^{p}) if $\chi=1$. By Theorem 5.1 and Theorem 5.2, it suffices to prove $\left.\tilde{\chi}_{0}\left(\left(1-\sigma_{\ell}^{-1}\right) \underline{\mu\left(\mathfrak{f}_{\chi}\right)}\right)\right|_{T=\zeta-1} \neq 0$, where $\sigma_{\ell}:=\left(\ell, K_{\mathfrak{f}, \infty} / k\right)$. By (4.3) and by (2.5), we have

$$
\begin{align*}
\left.\tilde{\chi}_{0}\left(\left(1-\sigma_{\ell}^{-1}\right) \underline{\mu\left(\mathfrak{f}_{\chi}\right)}\right)\right|_{T=\zeta-1} & =\left.\tilde{\chi}_{0}\left(\tilde{\pi}_{\mathfrak{f}_{\chi} \ell, \mathfrak{f}_{\chi}}\left(\underline{\mu\left(\mathfrak{f}_{\chi} \ell\right)}\right)\right)\right|_{T=\zeta-1} \\
& =\int_{\Gamma} \zeta^{\kappa(\sigma)} \cdot \mathrm{d} \chi_{\mathfrak{f}_{\chi} \ell}^{\prime}\left(\mu\left(\mathfrak{f}_{\chi} \ell\right)\right)(\sigma) \tag{6.6}
\end{align*}
$$

where $\chi_{\mathfrak{f}_{\chi} \ell}$ is the character on $G_{\mathfrak{f}_{\chi} \ell}$ defined by χ_{0}, and where $\kappa: \Gamma \rightarrow \mathbb{Z}_{p}$ is the unique morphism of topological groups such that $\kappa(\gamma)=1$. From (6.6)
and (2.3) we deduce

$$
\begin{aligned}
\left.\tilde{\chi}_{0}\left(\left(1-\sigma_{\ell}^{-1}\right) \underline{\mu\left(\mathfrak{f}_{\chi}\right)}\right)\right|_{T=\zeta-1} & =\sum_{g \in G_{\mathfrak{f}_{\chi} \ell}} \chi_{\mathfrak{f}_{\chi} \ell}(g) \int_{\Gamma} \zeta^{\kappa(\sigma)} \cdot \mathrm{d}\left(g^{-1}\right)_{*} \mu\left(\mathfrak{f}_{\chi} \ell\right)(\sigma) . \\
& =\sum_{g \in G_{\mathfrak{f}_{\chi} \ell}} \chi_{\mathfrak{f}_{\chi} \ell}(g) \int_{g \Gamma} \zeta^{\kappa\left(g^{-1} \sigma\right)} \cdot \mathrm{d} \mu\left(\mathfrak{f}_{\chi} \ell\right)(\sigma) \\
& =\int_{G_{f_{\chi} \ell, \infty}} \zeta^{\kappa\left(g_{\sigma}^{-1} \sigma\right)} \chi_{\mathfrak{f}_{\chi} \ell}\left(g_{\sigma}\right) \cdot \mathrm{d} \mu\left(\mathfrak{f}_{\chi} \ell\right)(\sigma)
\end{aligned}
$$

where for any $\sigma \in G_{\mathrm{f}_{\chi} \ell, \infty}, g_{\sigma}$ is the image of σ through the projection $G_{\mathfrak{f}_{\chi} \ell, \infty} \rightarrow G_{\mathrm{f}_{\chi} \ell}$. We define $\xi: G_{\mathfrak{f}_{\chi} \ell, \infty} \rightarrow \mathbb{C}_{p}^{\times}, \sigma \mapsto \zeta^{\kappa\left(g_{\sigma}^{-1} \sigma\right)} \chi_{\mathfrak{f}_{\chi} \ell}\left(g_{\sigma}\right)$. Then ξ is a group morphism, and if $n \in \mathbb{N}$ is such that $\zeta^{p^{n}}=1$, then ξ defines an irreducible \mathbb{C}_{p}-character on $G_{\mathfrak{f}_{\chi} \ell, n}:=\operatorname{Gal}\left(K_{\mathfrak{f}_{\chi} \ell, n} / k\right)$. Let \mathfrak{g} be the conductor of F_{ξ}. Since the restriction of ξ to $G_{\mathfrak{f}_{\chi} \ell} \hookrightarrow G_{\mathrm{f}_{\chi} \ell, n}$ is $\chi_{\mathfrak{f}_{\chi} \ell}$, we deduce that there is $m \in \mathbb{N}$ such that $\mathfrak{g}=\mathfrak{f}_{\chi} \mathfrak{p}^{m}$, and from (6.2) we deduce that

$$
\begin{equation*}
\mathrm{L}_{p, \mathfrak{g} \ell}\left(\xi^{-1}\right)=\mathrm{L}_{p, \mathfrak{f}_{\chi} \ell}\left(\xi^{-1}\right) \tag{6.8}
\end{equation*}
$$

Then from (6.7) and (6.1) we deduce

$$
\begin{align*}
&\left.\left(1-\tilde{\chi}_{0}\left(\sigma_{\ell}^{-1}\right)\right) \tilde{\chi}_{0}\left(\underline{\mu\left(\mathfrak{f}_{\chi}\right)}\right)\right|_{T=\zeta-1} \tag{6.9}\\
&=\int_{G_{f_{\chi} \ell, \infty}} \xi(\sigma) \cdot \mathrm{d} \mu\left(\mathfrak{f}_{\chi} \ell\right)(\sigma)=\mathrm{L}_{p, \mathfrak{f}_{\chi} \ell}\left(\xi^{-1}\right) .
\end{align*}
$$

If $\chi \neq 1$, then $\chi_{\text {pr }}\left(\ell, F_{\chi} / k\right) \neq 1$ implies that ℓ is not totally split in F_{ξ} / k. If $\chi=1$ and $\zeta \neq 1$, then $k_{1} \subseteq F_{\xi}$ and ℓ is not totally split in F_{ξ} / k. If $\chi=1$ and $\zeta=1$, then $\xi=1$ and $\mathfrak{g}=(1)$. From (6.9), (6.8), and Lemma 6.1, we deduce

$$
\left.\left(1-\tilde{\chi}_{0}\left(\sigma_{\ell}^{-1}\right)\right) \tilde{\chi}_{0}\left(\underline{\mu\left(\mathfrak{f}_{\chi}\right)}\right)\right|_{T=\zeta-1}=\mathrm{L}_{p, \mathfrak{g} \ell}\left(\xi^{-1}\right) \neq 0
$$

Acknowledgements. I would like to express here my sincere thanks to the referee for his valuable comments and suggestions to improve the manuscript.

References

[1] J-R. Belliard, Global Units modulo Circular Units: descent without Iwasawa's Main Conjecture. Canadian J. Math. 61 (2009), 518-533.
[2] W. Bley, On the Equivariant Tamagawa Number Conjecture for Abelian Extensions of a Quadratic Imaginary Field. Documenta Mathematica 11 (2006), 73-118.
[3] A. Brumer, On the units of algebraic number fields. Mathematika 14 (1967), 121-124.
[4] J. Coates and A. Wiles, On p-adic l-functions and elliptic units. J. Australian Math. Soc. 26, (1978), 1-25.
[5] E. de Shalit, Iwasawa Theory of Elliptic Curves with Complex Multiplication. Perspectives in Mathematics 3, Academic Press, 1987.
[6] R. Gillard, Fonctions L p-adiques des corps quadratiques imaginaires et de leurs extensions abéliennes. J. Reine Angew. Math. 358 (1985), 76-91.
[7] C. Greither, Class groups of abelian fields, and the main conjecture. Annal. Inst. Fourier 42 (1992), 445-499.
[8] K. Iwasawa, Lectures on p-adic L-functions. Princeton University Press, 1972.
[9] S. Lang, Cyclotomic Fields I and II. Springer-Verlag, 1990.
[10] Neukirch, Schmidt and Wingberg, Cohomology of Number Fields. Springer-Verlag, 2000.
[11] H. Oukhaba, On Iwasawa theory of elliptic units and 2-ideal class groups. Prépub. lab. Math. Besançon (2010).
[12] G. Robert, Unités elliptiques. Bull. soc. math. France 36, (1973).
[13] G. Robert, Unités de Stark comme unités elliptiques. Prépub. Inst. Fourier 143, (1989).
[14] G. Robert, Concernant la relation de distribution satisfaite par la fonction φ associée à un réseau complexe. Inven. math. 100 (1990), 231-257.
[15] K. Rubin, The "main conjectures" of Iwasawa theory for imaginary quadratic fields. Inven. math. 103 (1991), 25-68.
[16] K. Rubin, More "Main Conjectures" for Imaginary Quadratic Fields. Centre Rech. Math. 4 (1994), 23-28.
[17] S. Viguié, On the classical main conjecture for imaginary quadratic fields. Prépub. lab. Math. Besançon (2011).
[18] S. Viguié, Global units modulo elliptic units and ideal class groups. to appear in Int. J. Number Theory.

Stéphane Viguié
Université de Franche-Comté
16 route de Gray
25030 Besançon cedex, France
E-mail: stephane.viguie@univ-fcomte.fr
URL: http://www.math.u-bordeaux.fr/A2X/

[^0]: Manuscrit reçu le 14 mars 2011.

