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Explicit bounds for split reductions of simple
abelian varieties

par Jeffrey D. ACHTER

Résumé. Soit X/K une variété abélienne absolument simple, dé-
finie sur un corps de nombres ; nous étudions comment les réduc-
tions Xp tendent à être simples également. Nous montrons que si
End(X) est une algèbre de quaternions définie, alors la réduction
Xp est géométriquement isogène au self-produit d’une variété abé-
lienne absolument simple, ce pour p dans un ensemble de densité
strictement positive, alors que si X est de type Mumford, Xp est
simple pour presque tout p. Pour une large classe de variétés abé-
liennes avec anneau d’endomorphismes absolus commutatif, nous
donnons une borne supérieure explicite pour la croissance de l’en-
semble des premiers de réduction non-simple.

Abstract. Let X/K be an absolutely simple abelian variety
over a number field; we study whether the reductions Xp tend to
be simple, too. We show that if End(X) is a definite quaternion
algebra, then the reduction Xp is geometrically isogenous to the
self-product of an absolutely simple abelian variety for p in a set of
positive density, while if X is of Mumford type, then Xp is simple
for almost all p. For a large class of abelian varieties with com-
mutative absolute endomorphism ring, we give an explicit upper
bound for the growth of the set of primes of non-simple reduction.

1. Introduction

Let X/K be an absolutely simple abelian variety over a number field.
Evidence indicates that whether or not X has absolutely simple reduction
almost everywhere depends on the endomorphism ring End(X). On one
hand, if End(X) is an indefinite division algebra, then every good reduction
Xp is actually split, i.e., isogenous to a product of abelian varieties of smaller
dimension [23, Thm. 2(e)].1 On the other hand, if End(X) is trivial and
dim(X) is odd [3], or if X has complex multiplication [13], then Xp is
almost always simple.

Manuscrit reçu le 23 octobre 2010, révisé le 22 décembre 2010.
Classification math. 11G25.
1This notion should not be confused with the (bad) split multiplicative reduction of an elliptic

curve; primes of bad reduction never arise in the present work.
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Inspired by this, Murty and Patankar conjectured [13] that in general,
X has simple reduction almost everywhere if and only if EndK(X) is com-
mutative.

Using known instances of the Mumford-Tate conjecture and ideas of
Chavdarov [4], the author made progress [1] towards affirming this conjec-
ture. Moreover, a preprint of [1] elicited two further questions. W. Gajda
shared a preprint of his work with Banaszak and Krasoń on the Mumford-
Tate conjecture for abelian varieties of type III [2], and inquired whether
it might be used to refine the results of [1] in that case. V.K. Murty asked
whether one has any control over the size of the exceptional set of primes
where an abelian variety with commutative endomorphism ring has split
reduction.

Happily, the answer to each question is yes. First, as Gajda suspected,
the results of [2] allow one to show:

Theorem A. Let X/K be an absolutely simple abelian variety over a num-
ber field. Suppose that EndK(X)⊗Q is a definite quaternion algebra over a
totally real field F . If dimX/2[F : Q] is odd, then for p in a set of positive
density, Xp is geometrically isogenous to the self-product of an absolutely
simple abelian variety Yp/κ(p) of dimension (dimX)/2.

This is worked out in Section 2.
Second, D. Zywina explained to me how the large sieve can be used to

address Murty’s question. Let HX/K,Q` be the Zariski closure of the image
of the action of Gal(K) on the Tate module T`X. In the present context,
the method of [25] yields:

Theorem B. Let X/K be an absolutely simple abelian variety of dimension
g over a number field. Suppose some HX/K,Q` is connected and that either

(a) EndK(X)⊗Q ∼= F is a totally real field, and r := dimX/[F : Q]
is odd, in which case let d = [F : Q](2r2 + r + 1) and t = [F :
Q](r + 1); or

(b) there is some prime `0 such that HX/K,Q`0
∼= GSp2g,Q`0

, in which
case let d = 2g2 + g + 1 and t = g + 1; or

(c) EndK(X) ⊗ Q ∼= E is a totally imaginary field, and the action
of E on X is not special, in which case let d = 2g2 + g + 1 and
t = g + 1.

Let R(X/K; z) be the set of primes p of OK such that X has good, split
reduction at p and N (p) < z. Then

R(X/K; z)� z(log log z)1+1/3d

(log z)1+1/6d .
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If the generalized Riemann hypothesis is true, then

|R(X/K; z)| � z
1− 1

2(2d+t+1) (log z)
2

2d+t+1 .

This is explained in Section 4. (Perhaps some remarks on the hypotheses,
which are explained in greater detail in [1, Sec. 4], are in order here. In part
(b), if the hypothesis is satisfied for one prime `0, then it is in fact satisfied
for every prime `. This follows from a special case of [9, Thm. 4.3], but
it is not hard to give a direct proof. Indeed, let ` be any rational prime;
then the rank of HX/K,Q` is again equal to g+ 1 [17], and the centralizer of
HX/K,Q`(Q`) in Aut(T`X⊗Q`) is (End(X)⊗Q`)× ∼= Q×` [5]. By the theorem
of Borel and de Siebenthal, HX/K,Q` , a priori a subgroup of GSp2g,Q` , is
actually equal to GSp2g,Q` . In part (c), “not special” is a combinatorial
constraint on the signature of the action of E on Lie(X). The full definition
is somewhat technical [24, 6.2.4] but is satisfied if, for instance, 2g/[E : Q]
is prime.)

Finally, since the method of [1] relies crucially on the image of mod-
` Galois representations, it seems reasonable to explore the conjecture of
Murty and Patankar in cases where the endomorphism ring alone does not
determine these groups. Mumford described the simplest such situation
in [12]; there are abelian fourfolds with trivial endomorphism ring whose
Mumford-Tate group is smaller than the full symplectic group.

Theorem C. Let X/K be an abelian variety of Mumford’s type over a
number field. Possibly after a finite extension of the base field, Xp is simple
for p in a set of density one.

Notation. Let X/K be an abelian variety over a number field. For each
rational prime `, let T`(X) be its `-adic Tate module, and letX` = X[`](K).
Attached toX and ` are Galois representations ρX/K,` : Gal(K)→ Aut(X`)
and ρX/K,Q` : Gal(K) → Aut(T`(X) ⊗ Q`). Let HX/K,` be the image of
ρX/K,`, and let HX/K,Q` be the Zariski closure of the image of ρX/K,Q` in
the group (scheme) AutT`(X)⊗Q` .

Suppose X admits an action by an order in a number field F . For each
prime λ ⊂ OF , we have the λ-torsion Xλ = X[λ](K), Tate module Tλ(X) =
lim←

n
X[λn](K), and associated Galois representations ρX/K,λ and ρX/K,Fλ

with images HX/K,λ and HX/K,Fλ .
LetM(X/K) be the set of places of good reduction ofX. If p ∈M(X/K),

then the reduction Xp is an abelian variety over the residue field κ(p). Let
σp ∈ Gal(K) be a Frobenius element at p. If p-` then the characteristic
polynomial of ρX/K,Q`(σp), a priori an element of Q`[t], is actually defined
over Z. More generally, if X supports an F -action and if λ is a prime of F ,
then the characteristic polynomial of ρX/K,Fλ(σp) is defined over F and is
independent of λ [16, Ch. II].
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2. Abelian varieties of type III

In this section, recent work by Banaszak, Gajda and Krasoń [2] is used
to characterize the splitting behavior of reductions of abelian varieties of
type III. We make use of Katz’s analysis of orthogonal groups over finite
fields [7], which was carried out in the service of an irreducibility statement
somewhat like Lemma 2.5. This is perhaps not surprising, insofar as both
[1] and to a lesser extent [7] are inspired by the methods developed in the
thesis of (Katz’s student) Chavdarov [4].

Let ∆ be a natural number divisible by all primes less than 7. Let F be
a totally real field. Let V be a free OF [1/∆]-module of rank 2r equipped
with a split nondegenerate symmetric quadratic form ψ. Using this data,
define group schemes

G∗ = GO(V, ψ)
SG∗ = SO(V, ψ)

Ω∗ = SO(V, ψ)der.

There are isomorphisms G∗(Fλ) ∼= GO2r(Fλ); SG∗(Fλ) ∼= SO+
2r(Fλ); and

Ω∗(Fλ) ∼= SO+
2r(Fλ)der is the set of elements of determinant and spinor

norm one. Let G be the restriction of scalars ROF [1/∆]/Z[1/∆]G
∗, and define

SG and Ω analogously. In particular, G(Z/`) = ⊕λ|`G∗(Fλ), where λ runs
over the primes of OF over ` and Fλ = OF /λ.

Say that an abstract group Hλ is of type G∗(Fλ) if it is equipped with
inclusions Ω∗(Fλ) ⊆ Hλ ⊆ G∗(Fλ); the notion of a group H` of type G(F`)
is defined in a similar way.

For a pair of natural numbers a = {a1, a2} with a1 + a2 = r, define
a subset Jλ,a ⊂ G∗(Fλ) as follows. Let Jλ,a be the set of semisimple x ∈
G∗(Fλ) such that there exists an orthogonal decomposition V ⊗ OF /λ ∼=
U1 ⊕ U2 where dimFλ Ui = 2ai and x acts irreducibly on each Ui. Also, for
a = {r, r}, let Jλ,a be the set of semisimple x ∈ G∗(Fλ) such that there
exists a decomposition V ⊗OF /λ ∼= U1⊕U2 such that dimFλ Ui = r; x acts
irreducibly on each Ui; the characteristic polynomials fx|Ui (t) of x on U1 and
U2 are not associates, but fx|U1

(t) and trfx|U2
(1/t) are; and U1 and U2 are

dual to each other under ψ. ForHλ of type G∗(Fλ), let Jλ,a(Hλ) = Hλ∩Jλ,a.

Lemma 2.1. There exists a constant ε = ε(r) > 0 such that for any data
a = {a1, a2} as above, any prime λ-∆, and any Hλ of type G∗(Fλ),

#Jλ,a(Hλ)
#Hλ

> ε.
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Proof. The case where Hλ ⊆ SG∗(Fλ) is [7, Lemmas 6.5 and 6.6]. The gen-
eral case follows from the argument used in the second half of the proof of
[1, Lemma 1.1]. (The key point is that, after passage to adjoint groups, the
index of the abstract group in the derived group is bounded, independently
of `.) �

Lemma 2.2. Given an absolutely simple abelian variety X over a number
field K0, there exists a finite extension K/K0 such that:

(i) EndK(XK) = EndK(XK);
(ii) For each `, the Zariski closure HX/K,Q` of ρX/K,Z` in AutT`(X)⊗Q`

is a connected algebraic group;
(iii) There exists `0 such that im(

∏
`≥`0 ρX/K,`) ∼=

∏
`≥`0 HX/K,`.

Proof. Each of these properties is preserved by any finite extension; and
field extensions satisfying (i), (ii) and (iii) are explicitly calculated in [21,
Thm. 2.4], [22, Thm. 4.6] and [18, Lemme 1.2.1], respectively. �

The groups HX/K,` are calculated for abelian varieties of type III in [2].
Suppose X/K is a polarized simple abelian variety such that EndK(X)⊗Q
is a definite quaternion algebra. Then the polarization induces a nondegen-
erate symmetric quadratic form on each X`.

Lemma 2.3. Let X/K be a simple abelian variety over a number field
satisfying the conclusions of 2.2. Suppose that EndK(X) ⊗ Q is a definite
quaternion algebra over a totally real field F such that r = dim(X)/2[F : Q]
is odd. For ` in a set L+ of positive density,

(a) there is a continuous linear action of Gal(K) on V ⊗Z/` which
induces an isomorphism X`

∼= (V ⊗ Z/`)⊕2 of quadratic spaces
with Gal(K)-action; and

(b) Ω(Z/`) ⊆ Hder
X/K,` ⊆ SG(Z/`) ( HX/K,` ⊆ G(Z/`).

Proof. Possibly at the cost of restricting to ` in a set L+ of positive density,
we may and do assume that the discriminant of some polarization of X is
a square in F`. Then part (a) is [2, Thm. 3.23], while part (b) is [2, Thm.
6.29]. �

Let L∗+ be the set of primes of F which lie over elements of L+. For data
a and a set A ⊂ L∗+, let

I(X/K; a;A) = {p : ∀λ ∈ A, ρX/K,λ(σp) 6∈ Jλ,a(HX/K,λ)}.

It turns out that I(X/K; a;L∗+) has density zero:

Lemma 2.4. Suppose X/K satisfies the hypotheses of Lemma 2.3. If A ⊂
L∗+ is infinite, then I(X/K; a;A) has density zero.
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Proof. Let ε be the constant of Lemma 2.1, and let A0 ⊂ A be any finite
subset. By the Chebotarev theorem, condition (iii) of Lemma 2.2, and Lem-
mas 2.3 and 2.1, the density of I(X/K; a;A0) is at most (1 − ε)|A0|. The
result now follows by taking ever-larger sets A0. �

Consequently, the F -linear characteristic polynomial of a reduction of X
is almost always the square of an irreducible polynomial:

Lemma 2.5. Suppose X/K satisfies the hypotheses of Lemma 2.3. For p
in a set of density one, the F -linear characteristic polynomial of Frobenius
of Xp is the square of an irreducible polynomial.

Proof. Let g∗p(t) ∈ OF [t] be the F -linear characteristic polynomial of Frobe-
nius of Xp. Then there exists a polynomial f∗p (t) ∈ OF [t] of degree 2r such
that g∗p(t) = f∗p (t)2 (e.g., [1, Lemmas 3.2 and 2.6]; this also follows swiftly
from [2, Thm. 3.23]).

Since there is no absolutely simple abelian variety in characteristic zero
with r = 1 [20, Prop. 15], and since r is odd by hypothesis, assume r ≥ 3.
Consider some d with 1 ≤ d < deg f∗p (t). If d = r, let a = {1, r − 1};
otherwise, let a = {r, r}. If there exists some λ ∈ L∗+ with ρX/K,λ(σp) ∈
Jλ,a(HX/K,λ), then f∗p (t) has no factor of degree d. Consequently, if f∗p (t)
has an irreducible factor of degree d, then p ∈ I(X/K; a;L∗+), which is a
set of density zero (Lemma 2.4). �

If p is in the density-one set described in Lemma 2.5, then Xp is either
simple as F -abelian variety or it is isogenous to the self-product of a simple
F -abelian variety. In the former case, it does not follow that Xp is simple
as abelian variety; indeed, it is possible that there is an isogeny Xp ∼ Y s

and an embedding F ↪→ Mats(End(Y ) ⊗ Q) such that F acts irreducibly
on the s-fold product of Y . Such behavior can be ruled out with a further
condition on the characteristic polynomial, as follows.

Recall that G(Z/`) ∼= ⊕λ|`G∗(Fλ). If x = {xλ}λ|` ∈ G(Z/`), then the
F`-linear characteristic polynomial fx(t) of x (acting on V ) is

fx(t) =
∏
λ|`

NFλ/F`fxλ(t)

where

NFλ/F`g(t) =
∏

τ∈Gal(Fλ/F`)
gτ (t).

For a divisor s of [F : Q] with s ≥ 2, letM`,s(G) be the set of x ∈ G(Z/`)
such that fx(t) is an sth power; for H` of type G(Z/`), let M`,s(H`) =
H` ∩M`,s(G).
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Lemma 2.6. Suppose H` is of type G(Z/`). Then |M`,s(H`)|/|H`| is boun-
ded below 1, independently of `.

Proof. If ` is inert in F , then J`,{1,r−1}(H`) is in the complement ofM`,s(H`)
and the result follows from Lemma 2.1.

Otherwise, fix some prime λ0 lying over `, and suppose components
{xλ}λ 6=λ0 are fixed. To prove the lemma, it suffices to bound away from
1 the proportion of xλ0 ∈ G∗(Fλ0) such that fx(t) is an sth power. Given
data {xλ}λ6=λ0 , let fλ0(t) =

∏
λ 6=λ0 NFλ/F`fxλ(t).

If fλ0(t) is itself an sth power, then NFλ0/F`
fxλ0

(t)fλ0(t) is an sth power if
and only if NFλ0/F`

fxλ0(t) is an sth power, too. This is precluded if fxλ0
(t)

is not an sth power (e.g., if xλ0 ∈ Jλ,{1,r−1}(Hλ0)) and if fxλ0
(t) is not

defined over any proper subfield of Fλ0 . These two conditions account for
a positive proportion of elements of Hλ0 .

Otherwise, there is a unique polynomial g(t) such that g(t)fλ0(t) is
an sth power, and thus at most [Fλ0 : F`] polynomials h(t) such that
NFλ0/F`

h(t)fλ0(t) is an sth power.
We now show that, given a polynomial h(t) ∈ Fλ[t], the proportion of

elements of Hλ with characteristic polynomial h(t) is bounded from above,
independently of λ. First, suppose that Hλ = Ω∗(Fλ). By the Lang-Weil es-
timate – the locus of non-semisimple elements is a closed subscheme of Ω∗ –
it suffices to bound the number of semisimple x ∈ Ω∗(Fλ) with fx(t) = h(t).
Given such an x, choose some maximal torus S∗ containing x. The number
of elements of y ∈ S∗(Fλ) with fy(t) = fx(t) may be bounded in terms of
the rank of S∗, while |S∗(Fλ)| is polynomial in |Fλ|. The desired assertion
for Ω∗(Fλ) now follows. Now consider an arbitrary Hλ of type G∗(Fλ). If
there is any x ∈ Hλ with fx(t) = h(t) then the same argument, applied to
the coset x · Ω∗(Fλ) in Hλ, shows that a vanishingly small proportion of
elements of Hλ have characteristic polynomial h(t).

Consequently, for each choice of data {xλ}λ 6=λ0 ∈
∏
λ 6=λ0 Hλ ⊆∏

λ 6=λ0 G
∗(Fλ), the proportion of choices for xλ0 ∈ Hλ0 such that fx(t)

is an sth power is bounded above, independently of `. �

Lemma 2.7. Suppose X/K satisfies the hypotheses of Lemma 2.3. For p
in a set of density one, the Q-linear characteristic polynomial of Frobenius
of Xp is the square of an irreducible polynomial.

Proof. Consider a prime p of good reduction of X. Let g∗p(t) be the F -linear
characteristic polynomial of Frobenius of Xp; then gp(t) = NF/Qg

∗
p(t) is the

Q-linear characteristic polynomial of Frobenius of Xp. We have seen that
g∗p(t) = (f∗p (t))2 for some f∗p (t) ∈ OF [t], and thus gp(t) = fp(t)2 where
fp(t) = NF/Qf

∗
p (t). By Lemma 2.6 and the Chebotarev argument used in
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Lemma 2.4, for p in a set of density one, fp(t) is not an sth power for any
2 ≤ s ≤ [F : Q].

Now suppose that fp(t) is not an sth power and that p is in the density-
one set constructed in Lemma 2.4. Then f∗p (t) is irreducible over F , and
fp(t) is irreducible over Q. �

Corollary 2.8. Suppose X/K satisfies the hypotheses of Lemma 2.3. For
p in a set of density one, Xp is isogenous to the self-product of a simple
abelian variety with itself.

Proof. By Lemma 2.7, there is a set of primes S of density one such that
for p ∈ S, Xp is either simple or isogenous to the self-product of a simple
abelian variety with itself. In the former case, Xp itself has noncommutative
endomorphism ring; but this cannot happen for those p with |κ(p)| prime.
The intersection of S with the density one set of primes with residue degree
one is the desired set. �

Proof of Theorem A. Let K ′/K be an extension such that X/K ′ satisfies
the conclusions of Lemma 2.2. The set of primes p′ of K ′ such that Xp′

is isogenous to the self-product of a simple abelian variety has density one
(Corollary 2.8), and the set of primes p ofK lying under such p′ has positive
density. �

Remark 2.9. The proofs of [1, Thms. 4.1, 4.2 and 5.4] are incomplete, as
written; they rely on the existence of a rational prime ` which stays prime
in a given totally real field F . Instead, one should proceed as in the proof
given here of Theorem A. In somewhat more detail, in [1] one works with
a group scheme G/Z[1/∆], which is constructed as ROF [1/∆]/Z[1/∆]G

∗ for a
certain algebraic group G∗. By working with the λ-adic Galois representa-
tions Gal(K)→ G∗(Fλ), one can show that for primes p in a set of density
one, Xp is simple as an abelian variety with F -action. Then as in Lemma
2.7, one can show for a possibly smaller, but still density one, set of primes,
these irreducible F -abelian varieties are actually irreducible.

Note that the local conditions which force irreducibility are detectable on
the mod` Galois representations ρX/K,`, even though these conditions are
perhaps best understood in terms of the modλ representations. In short,
in each of the cases considered in [1], for ` in a set of density one one can
find a subgroup J` ⊂ HX/K,` such that (a) |J`|/

∣∣∣HX/K,`

∣∣∣ > C > 0; and (b)
if ρX/K,`(σp) ∈ J` then Xp is irreducible.

3. Abelian varieties of Mumford’s type

Let X/K be a g-dimensional abelian variety over a number field with
EndK(X) = EndK(X) = Z. If g is odd, or if g is 2 or 6, then HX/K,Q`

∼=
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GSp2g,Q` [19]. For general even dimension, however, there are other possi-
bilities for the image of Galois. The simplest examples occur in dimension
four, and were explored by Mumford in [12]. Briefly, from a totally real
cubic field F and a suitable quaternion algebra D/F , Mumford constructs
a simple algebraic group G/Q whose derived group is isogenous to a twist
of SL3

2, such that if X is an abelian fourfold with Mumford-Tate group G
then EndK(X) ∼= Z. Conversely, if X is an abelian fourfold with trivial
absolute endomorphism ring such that some HX/K,Q` is not isomorphic to
GSp2g,Q` , then X comes from such a construction (e.g., [15, Prop. 1.5]).

The group G comes equipped with a representation G → GL(V ) on an
8-dimensional vector space over Q. While Mumford describes this group
and representation in detail, for present purposes it suffices to describe the
simply connected cover of G.

Let D×1 ⊂ D× be the group of norm-one elements, thought of as a group
scheme over SpecF . Let G̃der be the restriction of scalars G̃der = RF/QD

×
1

and let G̃ = Gm×G̃der. Then there is a central isogeny ν : G̃→ G. Suppose
` splits completely in F , and that D is split at each prime lying over `. Then
G̃der

Q`
∼= SL3

2,Q` , and the representation G̃der
Q` → GQ` → Aut(V ⊗ Q`) is the

third (external) tensor power of the standard representation of SL2.
Let ∆ be the product of all rational primes ramified in F or in D. Since

there is a unique G-invariant alternating form on V , we may and do choose
a reductive model G over Z[1/∆] and a free Z[1/∆]-module V of rank 8
such that G ⊂ GL(V ) and G(Z`) is the unique hyperspecial subgroup of
G(Q`). Similarly define G̃der/ SpecZ[1/∆]. Let F̃ be the Galois closure of
F over Q.

Lemma 3.1. Let X/K be an abelian variety of Mumford’s type. Let p be a
prime of good ordinary reduction. There is a totally imaginary field L with
F ⊆ L ⊆ D such that either:

(a) There is a quadratic imaginary subfield E ⊂ L such that L =
EF . Then Xp is isogenous to Y (1)×Y (3), where Y (i) is a simple
abelian variety of dimension i, Y (1) has complex multiplication
by E, and Y (3) has complex multiplication by L; or

(b) There is no quadratic imaginary subfield of L. Let L̃ be the Ga-
lois closure of L over Q. Then Gal(L̃/Q) ∼= {±1}3oH for some
group A3 ⊆ H ⊆ S3. Let E = L̃H . Then Xp is a simple abelian
variety with complex multiplication by E.

Proof. By examining maximal tori of GQ, Noot has produced a complete
classification of the possibilities for the CM type of a specialization of an
abelian variety of Mumford’s type [15, Sec. 3]. An ordinary abelian variety
Y/κ(p) admits a (unique, canonical) lift Ŷ to characteristic zero such that
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End(Ŷ ) ∼= End(Y ). Lemma 3.1 is deduced by applying Noot’s classification
to X̂p. �

Corollary 3.2. In the situation of Lemma 3.1, suppose there is a rational
prime ` which splits in F as `OF = λ1 · λ2 · λ3. Suppose that for i = 1, 2
there exists a prime λ′i of OL lying over λi such that [OL/λ′1 : OF /λ1] 6=
[OL/λ′2 : OF /λ2]. Then Xp is simple.

Proof. Let F̃ be the Galois closure of F over Q. The hypothesis guarantees
that F̃L is not Galois over Q, and thus L is not of the form FE for a
quadratic imaginary field E. Since case (a) of Lemma 3.1 is ruled out, the
dichotomy shows that Xp is simple. �

Proof of Theorem C. As in the proof of [1, Thm. 4.1], it suffices to prove
the result after finite extension of the base. Consequently, we assume that
each HX/K,Q` is connected, and that Xp is ordinary for p in a set of density
one [14, Thm. 2.2].

By Larsen’s theorem [10, Thm. 3.17], for ` in a set L̃ of density one,
the derived group of HX/K,` is Gder(Z/`). Possbily after removing finitely
many primes from L̃, since Gal(K) → G(Z/`) → G(Z/`)/Gder(Z/`) is the
`-cyclotomic character,HX/K,` = G(Z/`) for ` ∈ L̃. Let L ⊂ L̃ be the subset
of primes which split completely in F . Then L has positive density, and in
particular is infinite. Since PSL2(Z/`) and PSL2(Z/`′) are nonisomorphic
simple groups for distinct odd primes ` and `′, if A ⊂ L, then the image of
Gal(K) under ×`∈AρX/K,` is ×`∈AHX/K,`.

For each ` ∈ L choose a maximal torus S̃` ⊂ G̃Z/` which, under the
isomorphism G̃Z/`

∼= SL3
2×Gm, is the product of an anisotropic torus, two

split tori, and the full Gm; and let S` = ν(S̃`). On one hand, by Corollary
3.2, if ρX/K,`(σp) is a regular element of a conjugate of S`(Z/`), then Xp is
simple. On the other hand, the usual Chebotarev argument (e.g., Lemma
2.4) shows that the set of p such that ρX/K,`(σp) avoids all conjugates of
S`(Z/`) for each ` ∈ L has density zero. �

4. Explicit bounds

Let X/K be a simple abelian variety over a number field such that
End(X) = EndK(X) is commutative. In favorable conditions, one can prove
that the reduction Xp is simple for almost all p, as follows. If Xp is not sim-
ple, then the characteristic polynomial of Frobenius fp(t) of Xp factors
over Z, and in particular factors mod` for all `. If the Galois representa-
tions ρX/K:` are sufficiently well understood, then a crude appeal to the
Chebotarev density theorem shows that the set of p such that ρX/K,`(σp)
acts reducibly for each ` has density zero. In this section, we explain how
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the large sieve yields more control over this exceptional set. The formula-
tion of Zywina’s thesis is used here [25], although one could just as easily
apply the setting developed by Kowalski [8].

Throughout this section, G is a connected algebraic group over Z[1/∆]
with fibers of dimension d(G) and rank t(G).

We will often have cause to consider a subset R of the primes of a number
field K. Let fR(z) = |{p ∈ R : N (p) < z}|/|{p ⊂ OK : N (p) < z}|. Then
the natural density of R is limz→∞ fR(z), while its lower natural density is
lim infz→∞ fR(z).

If H is an abstract group, let H] be the set of conjugacy classes of H.

Lemma 4.1. There exists a constant α = α(G) such that

|G(Z/`)| ≤ `d(G)(4.1) ∣∣∣G(Z/`)]
∣∣∣ < (α`)t(G).(4.2)

Proof. The first assertion is clear, while the estimate (4.2) follows from [11,
Th. 1] and [6, Eq. (3)]. �

Lemma 4.2. Let A be a subgroup of a finite group B. Then∣∣∣A]∣∣∣|A| ≤ ∣∣∣B]
∣∣∣|B|.

Proof. This follows immediately from the fact [6, Eq. (1)] that
∣∣∣A]∣∣∣ ≤ [B :

A]
∣∣∣B]

∣∣∣. �

Let R(X/K) = {p ∈ M(X/K) : Xp is split}. For a real number z, let
R(X/K; z) = {p ∈ R(X/K) : N (p) < z}.

Lemma 4.3. Let X/K be a simple abelian variety over a number field.
Suppose there is a set L of positive lower natural density such that for each
` ∈ L, HX/K,` is of type G(Z/`); and for each finite subset A ⊂ L, the
image of Gal(K) under ×`∈AρX/K,` is ×`∈AHX/K,L.

Further suppose that for each ` ∈ L there is a subset J`(G) ⊆ G(Z/`)
such that

∣∣∣J`(G) ∩HX/K,`

∣∣∣/∣∣∣HX/K,`

∣∣∣ > ε > 0; and if ρX/K,`(σp) ∈ J`(G),
then Xp is simple.

(a) Then

|R(X/K; z)| � z(log log z)1+1/3d(G)

(log z)1+1/6d(G) .

(b) If the generalized Riemann hypothesis is true, then

|R(X/K; z)| � z
1− 1

2(2d(G)+t(G)+1) (log z)
2

2d(G)+t(G)+1 .
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Proof. The argument of [25, Sec. 6.4] works here. For any positive number
Q, define

LQ = L ∩ [2, Q]

Ξ(Q) = {D square-free : αω(D)D < Q, `|D =⇒ ` ∈ L}
I(X/K;G;LQ; z) = {p : N (p) ≤ z and ρX/K,`(σp) 6∈ J`(G) for all ` ∈ LQ}.

where ω(D) is the number of prime divisors of D. For D ∈ Ξ(Q), let
HX/K,D =

∏
`|DHX/K,`, and let GD =

∏
`|DG(Z/`). (In all cases of interest,

GD ∼= G(Z/D).) By Lemmas 4.1 and 4.2,∣∣∣HX/K,D

∣∣∣ ≤ |GD| ≤ Qd(G)∣∣∣H]
X/K,D

∣∣∣∣∣∣HX/K,D

∣∣∣ ≤ ∣∣∣G]D∣∣∣|GD|.
Following Zywina, define and estimate the associated sieve constant by

L(Q) =
∑

D∈Ξ(Q)

∏
`|D

ε

1− ε

≥
∑

`∈LQ/α

ε

1− ε

= ε

1− ε

∣∣∣LQ/α∣∣∣
� Q

logQ,

since L has positive lower natural density.
By hypothesis,

(4.3) R(X/K; z) ⊆ I(X/K;G;LQ; z).

To prove (a), let Q(z) = c(log z/(log log z)2)1/6d(G) for a sufficiently small
positive constant c. Then

L(Q(z))� Q(z)
log(Q(z))

� (log z)1/6d(G)

(log log z)1+1/3d(G) .

Using [25, Theorem 3.3(i)], we estimate the size of the right-hand side of
(4.3) as ∣∣∣I(X/K;G;LQ(z); z)

∣∣∣� z

log zL(Q(z))−1

� z(log log z)1+1/3d(G)

(log z)1+1/6d(G) .
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We now address part (b). We have the estimate

max
D∈Ξ(Q)

|HD| ·
∑

D∈Ξ(Q)

∣∣∣H]
D

∣∣∣|HD| ≤ max
D∈Ξ(Q)

|GD| ·
∑

D∈Ξ(Q)

∣∣∣G]D∣∣∣|GD|
≤ Qd(G) ·

∑
D∈Ξ(Q)

(
∏
`|D

(α`)t(G))(
∏
`|D

`d(G))

≤ Qd(G)|Ξ(Q)|Qt(G)Qd(G) � Qf(G),

where we have set f(G) = 2d(G) + t(G) + 1 to ease notation.
Suppose that GRH holds. By [25, Th. 3.3(ii)],

|I(X/K;G;LQ; z)| �
(

z

log z + ( max
D∈Ξ(Q)

∣∣∣HX/K,D

∣∣∣·
∑

D∈Ξ(Q)

∣∣∣H]
X/K,D

∣∣∣∣∣∣HX/K,D

∣∣∣)√z log(z)

L(Q)−1

�
(

z

log z +Qf(G)
) log(Q)

Q
.

So, take Q(z) = (
√
z

(log z)2 )1/f(G). Then log(Q)� log z, and∣∣∣I(X/K;G;LQ(z); z)
∣∣∣� z

log(z)
logQ(z)
Q(z)

� z

log(z) log(z)(log z)2/f(G)

z1/2f(G)

= z1−1/2f(G)(log z)2/f(G).

�

Lemma 4.3 allows for explicit versions of the results of [1, Sec. 4], as
follows.

Proof of Theorem B. Only the necessary changes to the proof of [1, Thm.
A] are indicated here, although Remark 2.9 should also be borne in mind.

If K ′/K is finite and Galois, then the number of primes p ⊂ OK with
N (p) < z such that pOK′ is not prime is � z1/2+ε

log(z) . Therefore, it suffices
to prove the result after a finite extension of K, and thus we can and
do assume that EndK(X) = EndK(X) and each HX/K,Q` is connected. For
part (a), for L take the set of primes ` such that HX/K,` is of type G(Z/`) =
(ROF /Z GSp2r)(Z/`). Then L contains all but finitely many primes; now use
Lemma 4.3.

For parts (b) and (c), the key point is that in the context of the com-
patible system of representations associated to an abelian variety over a
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number field, Larsen’s result [10, Thm. 3.17] actually holds for a set of nat-
ural density one. (In part (c), the estimates d and t are upper bounds on
the dimension and rank of the associated Mumford-Tate group.) �
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