

Kazuomi SAWATANI, Takao WATANABE et Kenji OKUDA

A note on the Hermite-Rankin constant

Tome 22, nº 1 (2010), p. 209-217.

 $\verb|\cluster| < http://jtnb.cedram.org/item?id = JTNB_2010__22_1_209_0 >$

© Université Bordeaux 1, 2010, tous droits réservés.

L'accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://jtnb.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

A note on the Hermite–Rankin constant

par Kazuomi SAWATANI, Takao WATANABE et Kenji OKUDA

To the memory of Anne-Marie Bergé

RÉSUMÉ. Nous généralisons l'inégalité de Poor et Yuen au cas des constantes $\gamma_{n,k}$ d'Hermite-Rankin et $\gamma'_{n,k}$ de Bergé-Martinet. En outre, nous donnons les valeurs exactes de certaines constantes d'Hermite-Rankin et de Bergé-Martinet de petite dimension en appliquant certaines inégalités démontrées par Bergé et Martinet aux valeurs explicites de γ'_5 , γ'_7 , $\gamma_{4,2}$ et γ_n , $n \leq 8$.

ABSTRACT. We generalize Poor and Yuen's inequality to the Hermite–Rankin constant $\gamma_{n,k}$ and the Bergé–Martinet constant $\gamma_{n,k}'$. Moreover, we determine explicit values of some low-dimensional Hermite–Rankin and Bergé–Martinet constants by applying Rankin's inequality and some inequalities proven by Bergé and Martinet to explicit values of γ_5' , γ_7' , $\gamma_{4,2}$ and γ_n $(n \leq 8)$.

1. Introduction

In the recent paper [PY3], Poor and Yuen proved an inequality among the Hermite constant γ_n , the Bergé–Martinet constant γ'_n and the constant c_n defined from the dyadic trace. They also studied the condition of the equality $(\gamma'_n)^2 = n/c_n$ and applied this to determine low dimensional Bergé–Martinet's constants γ'_5, γ'_6 and γ'_7 .

In the first half of this paper, we generalize Poor and Yuen's inequality to the Hermite–Rankin constant $\gamma_{n,k}$ and the Bergé–Martinet constant $\gamma_{n,k}'$. In the second half, we show by using Rankin's inequality and some inequalities proven by Bergé and Martinet in [BM] that explicit values of γ_5' , γ_7' , $\gamma_{4,2}$ and γ_n ($n \leq 8$) lead us to explicit values of $\gamma_{6,2}$, $\gamma_{6,2}$, $\gamma_{8,2}$, $\gamma_{8,3}$, $\gamma_{8,3}$ and $\gamma_{8,4} = \gamma_{8,4}'$.

2. A generalization of Poor and Yuen's inequality

In order to define $\gamma_{n,k}$ and $\gamma'_{n,k}$, we start from the definition of type one functions. Let V_n be the real vector space of $n \times n$ real symmetric matrices

Manuscrit reçu le 31 octobre 2008, révisé le 14 janvier 2009.

and P_n the open cone of positive definite symmetric matrices in V_n . We define the inner product $\langle , \rangle : V_n \times V_n \longrightarrow \mathbf{R}$ by

$$\langle s, t \rangle = \text{Tr}(st)$$

for $s, t \in V_n$. A function $\phi: P_n \longrightarrow \mathbf{R}_{>0}$ is called a type one function if ϕ satisfies

- (i) $\phi(\lambda s) = \lambda \phi(s)$ for all $\lambda \in \mathbf{R}_{>0}$, $s \in P_n$, and
- (ii) $\phi(s+t) \ge \phi(s) + \phi(t)$ for all $s, t \in P_n$.

In addition, if ϕ is class invariant, i.e., $\phi({}^t gsg) = \phi(s)$ holds for all $s \in P_n$ and $g \in GL_n(\mathbf{Z})$, then ϕ is called a type one class function. A type one function is continuous on P_n ([PY, Proposition 2.2]).

Let ϕ be a type one function. The dual function $\widehat{\phi}: P_n \longrightarrow \mathbf{R}_{>0}$ of ϕ is defined to be

$$\widehat{\phi}(s) = \inf_{t \in P_n} \frac{\langle s, t \rangle}{\phi(t)}.$$

This $\hat{\phi}$ is also a type one function, and the dual of $\hat{\phi}$ equals ϕ . If ϕ is class invariant, then so is $\hat{\phi}$. A typical example of type one class functions is given by $s \mapsto \sqrt{n}(\det s)^{1/n}$, which is self-dual.

In order to give another example of type one class functions, we fix a positive integer k with $1 \leq k \leq n-1$. Let \overline{P}_n be the closure of P_n in V_n , i.e., \overline{P}_n is the closed cone of positive semi-definite matrices. Define the function $m_k : \overline{P}_n \longrightarrow \mathbf{R}_{\geq 0}$ by

$$m_k(s) = \inf_{\substack{x_1, \dots, x_k \in \mathbf{Z}^n \\ x_1 \wedge \dots \wedge x_k \neq 0}} \det(({}^t x_i s x_j)_{i,j})$$

for $s \in \overline{P}_n$. It is obvious that $m_k(s) > 0$ if $s \in P_n$, and $m_k(s) = 0$ otherwise.

Lemma 2.1. The function $m'_k(s) = m_k(s)^{1/k}$ in $s \in P_n$ is a type one class function.

Proof. The class invariance and the condition (i) for m'_k are trivial. We show the condition (ii). Since the function $x \mapsto (\det x)^{1/k}$ in $x \in P_k$ is a type one function, we have

$$m'_{k}(s+t) = \inf_{\substack{x_{1}, \cdots, x_{k} \in \mathbf{Z}^{n} \\ x_{1} \wedge \cdots \wedge x_{k} \neq 0}} \det((^{t}x_{i}(s+t)x_{j})_{i,j})^{1/k}$$

$$\geq \inf_{\substack{x_{1}, \cdots, x_{k} \in \mathbf{Z}^{n} \\ x_{1} \wedge \cdots \wedge x_{k} \neq 0}} \left\{ \det((^{t}x_{i}sx_{j})_{i,j})^{1/k} + \det((^{t}x_{i}tx_{j})_{i,j})^{1/k} \right\}$$

$$\geq \inf_{\substack{x_{1}, \cdots, x_{k} \in \mathbf{Z}^{n} \\ x_{1} \wedge \cdots \wedge x_{k} \neq 0}} \det((^{t}x_{i}sx_{j})_{i,j})^{1/k} + \inf_{\substack{x_{1}, \cdots, x_{k} \in \mathbf{Z}^{n} \\ x_{1} \wedge \cdots \wedge x_{k} \neq 0}} \det((^{t}x_{i}tx_{j})_{i,j})^{1/k}$$

$$= m'_{k}(s) + m'_{k}(t).$$

This shows that m'_k is a type one function.

If k=1, then $m(s)=m_1'(s)$ is none other than the minimum of the quadratic form $x\mapsto {}^txsx$ on the set $\mathbb{Z}^n\setminus\{0\}$ of non-zero lattice points. The dual of m is the dyadic trace, i.e.,

$$w(s) = \widehat{m}(s) = \inf_{t \in P_n} \frac{\langle s, t \rangle}{m(t)},$$

which plays an important role in Poor – Yuen's theory.

By using m_k , the Hermite–Rankin constant $\gamma_{n,k}$ and the Bergé–Martinet constant $\gamma'_{n,k}$ are defined as follows:

$$\gamma_{n,k} = \sup_{s \in P_n} \frac{m_k(s)}{(\det s)^{k/n}}$$
 and $\gamma'_{n,k} = \sup_{s \in P_n} \sqrt{m_k(s)m_k(s^{-1})}$.

A generalization of w(s)/m(s) is given by

$$c_{n,k}(s) = \inf_{t \in P_n} \frac{\langle s, t \rangle^k}{m_k(s)m_k(t)}.$$

We set

$$c_{n,k} = \inf_{s \in P_n} c_{n,k}(s) = \inf_{(s,t) \in P_n \times P_n} \frac{\langle s, t \rangle^k}{m_k(s)m_k(t)}.$$

Lemma 2.2. The infimum

$$\inf_{(s,t)\in P_n\times P_n} \frac{\langle s,t\rangle^k}{m_k(s)m_k(t)}$$

is attained at some $(s_0, t_0) \in P_n \times P_n$.

Proof. Since $m_k(s) \leq \gamma_{n,k} (\det s)^{k/n}$ holds for all $s \in \overline{P}_n$, the function $s \mapsto m_k(s)$ is continuous on \overline{P}_n . Then, by [PY, Lemma 3.6], the infimum

$$w_k(s) = \inf_{t \in P_n} \frac{\langle s, t \rangle}{m_k(t)^{1/k}}$$

is attained at some $t_s \in P_n$. Since w_k is the dual of m'_k , w_k is also a type one class function, and hence $w_k(s)/m_k(s)^{1/k}$ depends only on the similar $GL_n(\mathbf{Z})$ -equivalent class $\mathbf{R}_{>0} \cdot [s]$ of s. Therefore, we have

$$c_{n,k}^{1/k} = \inf_{s \in P_n} \frac{w_k(s)}{m_k(s)^{1/k}} = \inf_{\substack{[s] \in P_n/GL_n(\mathbf{Z}) \\ m_k(s) = 1}} w_k(s).$$

For a constant $c > c_{n,k}$, we consider the non-empty set

$$\Omega_c = \{ [s] \in P_n / GL_n(\mathbf{Z}) : m_k(s) = 1 \text{ and } w_k(s) \le c^{1/k} \}.$$

From the inequality of the arithmetic and the geometric means, it follow that

(2.1)
$$n(\det s)^{1/n}(\det t)^{1/n} \le \langle s, t \rangle$$

for all $(s,t) \in P_n \times P_n$ (cf. [BC, Theorem 1]). By using (2.1) and the definition of $\gamma_{n,k}$, we have

$$n \cdot \frac{(\det s)^{1/n}}{\gamma_{n,k}^{1/k}} \le \frac{\langle s, t_s \rangle}{m_k(t_s)^{1/k}} = w_k(s).$$

This implies that Ω_c is a subset of

$$\Omega'_c = \{ [s] \in P_n / GL_n(\mathbf{Z}) : m_k(s) = 1 \text{ and } \det s \le n^{-n} c^{n/k} (\gamma_{n,k})^{n/k} \}.$$

As a consequence, $c_{n,k}^{1/k}$ is represented by

$$c_{n,k}^{1/k} = \inf_{[s] \in \Omega_c'} w_k(s).$$

Since Ω'_c is compact in $P_n/GL_n(\mathbf{Z})$ by [C, Proposition 2.2] and w_k is continuous, this infimum is attained at some $[s_0] \in \Omega'_c$.

In the case of k = 1, Poor and Yuen proved the inequality:

(2.2)
$$\frac{1}{(\gamma_{n,1})^2} \le \frac{c_{n,1}}{n} \le \frac{1}{(\gamma'_{n,1})^2}.$$

We note that Barnes and Cohn ([BC]) also proved the first inequality of (2.2).

Theorem 2.1. For $1 \leq k \leq n-1$, we have

$$\frac{1}{(\gamma_{n,k})^2} \le \frac{c_{n,k}}{n^k} \le \frac{1}{(\gamma'_{n,k})^2}.$$

The equality $(\gamma_{n,k})^{-2} = c_{n,k}/n^k$ holds if and only if $\gamma_{n,k} = \gamma'_{n,k}$.

Proof. By the inequality (2.1), we have

$$n^k \cdot \inf_{s \in P_n} \frac{(\det s)^{k/n}}{m_k(s)} \cdot \inf_{t \in P_n} \frac{(\det t)^{k/n}}{m_k(t)} \le c_{n,k},$$

and hence

$$n^k \left(\frac{1}{\gamma_{n,k}}\right)^2 \le c_{n,k} \,.$$

By the definition of $c_{n,k}$, the inequality

$$c_{n,k} \le \frac{\langle s, s^{-1} \rangle^k}{m_k(s)m_k(s^{-1})} = \frac{n^k}{m_k(s)m_k(s^{-1})}$$

holds for all $s \in P_n$. Therefore,

$$m_k(s)m_k(s^{-1}) \le \frac{n^k}{c_{n,k}}.$$

This gives

$$(\gamma'_{n,k})^2 \leqq \frac{n^k}{c_{n,k}} \,.$$

It is known that the equality

$$n(\det s)^{1/n}(\det t)^{1/n} = \langle s, t \rangle$$

holds if and only if t is similar to s^{-1} . By Lemma 2.2, there exists $(s_0, t_0) \in P_n \times P_n$ such that

$$c_{n,k} = \frac{\langle s_0, t_0 \rangle^k}{m_k(s_0) m_k(t_0)}$$
.

In general, we have

$$\frac{n^k}{(\gamma_{n,k})^2} \le \frac{n^k (\det s_0)^{k/n} (\det t_0)^{k/n}}{m_k(s_0) m_k(t_0)} \le \frac{\langle s_0, t_0 \rangle^k}{m_k(s_0) m_k(t_0)} = c_{n,k}.$$

Thus, if $(\gamma_{n,k})^{-2} = c_{n,k}/n^k$ holds, then t_0 must be similar to s_0^{-1} and $\gamma_{n,k}$ is attained at both s_0 and s_0^{-1} . This implies $\gamma_{n,k} = \gamma'_{n,k}$.

3. Explicit values of some Hermite–Rankin constants

In [BM], Bergé and Martinet proved several inequalities involving $\gamma_{n,k}$ and $\gamma'_{n,k}$, and determined the values $\gamma'_{2,1} = 2/\sqrt{3}$, $\gamma'_{3,1} = \sqrt{3/2}$ and $\gamma'_{4,1} = \sqrt{2}$. In the inequality (2.2), Poor and Yuen proved the equality $(\gamma'_{n,1})^2 = n/c_{n,1}$ holds for $n \leq 8$ and n = 24 ([PY3, Theorem 2.4]). By using this, they determined the following explicit values of Bergé–Martinet constants:

$$\gamma'_{5,1} = \sqrt{2}, \qquad \gamma'_{6,1} = \sqrt{8/3}, \qquad \gamma'_{7,1} = \sqrt{3}.$$

These explicit values give the following:

Theorem 3.1. $\gamma_{8,3} = \gamma_{8,4} = \gamma'_{8,4} = 4$.

Proof. If n is even, then the equality $\gamma_{n,n/2} = \gamma'_{n,n/2}$ holds in general ([M, Corollary 2.8.8]). We recall Rankin's inequality:

$$\gamma_{n,k} \le \gamma_{h,k} (\gamma_{n,h})^{k/h}$$

holds for $1 \le k < h < n$. In the case of n = 8, h = 4, k = 1, we have

$$\left(\frac{\gamma_{8,1}}{\gamma_{4,1}}\right)^4 \le \gamma_{8,4} \,.$$

Since $\gamma_{8,1} = 2$ and $\gamma_{4,1} = \sqrt{2}$, this gives $4 \le \gamma_{8,4}$. On the other hand, the following inequality is known for $1 \le k \le n/2$ ([M, Theorem 2.8.7]):

$$(3.2) \gamma'_{n,2k} \leq (\gamma'_{n-k,k})^2.$$

We use (3.2) twice. Namely, if we put n = 8, k = 2 and n = 6, k = 1, then

(3.3)
$$4 \le \gamma_{8,4} = \gamma'_{8,4} \le (\gamma'_{6,2})^2 \le (\gamma'_{5,1})^4 = 4.$$

By applying (3.1) to the cases n = 8, h = 4, k = 3 and n = 8, h = 3, k = 1, we obtain

$$\gamma_{8,3} \le \gamma_{4,3} (\gamma_{8,4})^{3/4} = 4^{1/4} \cdot 4^{3/4} = 4$$

and

$$4 = \left(\frac{\gamma_{8,1}}{\gamma_{3,1}}\right)^3 \le \gamma_{8,3} \,.$$

Corollary 3.1. $\gamma'_{6,2} = 2$, $\gamma_{6,2} = 3^{2/3}$.

Proof. By (3.3), $\gamma'_{6,2} = 2$ is trivial. Rankin's inequality (3.1) gives for n = 6, h = 2, k = 1

$$\left(\frac{\gamma_{6,1}}{\gamma_{2,1}}\right)^2 \le \gamma_{6,2} \,.$$

Since, $\gamma_{6,1} = (64/3)^{1/6}$ and $\gamma_{2,1} = \sqrt{4/3}$, we have $3^{2/3} \leq \gamma_{6,2}$. On the other hand, the inequality

$$(3.4) \qquad (\gamma_{n,k})^n \le (\gamma_{n-k,k})^{n-k} (\gamma'_{n,k})^{2k}$$

is known for $1 \le k \le n/2$ ([M, Theorem 2.8.7]). By putting n=6, k=2, we obtain

$$(\gamma_{6,2})^6 \le (\gamma_{4,2} \cdot \gamma_{6,2}')^4 = 3^4$$

because of $\gamma_{4,2} = 3/2$.

Corollary 3.2. $\gamma_{8,2} = \gamma'_{8,2} = 3$.

Proof. Rankin's inequality gives for n = 8, h = 2, k = 1

$$3 = \left(\frac{\gamma_{8,1}}{\gamma_{2,1}}\right)^2 \le \gamma_{8,2} \,.$$

By (3.2), we have

$$\gamma'_{8,2} \leq (\gamma'_{7,1})^2 = 3$$
.

Then, by (3.4),

$$3 \le \gamma_{8,2} \le (\gamma_{6,2})^{3/4} (\gamma'_{8,2})^{1/2} \le 3$$
.

We show that all $\gamma_{8,2}$, $\gamma_{8,3}$ and $\gamma_{8,4}$ are attained on the E_8 lattice and $\gamma_{6,2}$ is attained on the E_6 lattice. For a full lattice Λ in the Euclidean space \mathbf{R}^n , det Λ denotes the determinant of Λ , i.e., det $\Lambda = (\det g)^2$ if $\Lambda = g\mathbf{Z}^n$

with $g \in GL_n(\mathbf{R})$. The Hermite–Rankin invariant $\gamma_{n,k}(\Lambda)$ and the Bergé–Martinet invariant $\gamma'_{n,k}(\Lambda)$ of Λ are defined as

$$\gamma_{n,k}(\Lambda) = \inf_{\Lambda'} \gamma(\Lambda, \Lambda'), \quad \text{where } \gamma(\Lambda, \Lambda') = \frac{\det \Lambda'}{(\det \Lambda)^{k/n}}$$

and Λ' runs over all sublattices in Λ of rank k, and then

$$\gamma'_{n,k}(\Lambda) = \sqrt{\gamma_{n,k}(\Lambda)\gamma_{n,k}(\Lambda^*)}$$

where Λ^* denotes the dual lattice of Λ . In terms of lattices, $\gamma_{n,k}$ and $\gamma'_{n,k}$ are given by

$$\gamma_{n,k} = \sup_{\Lambda} \gamma_{n,k}(\Lambda), \qquad \gamma'_{n,k} = \sup_{\Lambda} \gamma'_{n,k}(\Lambda),$$

where Λ runs over all full lattices in \mathbf{R}^n .

Proposition 3.1. One has $\gamma_{8,2} = \gamma_{8,2}(E_8) = \gamma(E_8, A_2)$, $\gamma_{8,3} = \gamma_{8,3}(E_8) = \gamma(E_8, A_3)$, $\gamma_{8,4} = \gamma_{8,4}(E_8) = \gamma(E_8, D_4)$ and $\gamma_{6,2} = \gamma_{6,2}(E_6) = \gamma(E_6, A_2)$.

Proof. From the proof of Rankin's inequality, it follows that

(3.5)
$$\gamma_{n,k}(\Lambda) \le \gamma_{h,k} \cdot (\gamma_{n,h}(\Lambda))^{k/h}$$

holds for any lattice Λ of rank n and $1 \le k < h < n$ (cf. [M, Proof of Theorem 2.8.6]). For $\Lambda = E_8$ and n=8, h=2, k=1, (3.5) gives

$$2 = \gamma_{8,1}(E_8) \le \frac{2}{\sqrt{3}} \cdot (\gamma_{8,2}(E_8))^{1/2}.$$

This implies

$$3 \le \gamma_{8,2}(E_8) \le \gamma_{8,2} = 3$$
.

From the table [M, Table 4.10.13], it follows $\gamma(E_8, A_2) = 3$. By a similar fashion, we have $\gamma_{8,3} = \gamma_{8,3}(E_8)$, $\gamma_{8,4} = \gamma_{8,4}(E_8)$ and $\gamma_{6,2} = \gamma_{6,2}(E_6)$.

We note that Coulangeon computed $\gamma_{8,2}(E_8) = 3, \gamma_{7,2}(E_7) = 3/2^{2/7}$ and $\gamma_{6,2}(E_6) = 3^{2/3}$ by another method ([C, Théorème 5.1.1]).

Corollary 3.3. $\gamma'_{8,3} = 4$.

Proof. Since E_8 is self-dual, the Bergé–Martinet invariant $\gamma'_{8,3}(E_8)$ coincides with $\gamma_{8,3}(E_8)$, i.e., $\gamma'_{8,3}(E_8) = 4$. Then, by [M, Proposition 2.8.4],

$$4 = \gamma'_{8,3}(E_8) \le \gamma'_{8,3} \le \gamma_{8,3} = 4$$
.

By Theorem 3.1, Corollaries 3.2, 3.3 and the duality relation ([M, Proposition 2.8.5]), Hermite–Rankin and Bergé–Martinet constants of dimension 8 are completely determined.

Proposition 3.2. One has

(3.6)
$$\frac{4}{\sqrt{3}} \le \gamma_{6,3} \le \sqrt{6} \quad and \quad 2^{11/7} \le \gamma_{7,3} \le 2^{4/7} \cdot 3^{2/3}.$$

These lower bounds are attained on E_6 and E_7 , i.e., we have

$$\gamma_{6,3}(E_6) = \gamma(E_6, A_3) = \frac{4}{\sqrt{3}}, \qquad \gamma_{7,3}(E_7) = \gamma(E_7, A_3) = 2^{11/7}$$

and moreover

$$\gamma'_{7,2}(E_7) = \sqrt{6}, \qquad \gamma'_{7,3}(E_7) = 2\sqrt{2}.$$

Proof. From Rankin's inequality (3.1) for n = 8, h = 6, k = 3, it follows $4/\sqrt{3} \le \gamma_{6,3}$. All other inequalities of (3.6) are also obtained by Rankin's inequality. Let Λ' be a sublattice of E_6 of rank 3 which attains $\gamma_{6,3}(E_6)$. Since $\gamma(E_8, E_6) = 3$, we have

$$\gamma(E_8, \Lambda') = \det \Lambda' = \gamma_{6,3}(E_6)\gamma(E_8, E_6)^{1/2}$$

Therefore,

$$4 = \gamma_{8,3}(E_8) \le \gamma(E_8, \Lambda') = \gamma_{6,3}(E_6)\sqrt{3}$$
.

We know $\gamma(E_6, A_3) = 4/\sqrt{3}$ by [M, Table 4.10.13], and hence

$$\frac{4}{\sqrt{3}} \le \gamma_{6,3}(E_6) \le \gamma(E_6, A_3) = \frac{4}{\sqrt{3}}.$$

Smilarly, we obtain $\gamma_{7,3}(E_7) = 2^{11/7}$, $\gamma_{7,4}(E_7) = \gamma(E_7, D_4) = 2^{10/7}$, and $\gamma_{7,5}(E_7) = \gamma(E_7, D_5) = 2^{9/7}$. Then $\gamma'_{7,2}(E_7) = \sqrt{\gamma_{7,2}(E_7)\gamma_{7,5}(E_7)} = \sqrt{6}$ and $\gamma'_{7,3}(E_7) = \sqrt{\gamma_{7,3}(E_7)\gamma_{7,4}(E_7)} = 2\sqrt{2}$ follows from the duality relation $\gamma_{n,k}(\Lambda^*) = \gamma_{n,n-k}(\Lambda)$ ([M, Proposition 2.8.5]).

The same argument as in the proof of Proposition 3.2 yields $\gamma_{6,4}(E_6) = \gamma_{6,2}(E_6^*) = 4/3^{2/3}$. This implies $\gamma_{6,2}'(E_6) = 2 = \gamma_{6,2}'$, namely $\gamma_{6,2}'$ is attained on E_6 . Since E_8 is self-dual, all $\gamma_{8,2}', \gamma_{8,3}', \gamma_{8,4}'$ are attained on E_8 .

Mayer [Ma, Théorème 3.59] extended Theorem 2.1 to generalized Hermite constants over an algebraic number field and applied it to determine the values $\gamma'_{3,1}(\mathbf{Q}(\sqrt{-1})) = \gamma'_{3,1}(\mathbf{Q}(\sqrt{-3})) = 2$, $\gamma'_{4,1}(\mathbf{Q}(\sqrt{-1})) = 4$, $\gamma'_{4,1}(\mathbf{Q}(\sqrt{-3})) = 3$ and $\gamma_{4,2}(\mathbf{Q}(\sqrt{-1})) = \gamma_{4,2}(\mathbf{Q}(\sqrt{-3})) = 4$ ([Ma, Propositions 3.66, 3.67]).

References

- [BC] E. S. Barnes and M. J. Cohn, On the inner product of positive quadratic forms. J. London Math. Soc. (2) 12 (1975), 32–36.
- [BM] A.-M. BERGÉ AND J. MARTINET, Sur un problème de dualité lié aux sphères en géométrie des nombres. J. Number Theory 32 (1989), 14–42.
- [C] R. COULANGEON, Réseaux k-extrêmes. Proc. London Math. Soc. 73 (1996), 555–574.
- [M] J. Martinet, Perfect Lattices in Euclidean Spaces. Springer-Verlag, 2003.

- [Ma] B. MAYER, Constantes d'Hermite et théorie de Voronoï. Thése, Université Bordeaux 1, 2008.
- [PY] C. POOR AND D. S. YUEN, Linear dependence among Siegel modular forms. Math. Ann. 318 (2000), 205–234.
- [PY2] C. POOR AND D. S. YUEN, *The extreme core*. Abh. Math. Sem. Univ. Hamburg **75** (2005), 1–25
- [PY3] C. POOR AND D. S. YUEN, The Bergé-Martinet constant and slopes of Siegel cusp forms. Bull. London Math. Soc. **38** (2006), 913–924.
- [R] R. A. RANKIN, On positive definite quadratic forms. J. London Math. Soc. 28 (1953), 309–314.

Kazuomi Sawatani

Takao Watanabe

Kenji Okuda

Department of Mathematics Graduate School of Science Osaka University Toyonaka 1-1, Osaka, Japan

 $E ext{-}mail:$ twatanabe@math.sci.osaka-u.ac.jp