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A note on the Hermite—Rankin constant

par KazuoM1 SAWATANI, TaAkAO WATANABE et KENJ1 OKUDA

To the memory of Anne-Marie Bergé

RESUME. Nous généralisons I'inégalité de Poor et Yuen au cas des
constantes vy, ; d’Hermite-Rankin et 'y;%k de Bergé-Martinet. En
outre, nous donnons les valeurs exactes de certaines constantes
d’Hermite-Rankin et de Bergé—Martinet de petite dimension en
appliquant certaines inégalités démontrées par Bergé et Martinet
aux valeurs explicites de 7§, v, 4,2 et v, n < 8.

ABSTRACT. We generalize Poor and Yuen’s inequality to the
Hermite-Rankin constant 7, j and the Bergé-Martinet constant
'7;1,1@' Moreover, we determine explicit values of some low-
dimensional Hermite—-Rankin and Bergé—Martinet constants by
applying Rankin’s inequality and some inequalities proven by
Bergé and Martinet to explicit values of 74,77, v4,2 and 7y, (n < 8).

1. Introduction

In the recent paper [PY3], Poor and Yuen proved an inequality among
the Hermite constant -, the Bergé—Martinet constant ~,, and the constant
¢, defined from the dyadic trace. They also studied the condition of the
equality (v,)? = n/ec, and applied this to determine low dimensional Bergé-
Martinet’s constants vz, v and 4.

In the first half of this paper, we generalize Poor and Yuen’s inequality to
the Hermite-Rankin constant -, j, and the Bergé-Martinet constant 'Y;z, e In
the second half, we show by using Rankin’s inequality and some inequalities
proven by Bergé and Martinet in [BM] that explicit values of 75,5, 742
and v, (n = 8) lead us to explicit values of v62, Y52, V8.2, V8.2 18,35 18,3

/
and g4 = Vg4

2. A generalization of Poor and Yuen’s inequality

In order to define vy, and 7;7,9, we start from the definition of type one
functions. Let V), be the real vector space of n x n real symmetric matrices
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and P, the open cone of positive definite symmetric matrices in V,,. We
define the inner product (,) : V;, x V, — R by

(s,t) = Tr(st)

for s,t € V,,. A function ¢ : P, — Rq is called a type one function if ¢
satisfies

(i) @(As) = Ao(s) for all A € Rsg, s € Py, and

(i) @p(s+1t) = o(s)+ ¢(t) for all s,t € P,.
In addition, if ¢ is class invariant, i.e., ¢(*gsg) = ¢(s) holds for all s € P,
and g € GL,(Z), then ¢ is called a type one class function. A type one
function is continuous on P, ([PY, Proposition 2.2]).

Let ¢ be a type one function. The dual function qg : P, — Rsgof ¢pis
defined to be
(o)

o(s) = inf Sy -
This qg is also a type one function, and the dual of $ equals ¢. If ¢ is class
invariant, then so is <$ A typical example of type one class functions is
given by s — /n(det )1/, which is self-dual.

In order to give another example of type one class functions, we fix a
positive integer k with 1 < k < n — 1. Let P, be the closure of P, in
Vp, i.e., P, is the closed cone of positive semi-definite matrices. Define the
function my, : P, — R by

mp(s) = inf  det((‘z;sz;);,)
w1, 2, €Z7
1A N 0

for s € Py,. It is obvious that my(s) > 0if s € P,, and my(s) = 0 otherwise.
Lemma 2.1. The function mj,(s) = my(s)'/*

function.

in s € P, is a type one class

Proof. The class invariance and the condition (i) for mj, are trivial. We
show the condition (ii). Since the function z +— (detz)”* in z € P is a
type one function, we have

mp(s+1t) = inf det((*z;(s + t)xj)m)l/k
Ty, L ELT
1A Az #0

> inf {det((txisa:j)i,j)l/k + det((txitxj)i7j)1/k}

Ty, TR €L"

1A Az #0

> inf  det((*misz;)i )Y+ inf det((fwitay)i ) *
z1, 2R €L L1, T €L
1NNz #0 TIN Az 70

— mj(s) + mi (1)

This shows that m) is a type one function. (|
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If £ = 1, then m(s) = m/(s) is none other than the minimum of the
quadratic form x — ‘zsz on the set Z™\{0} of non-zero lattice points. The
dual of m is the dyadic trace, i.e.,

(s,t)

w(s) = m(s) = tier}if’n m(t)’

which plays an important role in Poor — Yuen’s theory.
By using my,, the Hermite-Rankin constant v, j and the Bergé-Martinet
constant ’y;“k, are defined as follows:

my(s) / —
Vnk SSEHFI% (det s)k/n and  Yp g féﬁ \/mk(s)mk(s )
A generalization of w(s)/m(s) is given by
t k
cnk(s) = inf <8’7>
’ tePy my($)my(t)
We set

nf e a(s) - (s, t)*
cnk = inf ¢, p(s) = in —
nh T ep, (8,6)€ P x Py M (8)my(t)

Lemma 2.2. The infimum
k
inf st
(8,6)€ P x Py myp(s)my(t)

is attained at some (sg,tg) € P, X P,.

Proof. Since my(s) = vy x(det s)%/™ holds for all s € P,, the function

s — myg(s) is continuous on P,. Then, by [PY, Lemma 3.6], the infimum
. (s,t)
= inf
wi(s) = Inf T

is attained at some t5 € P,. Since wy, is the dual of m}, wy is also a type
one class function, and hence wy(s)/my(s)'/* depends only on the similar
GL,(Z)-equivalent class R - [s] of s. Therefore, we have

Uk _ g _wils)

Ck = inf wi(s) .

sePu mx(s)/F " sep,/GL(2)
my(s)=1
For a constant ¢ > ¢, j, we consider the non-empty set
Qe = {[s] € Po/GLn(Z) : my(s) =1 and wi(s) < MF}.

From the inequality of the arithmetic and the geometric means, it follow
that

(2.1) n(det s)Y/™(det t)V/™ < (s, 1)
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for all (s,t) € P, x P, (cf. [BC, Theorem 1]). By using (2.1) and the
definition of +,, 1, we have
(det s)1/7 < (sts)

n- < = wi(s) .
Tk mi(ts) !/

This implies that €. is a subset of
QL = {[s] € Pu/GLn(Z) : my(s) =1 and dets < n """ (v, 1 )"/*}.
1/k

As a consequence, Coly 18 represented by
1/k .
Cn/k = inf wg(s).
’ [s]e

Since 2., is compact in P,/GL,(Z) by [C, Proposition 2.2] and wy, is con-
tinuous, this infimum is attained at some [sg] € 2. O
In the case of kK = 1, Poor and Yuen proved the inequality:
L o< 1
(W) = n T (ya)?

We note that Barnes and Cohn ([BC]) also proved the first inequality
of (2.2).

(2.2)

Theorem 2.1. For 1 <k <n—1, we have

The equality (Ynx) 2 = cn,k/nk holds if and only if vy = ’y;L’k.
Proof. By the inequality (2.1), we have
k

. (det s)k/m (det )/
n®. inf ——— . inf —————
s€Pn mp(s)  tePn  my(t)

2
1
| —) Zeng.
Yn,k

By the definition of ¢, , the inequality

(S, 871>k - nk
mi(s)m(s™t)  my(s)me(s™1)
holds for all s € P,,. Therefore,

= Cnk,

and hence

<

Cn,k =
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This gives

It is known that the equality
n(det s)/"(det t)/™ = (s, )

holds if and only if ¢ is similar to s~!. By Lemma 2.2, there exists (sg,%y) €
P,, x P, such that

- (s0, t0)"
T my(so)my(to)
In general, we have
n¥ p n¥(det s9)*/™ (det to)*/™ < (s0,t0)F
= = = C k: *
(Y k)2 my(so)mg(to) my(so)my(to)

Thus, if (fy,m)_2 = 0,17;,3/11”C holds, then tg must be similar to 861 and vy i
is attained at both sp and s; 1 This implies v, = 'y;%k. O

3. Explicit values of some Hermite—Rankin constants

In [BM], Bergé and Martinet proved several inequalities involving v, x
and 7;, 1, and determined the values 75 = 2/V/3, 751 = /3/2 and Vi1 =
V2. In the inequality (2.2), Poor and Yuen proved the equality ('77’171)2 =
n/cn1 holds for n < 8 and n = 24 ([PY3, Theorem 2.4]). By using this,
they determined the following explicit values of Bergé—Martinet constants:

f)/é,l = \/57 '7(/3,1 - 8/37 74,1 - \/§
These explicit values give the following;:

Theorem 3.1. 133 = 784 = 7é,4 =4.

Proof. If n is even, then the equality 7, /2 = ), , /2 holds in general ([M,
Corollary 2.8.8]). We recall Rankin’s inequality:

(3.1) Yok S Yk (V)"

holds for 1 £ k < h < n. In the case of n = 8 h =4,k = 1, we have

4
78,1
() = Y84 -
V4,1
Since 131 = 2 and 41 = V2, this gives 4 < v8,4. On the other hand, the

following inequality is known for 1 < k < n/2 ([M, Theorem 2.8.7]):

(3.2) ’Y;L,Qk < (’Y;L—k,k)Q .
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We use (3.2) twice. Namely, if we put n =8,k =2 and n =6,k = 1, then

(3.3) 4= 954 = ’Vé,4 < (7(’5,2)2 = (7&,1)4 =4.

By applying (3.1) to the cases n =8, h =4,k =3 andn=8,h =3k =1,
we obtain

83 < Ya3(780)Yt =4Vt 434 =4

3
8,1

4= <7> < g3
V3,1

Corollary 3.1. 755 =2, 762 = 32/3,

and

Proof. By (3.3), 762 = 2 is trivial. Rankin’s inequality (3.1) gives for n =

6,h=2k=1
2
(’76,1> < 76,2 -
72,1

Since, v6.1 = (64/3)'/6 and y9.; = \/4/3, we have 32/3 < ~45. On the other
hand, the inequality
(3.4) (V)™ £ Vi)™ (i)

is known for 1 < k < n/2 ([M, Theorem 2.8.7]). By putting n = 6,k = 2,
we obtain

(%6,2)® < (a2 - 762)" = 3

because of 42 = 3/2. O
Corollary 3.2. 182 =752 = 3.
Proof. Rankin’s inequality gives forn =8 h=2,k=1

2
3= <m> S Y82
V2,1
By (3.2), we have

Then, by (3.4),
32 S (162)Y(52)"/? 3.
O
We show that all 152,783 and vg4 are attained on the Eg lattice and

76,2 is attained on the Fg lattice. For a full lattice A in the Euclidean space
R", det A denotes the determinant of A, i.e., det A = (det g)? if A = gZ"
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with g € GL,(R). The Hermite-Rankin invariant 7, (A) and the Bergé-
Martinet invarinat 7/, , (A) of A are defined as

det A’
(det A)k/m

and A’ runs over all sublattices in A of rank &, and then

k(D) = k(M) (A%

where A* denotes the dual lattice of A. In terms of lattices, v, and 'yq’%k
are given by

fYn,k(A) = llle/f 7(A7 A/) ) where fY(Av A/) =

Yok = SUP Yp(N) s Y= sup k(D)
where A runs over all full lattices in R"™.

Proposition 3.1. One has ’y&g = '7872(E8) = ’y(E& AQ), 7873 = ’7873(E8) =
v(Es, A3), 18,4 = 18,4(E8) = 7(Es, Ds) and v62 = v6,2(Fs) = v(Ls, A2).

Proof. From the proof of Rankin’s inequality, it follows that

(3.5) Vs (A) € Y - (rn (M)

holds for any lattice A of rank n and 1 < k < h < n (cf. [M, Proof of
Theorem 2.8.6]). For A = Eg and n =8,h =2,k =1, (3.5) gives

2= 500 () £ —= - (il )2
This implies
3= 18,2(E8) =82 =3.
From the table [M, Table 4.10.13], it follows y(Es, A2) = 3. By a similar
fashion, we have 783 = 78.3(£8), 184 = 18.4(£8) and Y62 = v6,2(Es). O

We note that Coulangeon computed vg2(Es) = 3,y7.2(E7) = 3/2%/7 and
Y6.2(Fg) = 3% by another method ([C, Théoreme 5.1.1]).

Corollary 3.3. 753 = 4.
Proof. Since E is self-dual, the Bergé-Martinet invariant 4 5(Fg) coincides
with 7g3(Es), i.e., 75 3(Es) = 4. Then, by [M, Proposition 2.8.4],
4= ’Yé,:a(ES) = ’Yé,?, Sws3=4.
O

By Theorem 3.1, Corollaries 3.2, 3.3 and the duality relation ([M, Propo-
sition 2.8.5]), Hermite-Rankin and Bergé-Martinet constants of dimension
8 are completely determined.
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Proposition 3.2. One has

4
(3.6) — < %3 =V6 and /T < Y73 S o4/7 . 32/3
V3
These lower bounds are attained on FEg and Er, i.e., we have
4
76,3(E6) = 7(Es, A3) = 7 yr8(E7) = v(Er, Ag) = 2"/7

and moreover

7’7,2(E7) = \/67 7’7,3(E7) =2V2.
Proof. From Rankin’s inequality (3.1) for n = 8, h = 6,k = 3, it follows
4/V/3 < ~63. All other inequalities of (3.6) are also obtained by Rankin’s
inequality. Let A’ be a sublattice of Eg of rank 3 which attains g 3(Es).
Since v(Es, Eg) = 3, we have

Y(Es, A') = det A = y6,3(Ee)y(Es, Es)'/* .
Therefore,
4 = y33(Es) < (Es, A') = v63(Es) V3.
We know ~(FEg, A3) = 4/+/3 by [M, Table 4.10.13], and hence
\;lg = 76,3(E6) = v(Ee, Az) = jﬁ

Smilarly, we obtain v73(F7) = 2"V/7, y7 4(E7) = ~v(F7, Dy) = 297 and
v75(E7) = y(E7,Ds) = 297, Then 4 ,(E7) = \/V7,2(E7)77,5(E7) = V6
and 7 5(Er) = \/ v7.3(E7)v7.4(E7) = 2v/2 follows from the duality relation
Y (A*) = Ynm—k(A) ([M, Proposition 2.8.5]). O

The same argument as in the proof of Propositon 3.2 yields v 4(Es) =
Yo.2(Eg) = 4/3%/3. This implies Y6.2(E6) = 2 = 75 9, namely g 5 is attained
on Fg. Since Es is self-dual, all 75 5,75 3,75 4 are attained on Es.

Mayer [Ma, Théoreme 3.59] extended Theorem 2.1 to generalized Her-
mite constants over an algebraic number field and applied it to deter-
mine the values 73, (Q(vV—1)) = 73,(Q(V-3)) = 2, 7,1(Q(V-1)) = 4,
741(Q(V=3)) = 3 and 742(Q(v-1)) = 742(Q(V=3)) = 4 ([Ma, Proposi-
tions 3.66, 3.67]).
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