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Wintenberger’s functor for abelian extensions

par Kevin KEATING

Résumé. Soit k un corps fini. Wintenberger a utilisé le corps
des normes pour donner une équivalence entre une catégorie dont
les objets E/F sont des extensions abéliennes de Lie p-adiques
totalement ramifiées (où F est un corps local avec corps résiduel
k), et une catégorie dont les objets sont des paires (K,A), où
K ∼= k((T )) et A est un sous-groupe abélien de Lie p-adique de
Autk(K). Dans ce papier, nous étendons cette équivalence en per-
mettant à Gal(E/F ) et à A d’être des pro-p groupes abéliens
arbitraires.

Abstract. Let k be a finite field. Wintenberger used the field
of norms to give an equivalence between a category whose objects
are totally ramified abelian p-adic Lie extensions E/F , where F
is a local field with residue field k, and a category whose objects
are pairs (K,A), where K ∼= k((T )) and A is an abelian p-adic Lie
subgroup of Autk(K). In this paper we extend this equivalence to
allow Gal(E/F ) and A to be arbitrary abelian pro-p groups.

1. Introduction
Let k be a finite field with q = pf elements. We define a categoryA whose

objects are totally ramified abelian extensions E/F , where F is a local field
with residue field k, and [E : F ] is infinite if F has characteristic 0. An
A-morphism from E/F to E′/F ′ is defined to be a continuous embedding
ρ : E → E′ such that

(1) ρ induces the identity on k.
(2) E′ is a finite separable extension of ρ(E).
(3) F ′ is a finite separable extension of ρ(F ).

Let ρ∗ : Gal(E′/F ′)→ Gal(E/F ) be the map induced by ρ. It follows from
(2) and (3) that ρ∗ has finite kernel and finite cokernel.

For each local field K with residue field k we let Autk(K) denote the
group of continuous automorphisms of K which induce the identity map
on k. Define a metric on Autk(K) by setting d(σ, τ) = 2−a, where a =
vK(σ(πK)− τ(πK)) and πK is any uniformizer of K.

We define a category B whose objects are pairs (K,A), where K is a
local field of characteristic p with residue field k, and A is a closed abelian
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subgroup of Autk(K). A B-morphism from (K,A) to (K ′, A′) is defined to
be a continuous embedding σ : K → K ′ such that

(1) σ induces the identity on k.
(2) K ′ is a finite separable extension of σ(K).
(3) A′ stabilizes σ(K), and the image of A′ in Autk(σ(K)) ∼= Autk(K)

is an open subgroup of A.
Let σ∗ : A′ → A be the map induced by σ. It follows from (2) and (3) that
σ∗ has finite kernel and finite cokernel.

Let XF (E) denote the field of norms of the extension E/F , as defined
in [7]. Then XF (E) ∼= k((T )) and there is a faithful k-linear action of
Gal(E/F ) on XF (E). It follows from the functorial properties of the field
of norms construction that there is a functor F : A → B defined by

(1.1) F(E/F ) = (XF (E),Gal(E/F )).

We wish to prove the following:

Theorem 1.1. F is an equivalence of categories.

Wintenberger ([5, 6]; see also [2]) has shown that F induces an equiva-
lence between the full subcategory ALie of A consisting of extensions E/F
such that Gal(E/F ) is an abelian p-adic Lie group, and the full subcategory
BLie of B consisting of pairs (K,A) such that A is an abelian p-adic Lie
group. The proof of Theorem 1.1 is based on reducing to the equivalence
between ALie and BLie. Note that, contrary to [2, 6], we consider finite
groups to be p-adic Lie groups. The equivalence of categories proved in
[2, 5, 6] extends trivially to include the case of finite groups.

The following result, proved by Laubie [3], can also be proved as a con-
sequence of Theorem 1.1:

Corollary 1.2. Let (K,A) ∈ B. Then there is E/F ∈ A such that A is
isomorphic to G = Gal(E/F ) as a filtered group. That is, there exists an
isomorphism i : A→ G such that i(A[x]) = G[x] for all x ≥ 0, where A[x],
G[x] denote the ramification subgroups of A, G with respect to the lower
numbering.

The finite field k ∼= Fq is fixed throughout the paper, as is the field
K = k((T )) of formal Laurent series in one variable over k. We work with
complete discretely valued fields F whose residue field is identified with
k, and with totally ramified abelian extensions of such fields. The ring of
integers of F is denoted by OF and the maximal ideal of OF is denoted by
MF . We let vF denote the valuation on the separable closure F sep of F
which is normalized so that vF (F×) = Z, and we let vp denote the p-adic
valuation on Z. We say that the profinite group G is finitely generated if
there is a finite set S ⊂ G such that 〈S〉 is dense in G.
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2. Ramification theory and the field of norms
In this section we recall some facts from ramification theory, and sum-

marize the construction of the field of norms for extensions in A.
Let E/F ∈ A. Then G = Gal(E/F ) has a decreasing filtration by the

upper ramification subgroups G(x), defined for nonnegative real x. (See
for instance [4, IV].) We say that u ≥ 0 is an upper ramification break of
G if G(u + ε) � G(u) for every ε > 0. Since G is abelian, by the Hasse-
Arf Theorem [4, V §7, Th. 1] every upper ramification break of G is an
integer. In addition, since F has finite residue field and E/F is a totally
ramified abelian extension, it follows from class field theory that E/F is
arithmetically profinite (APF) in the sense of [7, §1]. This means that
for every x ≥ 0 the upper ramification subgroup G(x) has finite index in
G = G(0). This allows us to define the Hasse-Herbrand functions

(2.1) ψE/F (x) =
∫ x

0
|G(0) : G(t)| dt

and φE/F (x) = ψ−1
E/F (x). The ramification subgroups of G with the lower

numbering are defined by G[x] = G(φE/F (x)) for x ≥ 0. We say that l ≥ 0
is a lower ramification break for G if G[l + ε] � G[l] for every ε > 0. It is
clear from the definitions that l is a lower ramification break if and only if
φE/F (l) is an upper ramification break.

When (K,A) ∈ B the abelian subgroup A of Autk(K) also has a ramifi-
cation filtration. The lower ramification subgroups of A are defined by
(2.2) A[x] = {σ ∈ A : vK(σ(T )− T ) ≥ x+ 1}
for x ≥ 0. Since A[x] has finite index in A = A[0] for every x ≥ 0, the
function

(2.3) φA(x) =
∫ x

0

dt

|A[0] : A[t]|
is strictly increasing. We define the ramification subgroups of A with the
upper numbering by A(x) = A[ψA(x)], where ψA(x) = φ−1

A (x). The upper
and lower ramification breaks of A are defined in the same way as the upper
and lower ramification breaks of Gal(E/F ). The lower ramification breaks
of A are certainly integers, and Laubie’s result (Corollary 1.2) together with
the Hasse-Arf theorem imply that the upper ramification breaks of A are
integers as well.

For E/F ∈ A let i(E/F ) denote the smallest (upper or lower) ramifica-
tion break of the extension E/F . The following basic result from ramifica-
tion theory is presumably well-known (cf. [7, 3.2.5.5]).

Lemma 2.1. Let M/F ∈ A and let F ′/F be a finite totally ramified abelian
extension which is linearly disjoint from M/F . Assume that M ′ = MF ′

has residue field k, so that M ′/F ′ ∈ A. Then i(M ′/F ′) ≤ ψF ′/F (i(M/F )),
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with equality if the largest upper ramification break u of F ′/F is less than
i(M/F ).

Proof. Set G = Gal(M ′/F ), H = Gal(M ′/M), and N = Gal(M ′/F ′).
Then G = HN ∼= H ×N . Let y = φF ′/F (i(M ′/F ′)). Then

(2.4) N = N(i(M ′/F ′)) = N(ψF ′/F (y)) = G(y) ∩N.

It follows that G(y) ⊃ N , and hence that G/H = G(y)H/H = (G/H)(y).
Therefore y ≤ i(M/F ), which implies i(M ′/F ′) ≤ ψF ′/F (i(M/F )).

If u < i(M/F ) then the group

(2.5) (G/N)(i(M/F )) = G(i(M/F ))N/N

is trivial. It follows that G(i(M/F )) ⊂ N , and hence that

(2.6) N(ψF ′/F (i(M/F ))) = G(i(M/F )) ∩N = G(i(M/F )).

The restriction map from Gal(M ′/F ′) = N to Gal(M/F ) ∼= G/H carries
G(i(M/F )) onto

(2.7) G(i(M/F ))H/H = (G/H)(i(M/F )) = G/H.

Thus N(ψF ′/F (i(M/F ))) = N , so we have i(M ′/F ′) ≥ ψF ′/F (i(M/F )).
Since the opposite inequality holds in general, we conclude that i(M ′/F ′) =
ψF ′/F (i(M/F )) if u < i(M/F ). �

Let E/F ∈ A. Since E/F is an APF extension, the field of norms of
E/F is defined: Let EE/F denote the set of finite subextensions of E/F ,
and for L′, L ∈ EE/F such that L′ ⊃ L let NL′/L : L′ → L denote the norm
map. The field of norms XF (E) of E/F is defined to be the inverse limit of
L ∈ EE/F with respect to the norms. We denote an element of XF (E) by
αE/F = (αL)L∈EE/F . Multiplication in XF (E) is defined componentwise,
and addition is defined by the rule αE/F + βE/F = γE/F , where

(2.8) γL = lim
L′∈EE/L

NL′/L(αL′ + βL′)

for L ∈ EE/F .
We embed k into XF (E) as follows: Let F0/F be the maximum tamely

ramified subextension of E/F , and for ζ ∈ k let ζ̃F0 be the Teichmüller
lift of ζ in OF0 . Note that for any L ∈ EE/F0 the degree of the extension
L/F0 is a power of p. Therefore there is a unique ζ̃L ∈ L such that ζ̃L is
the Teichmüller lift of some element of k and ζ̃ [L:F0]

L = ζ̃F0 . Define fE/F (ζ)
to be the unique element of XF (E) whose L component is ζ̃L for every
L ∈ EE/F0 . Then the map fE/F : k → XF (E) is a field embedding. By
choosing a uniformizer for XF (E) we get a k-isomorphism XF (E) ∼= k((T )).
If E/F is finite then there is a field isomorphism ι : XF (E)→ E given by
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ι(αE/F ) = αE . This isomorphism is not k-linear in general, since for ζ ∈ k
we have ι(fE/F (ζ)) = ζp

−a , with a = vp([E : F ]).
The ring of integers OXF (E) consists of those αE/F ∈ XF (E) such that

αL ∈ OL for all L ∈ EE/F (or equivalently, for some L ∈ EE/F ). A uni-
formizer πE/F = (πL)L∈EE/F for XF (E) consists of a uniformizer πL for each
finite subextension L/F of E/F . Furthermore, for each subextension M/F
of E/F such that M/F ∈ A, πE/F gives a uniformizer πM/F = (πL)L∈EM/F
for XF (M). The action of Gal(E/F ) on the fields L ∈ EE/F induces a
k-linear action of Gal(E/F ) on XF (E). By identifying Gal(E/F ) with the
subgroup of Autk(XF (E)) which it induces, we get the functor F : A → B
defined in (1.1).

Let E′ be a finite separable extension of E. Then there is M ∈ EE/F and
a finite extension M ′ of M such that E′ = EM ′ and E, M ′ are linearly
disjoint over M . The extension E′/F need not be in A, but it is an APF
extension, so the field of norms XF (E′) can be constructed by a method
similar to that described above. We define an embedding j : XF (E) →
XF (E′) as follows. For αE/F ∈ XF (E) set j(αE/F ) = βE′/F , where βE′/F
is the unique element of XF (E′) such that βLM ′ = αL for all L ∈ EE/M [7,
3.1.1]. The embedding j makes XF (E′) into a finite separable extension of
XF (E) of degree [E′ : E]; in this setting we denote XF (E′) by XE/F (E′).
If E′′ ⊃ E′ ⊃ E are finite separable extensions then XE/F (E′)/XF (E) is
a subextension of XE/F (E′′)/XF (E). Let D/E be an infinite separable
extension. Then XE/F (D) is defined to be the union of XE/F (E′) as E′
ranges over the finite subextensions of D/E.

Let E/F ∈ A and recall that i(E/F ) is the smallest ramification break
of E/F . Define

(2.9) r(E/F ) =
⌈
p− 1
p
· i(E/F )

⌉
.

The proof of Theorem 1.1 depends on the following two propositions, the
first of which was proved by Wintenberger:

Proposition 2.2. Let E/F ∈ A, let L ∈ EE/F , and define

(2.10) ξL : OXF (E) −→ OL/M
r(E/L)
L

by ξL(αE/F ) = αL (modMr(E/L)
L ). Then

(a) ξL is a surjective ring homomorphism.
(b) If L ⊃ F0 then ξL induces the automorphism ζ 7→ ζp

−a on k, where
a = vp([L : F ]).

Proof. This follows from Proposition 2.2.1 of [7]. �
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Proposition 2.3. Let E/F ∈ A and let F ′/F be a finite totally ramified
abelian extension which is linearly disjoint from E/F . Assume that E′ =
EF ′ has residue field k, so that E′/F ′ ∈ A. Then the following diagram
commutes, where the bottom horizontal map is induced by the inclusion
OF ↪→ OF ′:

(2.11)

OXF (E)
j−→ OXE/F (E′)

ξF ↓ ↓ ξF ′

OF /Mr(E/F )
F −→ OF ′/M

r(E′/F ′)
F ′

Furthermore, if F = F0 then for all ζ ∈ k we have j ◦fE/F (ζ) = fE′/F (ζpb),
where b = vp([F ′ : F ]).

Proof. Using Lemma 2.1 we get

(2.12) i(E′/F ′) ≤ ψF ′/F (i(E/F )) ≤ [F ′ : F ]i(E/F ).

Thus r(E′/F ′) ≤ [F ′ : F ]r(E/F ), so the bottom horizontal map in the
diagram is well-defined. Let αE/F = (αM )M∈EE/F be an element of OXF (E).
Then the F ′-component of j(αE/F ) is αF . It follows that ξF (αE/F ) and
ξF ′(j(αE/F )) are both congruent to αF modulo Mr(E

′/F ′)
F ′ , which proves

the commutativity of (2.11). Now suppose F = F0. Then it follows from
Proposition 2.2(b) that ξF induces the identity on k, and that ξF ′ induces
the automorphism ζ 7→ ζp

−b on k. Therefore by the commutativity of
(2.11) we see that j induces the automorphism ζ 7→ ζp

b on k. Hence
j ◦ fE/F (ζ) = fE′/F (ζpb) for all ζ ∈ k. �

3. Proof of Theorem 1.1
In this section we prove Theorem 1.1. To do this, we must show that the

functor F : A → B is essentially surjective and fully faithful.
We begin by showing that F is essentially surjective. Let K = k((T ))

and set Γ = Autk(K). Let A be a closed abelian subgroup of Γ. Then A is
a p-adic Lie group if and only if A is finitely generated. Since F induces an
equivalence between the categories ALie and BLie, it suffices to prove that
(K,A) lies in the essential image of F in the case where A is not finitely
generated.

Let F ∼= k((T )), let E/F be a finite totally ramified abelian extension,
and let π be a uniformizer of E. Then for each σ ∈ Gal(E/F ) there is a
unique fσ ∈ k[[T ]] such that σ(π) = fσ(π). Let a = vp([E : F ]) and define

(3.1) G(E/F, π) = {γ ∈ Γ : γ(T ) = fp
a

σ (T ) for some σ ∈ Gal(E/F )},
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where fp
a

σ (T ) is the power series obtained from fσ(T ) by replacing the
coefficients by their pa powers. Then G(E/F, π) is a subgroup of Γ which
is isomorphic to Gal(E/F ).

Let l0 < l1 < l2 < . . . denote the positive lower ramification breaks of A.
For n ≥ 0 set rn = dp−1

p · lne and let Γn denote the quotient of Γ by the
lower ramification subgroup
(3.2) Γ[rn − 1] = {σ ∈ Γ : σ(T ) ≡ T (mod T rn)}.
For each subgroup H of Γ define H to be the image of H in Γn. Let Sn
denote the set of pairs (E, π) such that

(1) E/F is a totally ramified abelian subextension of F sep/F such that
Gal(E/F )[ln] is trivial. (Such an extension is necessarily finite.)

(2) π is a uniformizer of E such that G(E/F, π) = A.
We define a metric on Sn by setting d((E, π), (E′, π′)) = 1 if E 6= E′, and
d((E, π), (E, π′)) = 2−vF (π−π′). Since there are only finitely many exten-
sions E/F satisfying (1), and (2) depends only on the class of π modulo
MrnE , the metric space Sn is compact.

Lemma 3.1. Let n ≥ 1, let (E, π) ∈ Sn, let Ẽ denote the fixed field of
Gal(E/F )[ln−1], and set π̃ = NE/Ẽ(π). Then (Ẽ, π̃) ∈ Sn−1, and the map
νn : Sn → Sn−1 defined by νn(E, π) = (Ẽ, π̃) is continuous.

Proof. It follows from the definitions that Ẽ/F is a totally ramified abelian
extension and that Gal(Ẽ/F )[ln−1] is trivial. Choose σ ∈ Gal(E/F ) and
let σ̃ denote the restriction of σ to Ẽ. By Proposition 2.2(a) the norm
NE/Ẽ induces a ring homomorphism from OE to OẼ/M

rn−1
Ẽ

. Therefore

σ̃(π̃) = NE/Ẽ(σ(π))(3.3)
= NE/Ẽ(fσ(π))(3.4)

≡ fpbσ (NE/Ẽ(π)) (modMrn−1
Ẽ

),(3.5)

≡ fpbσ (π̃) (modMrn−1
Ẽ

),(3.6)

where b = vp([E : Ẽ]). Let ã = vp([Ẽ : F ]) and let fσ̃ ∈ k[[T ]] be such that
σ̃(π̃) = fσ̃(π̃). Then by (3.6) we have

fσ̃(T ) ≡ fpbσ (T ) (mod T rn−1)(3.7)

fp
ã

σ̃ (T ) ≡ fpaσ (T ) (mod T rn−1),(3.8)

where a = vp([E : F ]) = ã + b. It follows that G(Ẽ/F, π̃) and G(E/F, π)
have the same image in Γn−1, and hence that G(Ẽ/F, π̃) and A have the
same image in Γn−1. Hence (Ẽ, π̃) ∈ Sn−1, so νn(E, π) = (Ẽ, π̃) defines a
map from Sn to Sn−1. The fact that νn is continuous follows easily from
the definitions. �
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Since each A/A[ln] is finite there is a sequence A0 ≤ A1 ≤ A2 ≤ . . .
of finitely generated closed subgroups of A such that A[ln]An = A for all
n ≥ 0. Recall that F induces an equivalence of categories between ALie and
BLie. Since (K,An) ∈ BLie, for n ≥ 0 there exists Ln/Fn ∈ ALie such that
F(Ln/Fn) is B-isomorphic to (K,An). Since A is abelian, the action of A
on K gives a B-action of A on the pair (K,An). Since F(Ln/Fn) ∼= (K,An)
and F induces an equivalence between ALie and BLie, the action of A on
K is induced by a faithful A-action of A on Ln/Fn. Since Gal(Ln/Fn) ∼=
An is finitely generated, and A is not finitely generated, this implies that
Autk(Fn) is not finitely generated. Therefore Fn has characteristic p. Thus
we may fix F ∼= k((T )) and assume Fn = F and Ln ⊂ F sep for all n ≥ 0.

For n ≥ 0 let in : (K,An)→ (XF (Ln),Gal(Ln/F )) be a B-isomorphism,
and set πLn/F = in(T ). Then for each γ ∈ An there is a unique σγ ∈
Gal(Ln/F ) such that in(γ(T )) = σγ(πLn/F ). Furthermore, the map γ 7→
σγ gives an isomorphism from An to Gal(Ln/F ). Let En ⊂ Ln be the
fixed field of Gal(Ln/F )[ln]. Suppose En $ Ln; then i(Ln/En) ≥ ln and
r(Ln/En) ≥ rn. Write σγ(πEn) = f(πEn) and σγ(πLn/F ) = g(πLn/F ), with
f(T ), g(T ) ∈ k[[T ]]. Since σγ(ξEn(πLn/F )) = ξEn(σγ(πLn/F )) we get

(3.9) f(πEn) ≡ ξEn(g(πLn/F )) (modMr(Ln/En)
En

).

Hence by Proposition 2.2 we have

f(T ) ≡ gp−a(T ) (mod T r(Ln/En))(3.10)

fp
a(T ) ≡ γ(T ) (mod T r(Ln/En)),(3.11)

where a = vp([En : F ]). Since r(Ln/En) ≥ rn this implies G(En/F, πEn) =
An. On the other hand, if En = Ln then fpa(T )= γ(T ) andG(En/F, πEn) =
An. Since ln ≥ rn, we get G(En/F, πEn) = An = A in either case. Thus
(En, πEn) ∈ Sn, and hence Sn 6= ∅.

Recall that Lemma 3.1 gives us a continuous map νn : Sn → Sn−1 for each
n ≥ 1. Since each Sn is compact and nonempty, by Tychonoff’s theorem
there exists a sequence of pairs (En, πEn) ∈ Sn such that

(3.12) νn(En, πEn) = (En−1, πEn−1)

for n ≥ 1. By the definition of νn we have F ⊂ E0 ⊂ E1 ⊂ E2 ⊂ . . . . Let
E∞ = ∪n≥0En. Then E∞ is a totally ramified abelian extension of F , and
there is a unique uniformizer πE∞/F for XF (E∞) whose En-component is
πEn for all n ≥ 0. Let τ denote the unique k-isomorphism from K = k((T ))
to XF (E∞) such that τ(T ) = πE∞/F . It follows from our construction that
τ induces a B-isomorphism from (K,A) to

(3.13) F(E∞/F ) = (XF (E∞),Gal(E∞/F )).

Thus (K,A) lies in the essential image of F , so F is essentially surjective.
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We now show that F is faithful. Let E/F and E′/F ′ be elements of A,
and set G = Gal(E/F ) and G′ = Gal(E′/F ′). We need to show that the
map
(3.14) Ψ : HomA(E/F,E′/F ′) −→ HomB((XF (E), G), (XF ′(E′), G′))
induced by the field of norms functor is one-to-one. Suppose ρ1, ρ2 ∈
HomA(E/F,E′/F ′) satisfy Ψ(ρ1) = Ψ(ρ2). Let πE/F = (πL)L∈EE/F be
a uniformizer for XF (E). Then Ψ(ρ1)(πE/F ) = Ψ(ρ2)(πE/F ), and hence
(ρ1(πL))L∈EE/F = (ρ2(πL))L∈EE/F . It follows that ρ1(πL) = ρ2(πL) for ev-
ery L ∈ EE/F . Since ρ1 and ρ2 induce the identity map on the residue field
k, this implies that ρ1 = ρ2.

It remains to show that F is full, i. e., that Ψ is onto. It follows from
the arguments given in the proof of [6, Th. 2.1] that the codomain of Ψ is
empty if char(F ) 6= char(F ′), and that Ψ is onto if G and G′ are finitely
generated. Thus Ψ is onto if either char(F ) = 0 or char(F ′) = 0. If one
of G, G′ is finitely generated and the other is not then the domain and
codomain of Ψ are both empty. Hence it suffices to prove that Ψ is onto
in the case where char(F ) = char(F ′) = p and neither of G, G′ is finitely
generated.

We first show that every isomorphism lies in the image of Ψ. Let
(3.15) τ : (XF (E), G) −→ (XF ′(E′), G′)
be a B-isomorphism. Let l0 < l1 < l2 < . . . denote the positive lower
ramification breaks of G and let u0 < u1 < u2 < . . . denote the corre-
sponding upper ramification breaks. For n ≥ 0 let Fn denote the fixed
field of G[ln] = G(un). If lim

n→∞
ln/[Fn : F ] = ∞ then an argument similar

to that used in [5, §2] shows that τ is induced by an A-isomorphism from
E/F to E′/F ′. This limit condition holds for instance if char(F ) = p and
Gal(E/F ) is finitely generated, but it can fail if Gal(E/F ) is not finitely
generated. Therefore we use a different method to prove that τ lies in the
image of Ψ, based on a characterization of Fn/F in terms of (XF (E), G).

Fix n ≥ 1, let d denote the Fn-valuation of the different of Fn/F , and
let c be an integer such that c > φFn/F ( pp−1(ln−1 + d)). Since G/G(c) is
finite there exists a finitely generated closed subgroup H of G such that
G(c)H = G. Let M ⊂ E be the fixed field of H and set Mn = FnM . Then
Fn/F and Mn/M are finite abelian extensions. On the other hand, since G
is not finitely generated, Gal(M/F ) ∼= G/H is not finitely generated, and
hence M/F is an infinite abelian extension.

Proposition 3.2. Let πE/F be a uniformizer for XF (E) and recall that
πE/F determines uniformizers πF , πFn, πM/F , and πMn/F for the fields F ,
Fn, XF (M), and XM/F (Mn). There exists a k-isomorphism
(3.16) ζ : XM/F (Mn)/XF (M) −→ Fn/F
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such that
(1) ζ(πM/F ) = πF ;
(2) ζ(πMn/F ) ≡ πFn (modMln−1+1

Fn
);

(3) γ · ζ(πMn/F ) = ζ(γ · πMn/F ) for every γ ∈ G.

The proof of this proposition depends on the following lemma (cf. [1,
p. 88]).

Lemma 3.3. Let F be a local field, let g(T ) ∈ OF [T ] be a separable monic
Eisenstein polynomial, and let α ∈ F sep be a root of g(T ). Set E = F (α)
and let d = vE(g′(α)) be the E-valuation of the different of the extension
E/F . Then for any η ∈ F sep there is a root β of g(X) such that vE(η−β) ≥
vE(g(η))− d.

Proof. Let α1, α2, . . . , αn be the roots of g(T ), and choose 1 ≤ j ≤ n to
maximize w = vE(η − αj). For 1 ≤ i ≤ n we have
(3.17) vE(η − αi) ≥ min{w, vE(αj − αi)},
with equality if w 6= vE(αj − αi). Since w ≥ vE(η − αi), this implies that
for i 6= j we have vE(η − αi) ≤ vE(αj − αi). Since
(3.18) g(η) = (η − α1)(η − α2) . . . (η − αn),
we get

(3.19) vE(g(η)) ≤ w +
∑

1≤i≤n
i6=j

vE(αj − αi) = w + d.

Setting β = αj gives vE(η − β) = w ≥ vE(g(η))− d. �

Proof of Proposition 3.2. Since G(c)H = G and c > φFn/F (ln−1) = un−1
we get G(un)H = G. It follows that M and Fn are linearly disjoint over F .
The equality G(c)H = G also implies that i(M/F ) ≥ c > un−1. Therefore
by Lemma 2.1 we have
(3.20) i(Mn/Fn) = ψFn/F (i(M/F )) ≥ ψFn/F (c).

It follows that r(Mn/Fn) ≥ s, where r(Mn/Fn) is defined by (2.9) and
s = dp−1

p ·ψFn/F (c)e. Let g(T ) be the minimum polynomial for πMn/F over
XF (M), and let gF (T ) ∈ OF [T ] be the polynomial obtained by applying the
canonical map λ : XF (M)→ F given by λ(αM/F ) = αF to the coefficients
of g(T ). Since g(πMn/F ) = 0, it follows from Propositions 2.2(a) and 2.3
that vFn(gF (πFn)) ≥ r(Mn/Fn) ≥ s.

Let µ : XF (M) → F be the unique k-algebra isomorphism such that
µ(πM/F ) = πF . Then by Proposition 2.2 we have

(3.21) µ(αM/F ) ≡ αF (modMr(M/F )
F )
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for all αM/F ∈ OXF (M). Let gµ(T ) ∈ OF [T ] be the polynomial obtained by
applying µ to the coefficients of g(T ). Then

(3.22) gµ(T ) ≡ gF (T ) (modMr(M/F )
F ).

It follows from the inequalities

(3.23) [Fn : F ] · i(M/F ) ≥ [Fn : F ] · c ≥ ψFn/F (c)

that [Fn : F ]·r(M/F ) ≥ s. Since we also have vFn(gF (πFn)) ≥ s this implies
that vFn(gµ(πFn)) ≥ s > ln−1 + d. It follows from Lemma 3.3 that there is
a root β of gµ(T ) such that vFn(πFn − β) > ln−1. Therefore by Krasner’s
Lemma we have F (β) ⊃ F (πFn). Since [F (β) : F ] = deg(g) = [F (πFn) : F ]
we deduce that F (β) = F (πFn) = Fn. Since πMn/F is a root of g(T ),
and β is a root of gµ(T ), the isomorphism µ from XF (M) to F extends
uniquely to an isomorphism ζ from XM/F (Mn)/XF (M) to Fn/F such that
ζ(πMn/F ) = β ≡ πFn (modMln−1+1

Fn
).

We now show that ζ is H-equivariant. Let γ ∈ H and define hγ ∈ k[[T ]]
by

(3.24) hγ(πMn/F ) = γ · πMn/F = (γ · πL)L∈EMn/F ,

where we identify k with a subfield of XF (M) using the map fM/F . It
follows from Propositions 2.2 and 2.3 that

(3.25) γ · πFn ≡ hγ(πFn) (modMr(Mn/Fn)
Fn

).

Since ζ(πMn/F ) ≡ πFn (modMln−1+1
Fn

) and r(Mn/Fn) ≥ s ≥ ln−1 + 1 this
implies

ζ(γ · πMn/F ) = ζ(hγ(πMn/F ))(3.26)
= hγ(ζ(πMn/F ))(3.27)

≡ hγ(πFn) (modMln−1+1
Fn

)(3.28)

≡ γ · πFn (modMln−1+1
Fn

)(3.29)

≡ γ · ζ(πMn/F ) (modMln−1+1
Fn

).(3.30)

Since ζ(γ · πMn/F ) and γ · ζ(πMn/F ) are both roots of gµ(T ), and any two
distinct roots π, π′ of gµ(T ) must satisfy vFn(π − π′) ≤ ln−1, we deduce
that γ ·ζ(πMn/F ) = ζ(γ ·πMn/F ). Since ζ and γ are k-linear and continuous,
it follows that γ · ζ(α) = ζ(γ · α) for all α ∈ XM/F (Mn). �

Since τ is a B-isomorphism, τ∗ : G′ → G is a group isomorphism. For γ ∈
G set γ′ = (τ∗)−1(γ), and for N ≤ G set N ′ = (τ∗)−1(N). Then τ induces
an isomorphism from (XF (E), N) to (XF ′(E′), N ′). In particular, τ gives
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an isomorphism from (XF (E),H) to (XF ′(E′),H ′). Using the isomorphism
XXF (M)(XM/F (E)) ∼= XF (E) from [7, 3.4.1] we get an isomorphism

(3.31) τH : (XXF (M)(XM/F (E)),H) −→ (XXF ′ (M ′)(XM ′/F ′(E
′)),H ′),

where M ′ ⊂ E′ is the fixed field of H ′. Since H is an abelian p-adic Lie
group, it follows from [2, 5, 6] that τH is induced by an A-isomorphism
(3.32) ρ : XM/F (E)/XF (M) −→ XM ′/F ′(E′)/XF ′(M ′).
By restricting ρ we get an isomorphism
(3.33) ρn : XM/F (Mn)/XF (M) −→ XM ′/F ′(M ′n)/XF ′(M ′),

where M ′n = (M ′)n = F ′nM
′ is the fixed field of H ′[ln] = H[ln]′. Further-

more, for γ ∈ H and α ∈ XM/F (Mn) we have ρn(γ(α)) = γ′(ρn(α)).
Let πE/F be a uniformizer for XF (E), set πE′/F ′ = τ(πE/F ), and let

ζ : XM/F (Mn)/XF (M) −→ Fn/F(3.34)
ζ ′ : XM ′/F ′(M ′n)/XF ′(M ′) −→ F ′n/F

′(3.35)

be the isomorphisms given by Proposition 3.2. Then ωn = ζ ′ ◦ ρn ◦ ζ−1 is a
k-linear isomorphism from Fn/F to F ′n/F ′. It follows from Proposition 3.2
that for n ≥ 1 we have

(3.36) ωn(πFn) ≡ πF ′n (modMln−1+1
F ′n

)

and
(3.37) ωn(γ(πFn)) = γ′(ωn(πFn))
for all γ ∈ H. Since the restriction map from H = Gal(E/M) to Gal(Fn/F )
is onto, (3.37) is actually valid for all γ ∈ G.

Let In denote the set of k-isomorphisms ωn : Fn/F → F ′n/F
′, and let

Tn denote the subset of In consisting of those ωn which satisfy (3.36) and
(3.37) for all γ ∈ G. Since ln−1 is the only ramification break of F ′n/F ′n−1
we have ψF ′n/F ′n−1

(ln−1) = ln−1. Therefore by (3.36) and [4, V §6, Prop. 8],
for any ωn ∈ Tn we have

(3.38) NF ′n/F ′n−1
(ωn(πFn)) ≡ NF ′n/F ′n−1

(πF ′n) (modMln−1+1
F ′n−1

).

Suppose n ≥ 2. Since NFn/Fn−1(πFn) = πFn−1 and NF ′n/F ′n−1
(πF ′n) = πF ′n−1

,
it follows from (3.38) and (3.37) that

(3.39) ωn(πFn−1) ≡ πF ′n−1
(modMln−1+1

F ′n−1
).

Since ln−1 > ln−2 this implies that the restriction ωn 7→ ωn|Fn−1 gives a
map from Tn to Tn−1.

Define a metric on In by setting d(ωn, ω̃n) = 2−a, where
(3.40) a = vF ′n(ωn(πFn)− ω̃n(πFn)).
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Then In is compact, since it can be identified with the set of uniformizers
for F ′n. Therefore the closed subset Tn of In is compact as well. Since each
Tn is nonempty, by Tychonoff’s theorem there is a sequence (ωn)n≥1 such
that ωn ∈ Tn and ωn+1|Fn = ωn for all n ≥ 1. Since E = ∪n≥1Fn and
E′ = ∪n≥1F

′
n, the isomorphisms ωn : Fn/F → F ′n/F

′ combine to give an
A-isomorphism Ω : E/F → E′/F ′. Let θ = Ψ(Ω) be the B-isomorphism
induced by Ω and let mn = min{ln−1 + 1, r(E/Fn)}. It follows from (3.36)
and Proposition 2.2(a) that
(3.41) θ(πE/F ) ≡ πE′/F ′ (modMmnXF ′ (E′))

for every n ≥ 1. Since limn→∞mn = ∞ we get θ(πE/F ) = πE′/F ′ =
τ(πE/F ). Hence τ = θ = Ψ(Ω).

Now let σ be an arbitrary element of HomB((XF (E), G), (XF ′(E′), G′)).
Since XF ′(E′) is a finite separable extension of σ(XF (E)), by [7, 3.2.2] there
is a finite separable extension Ẽ/E such that σ extends to an isomorphism
τ : XE/F (Ẽ)→ XF ′(E′). It follows that each γ′ ∈ G′ induces an automor-
phism γ̃ = τ−1◦γ′◦τ of XE/F (Ẽ) whose restriction to XF (E) is σ∗(γ′) ∈ G.
Since XE/F (F sep) is a separable closure of XF (E) [7, Cor. 3.2.3], γ̃ can be
extended to an automorphism γ of XE/F (F sep). Since γ stabilizes XF (E),
and γ|XF (E) = σ∗(γ′) is induced by an element of G = Gal(E/F ), it follows
from [7, Rem. 3.2.4] that γ is induced by an element of Gal(F sep/F ), which
we also denote by γ. Since γ stabilizes XE/F (Ẽ), it stabilizes Ẽ as well.
Thus γ|Ẽ is a k-automorphism of Ẽ which is uniquely determined by γ′.
Since γ|Ẽ induces the automorphism γ̃ of XE/F (Ẽ), we denote γ|Ẽ by γ̃.

Let F̃ denote the subfield of Ẽ which is fixed by the subgroup G̃ =
{γ̃ : γ′ ∈ G′} of Autk(Ẽ). Then F̃ ⊃ F , so Ẽ/F̃ is a Galois extension,
with Gal(Ẽ/F̃ ) = G̃. Since the image of G̃ ∼= G′ in G is open, F̃ is a
finite separable extension of F , and hence F̃ ∼= k((T )) is a local field with
residue field k. Therefore (XF̃ (Ẽ), G̃) is an object in B, and τ gives a B-
isomorphism from (XF̃ (Ẽ), G̃) to (XF ′(E′), G′). By the arguments given
above, τ is induced by an A-isomorphism Ω : Ẽ/F̃ → E′/F ′. Since Ẽ/E
and F̃ /F are finite separable extensions, the embedding E ↪→ Ẽ induces
an A-morphism i : E/F → Ẽ/F̃ . Let
(3.42) α : (XF (E), G) −→ (XF̃ (Ẽ), G̃)
be the B-morphism induced by i. Then σ = τ ◦ α = Ψ(Ω ◦ i).
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