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de Bordeaux 21 (2009), 635-663

CM liftings of supersingular elliptic curves

par Ben KANE

Résumé. Sous GRH, nous présentons un algorithme qui, étant
donné un nombre premier p, calcule l’ensemble des discriminants
fondamentaux D < 0, tels que l’application de réduction, modulo
un premier aux dessus de p, des courbes elliptiques avec multipli-
cation complexe par OD vers les courbes elliptiques supersingu-
lières en caractéristique p est surjective. Dans l’algorithme, nous
déterminons d’abord une borne Dp explicite telle que |D| > Dp
implique que l’application est nécessairement surjective et nous
calculons ensuite explicitement les cas |D| < Dp.

Abstract. Assuming GRH, we present an algorithm which in-
puts a prime p and outputs the set of fundamental discriminants
D < 0 such that the reduction map modulo a prime above p from
elliptic curves with CM by OD to supersingular elliptic curves in
characteristic p is surjective. In the algorithm we first determine
an explicit constant Dp so that |D| > Dp implies that the map
is necessarily surjective and then we compute explicitly the cases
|D| < Dp.

1. Introduction
For D < 0 a fundamental discriminant, consider the imaginary quadratic

field K := Q(
√
D) with ring of integers OD and Hilbert class field HK .

From the work of Deuring [3], given a prime p which does not split in OD
and an elliptic curve E/HK with CM by OD the reduction to characteristic
p gives a supersingular elliptic curve defined over Fp2 . Elkies, Ono and Yang
[8] have deduced that the reduction map is surjective for |D| sufficiently
large by using an equidistribution result of Duke and Schulze-Pillot [5],
based upon bounds for coefficients of half-integral weight cusp forms by
Iwaniec [14] and Duke [4], combined with an (ineffective) lower bound for
the class number h(D) of OD due to Siegel [27]. Denote the (finite) set
of such D for which the reduction map is not surjective by Ep and define
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E ′p := {|D| : D ∈ Ep}. We say that Dp ∈ N is a good bound for p if
max E ′p < Dp (suppressing p when the context is clear).

Although Ep is finite, no explicit good bound is given above due to the
ineffective nature of Siegel’s lower bound. In this paper we present an
algorithm which takes as an input a prime p and return the set Ep. The al-
gorithm terminates unconditionally, but the correctness is conditional upon
the Generalized Riemann Hypothesis for Dirichlet L-functions and also the
Generalized Riemann Hypothesis for the L-series of weight 2 primitive new-
forms (henceforth simply denoted GRH). The assumption of GRH allows
us to use techniques developed by Ono and Soundarajan [23] to explicitly
compute a good bound for p.

Theorem 1.1. Let a prime p be given. Conditional upon GRH, there is
an effectively computable good bound for p.

Explicitly computing the bound given by Theorem 1.1 for p ≤ 113 we
obtain the following.

Theorem 1.2. Conditional upon GRH, 1.041 × 1023 is a good bound for
p ≤ 113.

Good bounds are obtained individually for each prime p ≤ 113 but we
simply take the maximum value in the above theorem for brevity. For
better bounds for each specific p ≤ 113, the reader is referred to Table 11
in Appendix A.

After obtaining the good bound Dp from Theorem 1.1, it only remains
to explicitly compute the set of |D| ≤ Dp for which the mapping is not sur-
jective. For each supersingular elliptic curve E/Fp2 we construct a positive
definite (ternary) quadratic form QE such that QE represents |D| if and
only if there exists E′ with CM by OD which reduces to E. Since there
are only finitely many supersingular elliptic curves we then merely need to
check which |D| ≤ Dp are represented by each QE .

One may then use the algorithm by Fincke and Pohst [9] to deter-
mine a vector of length |D|. The implementations which the author is
aware of return all vectors of length |D|, of which there are asymptoti-
cally Ωp(h(D)) � D

1
2−ε elements. Hence running this algorithm for each

|D| ≤ Dp to determine Ep is Ωp
(
D

3/2−ε
p

)
and the calculation quickly be-

comes infeasible for moderately large Dp. We hence want to take advantage
of the fact that we do not need all representations of |D| but rather only
one. In the case where E is defined over Fp we are able to use a classi-
fication result of Ibukiyama [13] to develop a specialized algorithm which
determines more efficiently the set of |D| < Dp which are represented (see
Section 5). This algorithm has allowed us to compute the full set Ep for
p = 11, 17, and 19.
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Theorem 1.3. Assuming GRH, the following hold.
(1) The set E11 is given by

E ′11 = {3, 4, 11, 67, 88, 91, 163, 187, 232, 235, 427499, 595, 627,
715, 907, 1387, 1411, 3003, 3355, 4411, 5107, 6787, 10483, 11803} .

(2) The set E17 satisfies #E17 = 91 and max E ′17 = 89563.
(3) The set E19 satisfies #E19 = 45 and max E ′19 = 27955.

Having established such surjectivity results, one may ask whether similar
results can be shown about the multiplicity of the reduction map. This
question was addressed and an unconditional but ineffective solution was
given by Elkies, Ono, and Yang [8].

Define the Hilbert class polynomial HD(x) ∈ Z[x] as the unique monic
polynomial whose roots are precisely the j-invariants of the elliptic curves
with complex multiplication by OD. These roots are referred to as singular
moduli of discriminant D. The degree of the Hilbert class polynomial is
h(D). Define further Sp(x) ∈ Fp[x] to be the polynomial with roots pre-
cisely the j-invariants of the supersingular elliptic curves of characteristic
p.

Theorem (Elkies-Ono-Yang [8]). For a prime p and t ∈ N, every suffi-
ciently large fundamental discriminant D < 0 for which p does not split in
OD satisfies

Sp(x)t | HD(x)
over Fp[x].

Here the implied constant depends on p and t. Their result states that
for sufficiently large D there are at least t nonisomorphic elliptic curves
with CM by OD which reduce to each supersingular elliptic curve of char-
acteristic p. We are again able to obtain an effective but conditional result
of this nature. For a supersingular elliptic curve E, define wE to be the
number of automorphisms of E and take the canonical measure

µ(E) := 1/wE∑
E′ 1/wE′

,

where the sum is taken over all supersingular elliptic curves of characteristic
p. We denote the minimal value of this measure by µp.

Theorem 1.4. Assume GRH. For a prime p and 0 < c < 1 there is
a effectively computable constant Dp,c ∈ N such that every fundamental
discriminant D < 0 with |D| ≥ Dp,c for which p is not split satisfies

Sp(x)cµph(D) | HD(x)

over Fp[x].
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In Section 3 we see that Theorem 1.4 reduces to the same argument given
to show Theorem 1.1. Since h(D) → ∞ effectively as D → −∞ (Oesterlé
[20] unconditionally showed the growth is Ω(log(|D|)1−ε), but Siegel [27]
obtained Ω(|D|1/2−ε) conditional on GRH), we also get an effective but
conditional version of Elkies, Ono, and Yang’s result by choosing for each
t ∈ N an integer Dp,t ≥ Dp,c large enough so that cµph(D) > t for every
|D| ≥ Dp,t.

Elkies, Ono and Yang are particularly interested in the case t = 2 because
they obtain a congruence for the Hilbert class polynomial whenever Sp(x)2 |
HD(x). We briefly expound upon this connection. For a function f with
Fourier expansion f(z) =

∑
n∈Z a(n)qn, the action of the operator U(p) is

given by f |U(p)(z) =
∑
n∈Z a(pn)qn. Elkies, Ono and Yang [8, Theorem 2.3

(1)] showed that if Sp(x)2 | f then there exist a polynomial Pf,p(x) ∈ Z[x]
such that

f(j(z))|U(p) ≡ Pf,p(j(z)) mod p.

They hence ineffectively show that such a congruence always exists for
f = HD whenever D is sufficiently large.

Our results will hence give as an immediate corollary an effective but
conditional bound beyond which this existence must occur. Effectively
computing the bound for t = 2 and noting that Watkins [33] has shown
explicitly that h(D) > 100 for every |D| > 2383747, we can choose c = 1/20
for p = 11 and c = 3/50 for p = 19 to effectively show that Sp(x)2 | HD(x)
for |D| > 1.370× 1010 and |D| > 2.675× 1013, respectively. Combining the
explicit bound given above with Theorem 2.3 (1) of Elkies, Ono, and Yang
[8] we obtain the following corollary after a calculation to determine the
explicit exceptions for p = 19.

Corollary 1.5. Assume GRH. If D < 0 is a fundamental discriminant
satisfying

(
D
19

)
6= 1 and |D| > 184699 then there exists a polynomial

PD,p(x) ∈ Z[x] such that

HD(j(z))|U(19) ≡ PD,p(j(z)) mod 19.

The paper begins by reviewing the connection between theta series and
Ep in Section 2. In Section 3, we review how the bound for coefficients of
theta series is obtained. Given the connection from Section 2, this gives a
good bound for p, dependent on numerically calculating certain constants.
In Section 4, we fix a basis and decompose a certain space of modular
forms in order to calculate some of the constants obtained from Section
3. Furthermore, we give explicit algorithms for calculating the remaining
constants. In Section 5, we use a trick based on the Ibukiyama’s classi-
fication [13] of the set of supersingular elliptic curves defined over Fp, in
order to calculate the set of |D| < Dp which are generated by QE . Finally,
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in Appendix A we give the data obtained by explicitly implementing the
algorithms from Sections 4 and 5 for p ≤ 113.

Acknowledgements. The author would like to thank T.H. Yang for his
help and guidance and would also like to thank K. Bringmann, K. Ono,
J. Rouse, and M. Müger for useful comments. Finally, the author would
like to thank the anonymous referee for an extremely detailed report which
aided the exposition greatly.

2. CM liftings of supersingular elliptic curves and theta series
For a supersingular elliptic curve E we say that DE is a good bound

for E if E is in the image of the reduction map for every |D| > DE .
Hence we determine a good bound Dp for p piecewise by determining a
good bound DE for each supersingular elliptic curve E/Fp2 and then tak-
ing Dp := maxE DE , relying on the fact that there are only finitely many
supersingular elliptic curves (up to isomorphism). This also aids in com-
puting the elements D ∈ Ep with |D| < Dp, since we only need to check all
|D| < DE for each curve, and not up to the larger bound Dp. The theory
involved in determining DE goes through quaternion algebras, quadratic
forms, theta series, and modular forms. For background information on el-
liptic curves a good reference is Silverman’s book [28]. A good reference for
quaternion algebras is Vigernas’s book [32], while Ono’s book [22] contains
a good introduction to modular forms. Good sources of information about
quadratic forms can be found in Jones’ book [15] and O’Meara’s book [21].

Let E/Fp2 be a supersingular elliptic curve. An elliptic curve Ẽ/HK
with CM by OD is a CM (by OD) lift of E if the reduction of Ẽ modulo the
unique prime above p is isomorphic to E. We now review the connection
between CM liftings and theta series. Let RE := End(E) be a maximal
order of the quaternion algebra Bp/Q ramified precisely at p and infinity.
For p inert inOD (resp. p ramified inOD) there is a one-to-one (resp. two-to-
one) correspondence between (non-isomorphic) lifts of E and embeddings
of OD in RE . Gross and Zagier [12, Prop. 2.7] cover the case of p inert
and Elkies [7, p. 168] extends this to the case where p is ramified. Let
LE := {x ∈ Z + 2RE |tr(x) = 0} be the Gross lattice with the associated
positive definite ternary quadratic form QE given by the reduced norm on
LE .

Define the theta series for QE by
θE(z) :=

∑
x∈LE

qQE(x) =
∑
d<0

d≡0,1 (mod 4)

aE(d)q|d|,

where z is in the upper half plane and q := e2πiz. Noting that wE = #R∗E ,
Gross [11, Prop. 12.9, p. 172] has shown that aE(D) equals wE

#O∗D
times the

number of embeddings of OD into RE . It is hence sufficient to proceed
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by bounding the coefficients of the theta series from below, and showing
that they must be positive whenever |D| > DE . However, Gross showed
that θE is a weight 3/2 modular form in Kohnen’s plus space (see the work
of Kohnen [18] or Ono’s book [22, p. 54] for a definition) of level 4p and
explicit bounds (conditional on GRH) for coefficients of theta series in this
space were established by the author [16]. The methods used to obtain
these bounds are reviewed in Section 3.

3. Background
This section is a brief summary of the theory used to bound the coeffi-

cients of θE . The theta series is first decomposed into a linear combination
of an Eisenstein series and a basis of weight 3/2 Hecke eigenforms. Using an
isomorphism to weight 2 cusp forms, the coefficients of the Hecke eigenforms
are then compared with the central values of quadratic twists of L-series
of weight 2 newforms. The central value of these L-series are bounded in
the authors’s generalization [16] of Ono and Soundararajan’s paper [23] in
terms of constants which we introduce here. Section 4 is devoted to explic-
itly determining the basis of weight 3/2 Hecke eigenforms, the isomorphism
to weight 2 newforms, and explicitly bounding these constants.

For k ∈ Z and N ∈ N we denote the space of (holomorphic) modular
forms of weight k and level N by Mk(N), the cuspidal subspace by Sk(N),
and the space of newforms by Snew

k (N). Moreover, for k ∈ 1
2Z\Z we denote

Kohnen’s plus space of level 4N by M+
k (4N) and the cuspidal subspace by

S+
k (4N). For a modular form g, we denote the n-th Fourier coefficient by
ag(n).

For pe the highest power of p dividing the square part of |d|, we denote
dp := d

p2e . Define the Eisenstein series

Hθ(z) := 12
p− 1

+
∑

d<0, d≡0,1 (mod 4)

12
p− 1

·
1−

(
|dp|
p

)
2

H(dp)q|d|,

where H(d) is the Hurwitz class number. In particular, for D < 0 a fun-
damental discriminant, H(D) equals the class number of the imaginary
quadratic field Q(

√
D) divided by the number of units modulo ±1. Gross

[11] has shown that θE −Hθ ∈ S+
3/2(4p).

Let g1, . . . , gr be a basis of Hecke eigenforms (a choice is explicitly made
in Section 4) for S+

3/2(4p). We then decompose our theta series as

θ = Hθ +
tp−1∑
i=1

bigi,

for some bi ∈ C. Here tp is the number of distinct conjugacy classes of
maximal orders of Bp, called the type number.
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For a fundamental discriminant D < 0 with corresponding Kronecker
character χD, define the |D|-th Shimura correspondence S|D| by

∞∑
n=1

ag|S|D|(n)
ns

:= L(χD, s)
∞∑
n=1

ag(|D|n2)
ns

for every g ∈ S+
3/2(4p). Here and throughout we denote the image of g

under an operator T by g|T . Shimura [26] showed that g|S|D| ∈ S2(4p) and
that S|D| commutes with every Hecke operator, namely

f |3/2T`2 |S|D| = (f |St)|2T`

for every f ∈ S+
3/2(4p) and every prime ` 6= p. Let ti ∈ Z>0 be minimal

with 4 | ti and −ti a fundamental discriminant satisfying agi(ti) 6= 0. If rj
are chosen so that

∑tp−1
j=1 rjagi(tj) 6= 0 for every 1 ≤ i ≤ tp−1, then Kohnen

[18] has shown that the linear combination of Shimura correspondences

(3.1) S :=
tp−1∑
i=1

riSti ,

called a Shimura lift, forms an isomorphism from S+
3/2(4p) to Snew

2 (p) =
S2(p) which sends Hecke eigenforms to Hecke eigenforms.

Denote the Shimura lift of gi by Gi := gi|S. For a fundamental discrim-
inant D < 0 and Re(s) > 1, we denote the L-series of χ := χD by

L(s) := L(χ, s) :=
∞∑
n=1

χ(n)
ns

and for Re(s) > 3
2 we denote the L-series of Gi twisted by χ as

(3.2) Li(s) := L(Gi, D, s) :=
∞∑
n=1

χ(n)aGi(n)
ns

.

The conductor of Li(s) is q := p|D|2. Denote by mi the smallest integer
such that agi(mi) 6= 0 with (p,mi) = 1.

Using the fact that Gi is a Hecke eigenform, the author [16] showed
that any fundamental discriminant D < 0 satisfying aθ(|D|) = 0 must also
satisfy

(3.3) 12

(p− 1)π2
vp(|D|)

2

· |D|
1
4 ≤

√√√√tp−1∑
i=1
|bi|2

√√√√tp−1∑
i=1

ci
Li(1)
L(1)2 ,

where

(3.4) ci := |agi(mi)|2

L(Gi,mi, 1)m
1
2
i
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is a constant which comes from taking the ratio of the |D|-th coefficient
and the mi-th coefficient in the Kohnen-Zagier formula [19]. Define

(3.5) F (s) := Fi(s) :=
(√

q

2π

)s−1 Li(s)Γ(s)
L(s)L(2− s)

and choose 1 < σ < 3
2 . To obtain a contradiction from equation (3.3) for

|D| sufficiently large, it remains to bound F (1) = Li(1)
L(1)2 from above.

Since equation (3.3) is obtained by assuming aθ(|D|) ≤ 0 and rearrang-
ing, we can similarly assume aθ(|D|) ≤ caHθ(|D|) for a constant 0 < c < 1
and obtain equation (3.3) with the left hand side multiplied by 1−c. Hence
Theorem 1.4 is also reduced to bounding F (1) and the details are left to
the reader.

We describe briefly how Ono and Soundararajan [23] bounded F (1). By
the functional equation of F (s) and the Phragmén-Lindelöf principle we
have

F (1) ≤ max
t∈R

F (σ + it),

so it suffices to bound F (σ + it) from above for every t ∈ R.
For a real number X > 0 and an L-series L̃(s) with c > 0 real chosen

such that s+c is in the region of absolute convergence, consider the integral

(3.6)
∫ c+i∞
c−i∞

L̃′

L̃
(s+ w)Γ(w)Xwdw.

On the one hand, if L̃(s) =
∑∞
n=1

a(n)
ns in the region of convergence, then

(3.6) can be computed as the sum

(3.7)
∞∑
n=1

Λ(n)a(n)
ns

e−n/X

using the fact that∫ c+i∞
c−i∞

Γ(w)
(
X

n

)w
dw =

∞∑
m=0

(−1)m

m!

(
n

X

)m
= e−n/X ,

which follows by shifting the integral Re(w) → −∞ and counting the
residues at negative integers. On the other hand, we can shift the orig-
inal integral to the left and count the contribution from residues at each
of the poles. The contribution from w = 0 gives L̃′

L̃
(s). The assumption of

GRH allows us to determine the real part of all of the poles coming from L̃′

L̃
,

since these correspond to zeros of L̃(s). Rearranging the resulting equation
gives a formula for L̃′

L̃
(s) which we integrate to get a formula for log |L̃(s)|,

as shown by Ono and Soundararajan [23, Lemmas 1-2].
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Using the above argument with L̃(s) = L(s), we define for Re(s) > 1 the
integral of equation (3.7) by

(3.8) G(s,X) :=
∞∑
n=1

Λ(n)χ(n)
ns log(n)

e−n/X .

Similarly, with λi defined so that L
′
i
Li

(s) =
∞∑
n=1

λi(n)χ(n)
ns when Re(s) > 3/2,

define

(3.9) F 1(s,X) :=
∞∑
n=1

λi(n)χ(n)
ns

e−n/X

and

F (w,X) :=
∞∑
n=1

λi(n)χ(n)
nw log(n)

e−n/X =
∫
F 1(w,X)dw.

For s = σ + it, s0 = 2 − σ + it and s2 = σ2 + it for any choice σ <
σ2 < 2, the following bound [16] was obtained for F (s). For certain explicit
constants cθ,σ,X,1, cθ,σ,X,t,1, cθ,σ,X,m,1, cθ,σ,X,2, cθ,σ,X,t,2, and cθ,σ,X,q,2

log |F (s)| ≤ X

X + 1
F (s,X)− X((2 + γ(X))α(X)− β(X)

(X + 1)(1 + γ(X))
F 1(s2,X)

− X

X − 1− δ(X)X
( Re(G(s0,X))− Re(G(s,X))) + cθ,σ,X,2 + cθ,σ,X,t,2

+ cθ,σ,X,q,2 − (cθ,σ,X,1 + cθ,σ,X,t,1 + cθ,σ,X,m,1) + log |Γ(s)| − 2 log |L(s)|,

where α(X), β(X), γ(X) and δ(X) are defined in the author’s previous
paper [16] in equations (7.2), (7.1), the line directly proceeding (7.1), and
the first equation in Section 6, respectively. Moreover, in Section 8 of that
paper, explicit bounds in terms of Γ-factors are given for α(X), β(X),
γ(X), and δ(X).

The decay in Γ(s) cancels polynomial growth in t from cθ,σ,X,t,i. Since
σ > 1, L(s) converges absolutely, so we can explicitly calculate a bound
for 2 log |L(s)| as well. The other terms involving F , G, and F 1 are also
dealt with [16] (Here, we use cancellation in the sums for small n between
terms from 2 log |L(s)|, and then bound the remaining terms separately).
We give further details in Section 4 of how to compute better bounds for
these constants.

Therefore, the main goal of this paper is to decompose Kohnen’s plus
space, make a choice of gi, determine a Shimura lift, and then calculate bi
and ci. This is described in Section 4. Moreover, in feasible cases we must
determine an algorithm to determine whether |D| is represented by a fixed
form Q. A specialized algorithm is given in Section 5 to determine this
whenever the corresponding elliptic curve is defined over Fp.
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4. Algorithm to compute DE and Dp
This section is broken into four main subsections. We first determine

the set of theta series θE for every supersingular elliptic curve E/Fp2 . We
then determine a basis of Hecke eigenforms {gi : i ∈ {1, . . . , tp − 1}} for
the subspace of S+

3/2(4p) generated by these theta series and express the
cuspidal part of the theta series as a linear combination of these eigenforms.
The third step is to compute an explicit Shimura lift S from S+

3/2(4p) to
S2(p) and finally we compute the constants corresponding to Gi = gi|S.

4.1. Calculating the theta series. Let p be a prime and C > 0 be an
integer. We describe here how to obtain the quadratic forms QE and the
first C coefficients of θE for every supersingular elliptic curve E/Fp2 . If C
is chosen too small for the remaining calculations, then we simply double
C and rerun the calculations.

We begin by calculating the maximal orders RE using Kohel’s imple-
mentation [17], based on an algorithm of Pizer [24], which is built into
MAGMA. These are obtained by first using a function to calculate a single
maximal order R, then calculating all left ideal classes Ii of R, and finally
calculating the right order Ri of Ii, which gives a full set of maximal orders.
It is then straightforward to compute LE and the method of Fincke and
Pohst [9] may be used to compute the coefficients aE(d) for every d < C.

4.2. Decomposition of θE. We now compute a basis of (cuspidal) Hecke
eigenforms g1, . . . gtp−1 of the space spanned by all of our theta series and
then decompose the cuspidal part gE := θE −Hθ in terms of these Hecke
eigenforms. This gives us the coefficients bi from section 3.

A computational solution to the decomposition problem for integral
weight forms follows from the work of Stein [29] on modular symbols. We
recall that Kohnen [18] has shown that the Hecke algebra on S+

3/2(4p) is iso-
morphic to the Hecke algebra on Snew

2 (p) = S2(p). Furthermore, Sturm has
shown for S2(p) that a finite set of Hecke operators generates the Hecke al-
gebra and has given an effectively computable bound N so that {Tn|n ≤ N}
generates the Hecke algebra [31]. The Hecke eigenspaces of distinct normal-
ized Hecke eigenforms on S2(p) are at most one dimensional (that is, S2(p)
satisfies (strong) multiplicity one, cf. Ono’s book [22, p. 29]). Therefore
S+

3/2(4p) also satisfies multiplicity one.
We first note that the space generated by our theta series is invariant

under the action of the Hecke algebra, so that the space is generated by
the set of gE (which have coefficients in Q). Since S+

3/2(4p) has multiplicity
one, we can diagonalize the Hecke operators T := Tn2 simultaneously. We
only need to diagonalize the operators for n ≤ N , where N is the Sturm
bound on S2(p) as above. Checking computationally, it appears as though
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a single gE =: g always generates the entire space under the action of the
Hecke algebra (we have checked for all p < 1000) and we demonstrate how
to obtain a basis of Hecke Eigenforms in this case. This assumption is not
really restrictive because one merely needs to follow the same argument
for the forms gE1 , gE2 , . . . until the dimension equals tp − 1. We may also
choose a particular T such that g|Tm generates the entire subspace (see
Stein’s book [30, p. 167]).

Given g and T as above we calculate g|Tm for every 0 ≤ m < tp. Then
using linear algebra over Q we obtain g|T tp−1 as a linear combination of
g|Tm with 0 ≤ m < tp − 1, giving a matrix MT , with rational coefficients,
which determines the action of T . Let F be the Galois splitting field over Q
of the characteristic polynomial of MT with absolute polynomial P (x). We
note that all elements of F may be represented as vectors over Q in terms
of a generator of F , or, equivalently, as elements of Q[x]/(P ), allowing for
linear algebra over F . Since g|Tm has coefficients in Q we can diagonalize
MT to obtain Hecke eigenforms with coefficients in F . Because S+

3/2(4p)
has multiplicity one and T generates the Hecke algebra, the eigenspace of
a given eigenvalue has dimension one. Hence we may calculate with linear
algebra over F the unique eigenform gi with eigenvalue λi.

We can now decompose each gE as a linear combination of the gi by
linear algebra over F . This gives the desired coefficients bi ∈ F in the
decomposition

gE =
tp−1∑
i=1

bigi.

4.3. Finding a Shimura lift. Having established the Hecke eigenforms
gi, we now choose ti and ri as in equation (3.1) to establish a Shimura lift.
We recursively choose t` and r` such that

S(`) :=
∑̀
j=1

rjStj

satisfies gi|S(`) = 0 if and only if agi(tj) = 0 for every 1 ≤ j ≤ `.
At each step we choose i smallest such that gi|S(` − 1) = 0. We then

choose t` to be the smallest positive integer with 4 | t`, −t` a fundamental
discriminant, and agi(t`) 6= 0, noting existence has been shown by Kohnen
[18]. It remains to choose r` such that for every k we have

∑`
j=1 rjagk(tj) =

0 if and only if agk(tj) = 0 for 1 ≤ j ≤ `. Since F = Q(α) is a number field
we may consider F as a vector space over Q with basis αi.

Let k be given such that agk(tj) 6= 0 for some j. If agk(t`) = 0, then
we know by inductive hypothesis that gk|S(` − 1) + r`St` 6= 0 for any r`.
If agk(t`) 6= 0, then writing it in terms of the basis, we have agk(t`) =
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m dmα

m with some dm,k 6= 0. Computing

`−1∑
j=1

rjagk(tj)

and rewriting in terms of the basis, we write the coefficient em,k ∈ Q of αm.
We then take

r`,k :=
∣∣∣∣∣em,kdm,k

∣∣∣∣∣+ 1
2
.

Taking r` := maxk r`,k, we have

|r`dm,k| > |em,k|

and hence r`dm,k + em,k 6= 0. It follows that gk|S(`) 6= 0 because the
coefficient of αm in the first Fourier coefficient is nonzero. Since k was
arbitrary, we have gi|S(`) = 0 if and only agi(tj) = 0 for every 1 ≤ j ≤ `,
as desired. We then terminate if gi|S(`) 6= 0 for every i, terminating after
at most tp − 1 recursions, and otherwise continue the recursion.

4.3.1. Calculating ci. Recall first that

ci = |agi(mi)|2

L(Gi,mi, 1)m1/2
i

for mi a fixed integer such that agi(mi) 6= 0 and mi 6= 0 (mod p) and
Gi = gi|S. We may simply choose mi to be the smallest such integer. In
the bounds that we obtain it suffices to bound |ci| from above.

We have already shown how to calculate agi(mi), so it remains to calcu-
late L(Gi,mi, 1). We use the following formula of Cremona [1],

L(Gi,mi, 1) =
∞∑
n=1

2aL(n)χ(n)e−2π n
mi
√
p .

Calculating the partial sum up to a fixed bound N and noting by Deligne’s
optimal bound [2] that |aL(n)| ≤ σ0(n)n

1
2 , we may bound the error easily

by pulling the absolute value inside the sum for n > N .

4.4. Calculating the other constants. These constants are actually
fairly easy to calculate once we show clearly where they come from, given
the theoretical results stated in the author’s previous paper [16]. The
methods involved and notation used are similar to those used by Ono and
Soundararajan [23].

Most of the constants obtained are explicit in terms of Γ and ζ factors
along the real line, but we need to do some work to calculate the terms
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involving F , F 1, and G (coming from equation (3.7)). Define v(n,X) by

v(n,X) := cθ,X,1,F
λi(n)e−n/X

nσ
+ cθ,X,1,F 1

log(n)λi(n)e−n/X

nσ2

− cθ,X,2,G

(
Λ(n)e−n/X

nσ0
− Λ(n)e−n/X

nσ

)
,

where σ = Re(s), σ0 = Re(2− s), and σ2 = Re(s2), so that
∞∑
n=2

Re
(

χ(n)
nit log(n)

v(n,X)
)

= cθ,X,1,FRe(F (s,X))

+ cθ,X,1,F 1Re(F 1(s2,X))− cθ,X,2,GRe(G(s0,X)−G(s,X)).

We next bound the following to get a constant independent of the vari-
ables involved. From above, we need to bound

(4.1) − 2 log |L(s)|+ 2
N0∑
n=2

Re
(
χ(n)Λ(n)
ns log(n)

)
.

Noting that s is in the region of absolute convergence,

log(|L(s)|) =
∞∑
n=2

Re
(
χ(n)Λ(n)

ns
log(n)

)
.

Then equation (4.1) becomes

−2 log(|L(s)|) + 2
N0∑
n=2

Re
(
χ(n)Λ(n)
ns log(n)

)
= −2

∞∑
n=N0+1

Re
(
χ(n)Λ(n)
ns log(n)

)
.

Therefore, taking the absolute value inside the sum gives

2

∣∣∣∣∣∣
∞∑

n=N0+1

χ(n)Λ(n)
ns log(n)

∣∣∣∣∣∣ ≤ 2
∞∑

n=N0+1

Λ(n)
nσ log(n)

= 2 log(|ζ(σ)|)−
N0+1∑
n=2

Λ(n)
nσ log(n)

,

and this final finite sum and ζ(σ) are easily computed.
We also need a bound for the constants depending on t, the imaginary

part of s. We use the functional equation of the Γ factor to remove the
growth from these terms. Since the growth is logarithmic in t we easily
obtain

(4.2) log |Γ(s)|+ cθ,X,1,t − cθ,X,2,t ≤ log |Γ(σ + r)|

for some r ∈ N.
A computer is then used to bound

(4.3)
N0∑
n=2

Re
(

χ(n)
nit log(n)

(
v(n,X)− 2Λ(n)

nσ

))
.
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Notice that the term we are subtracting is exactly the term being added
in equation (4.1). The only nonzero terms are p powers, so the maximum
is taken by calculating 1

log(n)

(
v(n,X)− 2Λ(n)

nσ

)
for each n = pk and then

noting that either χ(pk) = χ(p)k, which is either one or alternates. Finding
the t which maximizes this sum for each p, independent of whether the sum
alternates or not, gives the bound, since we then add up the absolute value
of each of these terms together.

It remains to bound the terms coming from equation (3.7) with n large.
We hence look at

(4.4)
∞∑

n=N0+1
Re
(

χ(n)
nit log(n)

(v(n,X))
)
.

Notice first, since σ2 > σ, that for n sufficiently (namely we choose N0 such
that this occurs for n > N0) the term from the F 1 part of v(n,X) satisfies
the bound

cθ,X,1,F 1
log(n)
nσ2

≤ cθ,X,1,F
nσ

.

Therefore, we see that

|v(n,X)| ≤ e−n/X
(

2cθ,X,1,F
|λi(n)|
nσ

+ cθ,X,2,GΛ(n)
( 1
nσ0
− 1
nσ

))
.

Since λi(n) ≤ 2
√
n log(n), we can further bound this by

cθ,X,v
Λ(n)

nmin(σ−1/2,σ0) e
−n/x.

In [16], we have shown for α = min(σ − 1/2, σ0) an explicit constant cN0
such that

(4.5) H(α,X) :=
∞∑

n=N0+1

Λ(n)
nα log(n)

e−n/x

≤ e−N0/X

Nα0 log(N0)
(cN0N0 − ψ(N0)) + cN0X

1−α

log(N0)
Γ(1− α,N0/X).

We then calculate the incomplete Gamma factor Γ(1 − α,N0/X) (cf. the
paper of Gautschi [10]), giving the desired bound.

5. Determining CM lifts for |D| < DE when E is defined over Fp
In this section, we give an algorithm to determine whether E/Fp is in

the image of the reduction map from elliptic curves with CM by OD for a
fixed D to deal with |D| < DE . It is based on a classification of RE given
by Ibukiyama [13] when E is defined over Fp. We will first show how to
compute the integers represented by a lattice satisfying certain conditions
and then we will show that LE is one such lattice.
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5.1. Efficient computation for certain lattices. Let L1 be a ternary
lattice with associated quadratic form Q and L be the lattice < a > ⊕L2,
where L2 is a 2-dimensional lattice and a is some constant. Assume that L1
satisfies L1 ⊆ L ⊆ Z3 and the restriction x1 ≡ x2 (mod R) on the lattice
L gives the lattice L1. We would like to compute the integers n ≤ N for
which there is a vector in L1 of length n, namely our goal is to compute

TN := {n ≤ N : ∃x ∈ L1, n = Q(x)}
= {n ≤ N : ∃x ∈ L, x1 ≡ x2 (mod R), n = Q(x)}.

Denote the elements (y1, y2) of L2 satisfying y1 ≡ i (mod R) by L2,i. Define
the integers n ≤M for which there is a vector of length n in L2,i by

SM,i := {n ≤M : ∃y ∈ L2,i, n = Q(0, y)}.
In order to compute TN , we address first the simpler problem of computing

TN,M := {n ≤ N : ∃m ∈ SM,i and x ≡ i (mod R), ax2 +m = n}.
Clearly we have TM ⊆ TM,N ⊆ TN and TN,N = TN . If the set of possible
exceptions

XN,M := {M < n ≤ N : n /∈ TM,N , n is locally represented}
is small, then we can compute TN \ TM,N rather quickly. Notice in partic-
ular that if XN,M = ∅, then TN = TM,N . Since all sufficiently large eligible
integers with bounded divisibility at the anisotropic primes are represented
by Q (if they are primitively represented by the spinor genus), this im-
plies that we will be able on average to compute TN by choosing M much
smaller. The computational gain in doing so is evidenced in the following
proposition.

Proposition 5.1. Denote the discriminant of L by DL. The set TN,M
can be computed in running time O(RM +N +D3

L +N
1
2M) and memory

O(RM + D2
L). Moreover, if we denote X := #XN,M , then TN can be

computed in O(D3
L +RN +N

1
2 (M +X)) with storage O(RN +X +D2

L).

Proof. We first trivially compute the integers locally represented by Q,
taking running time O(D3

L) and we need to store the answer for the result-
ing 4D2

L integers. We next use the algorithm of Fincke and Pohst [9] to
precompute SM,i, with a running time of O(M). Repeating this for each
0 ≤ i < R gives an overall precomputation time of O(RM +D3

L) and stor-
age is O(RM + D2

L) bits. If we represent these sets as a bit array, then
checking for membership is clearly O(1).

Now let n ≤ N be given such that n is locally represented (checked
in O(1)). If n ∈ TN,M then there exists an x ≡ i (mod R) such that

n−ax2 ∈ SM,i, and hence 0 ≤ n−ax2 ≤M or
√

max
(
n−M
a , 0

)
≤ x ≤

√
n
a .
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We thus simply check membership of n− ax2 ∈ SM,x (mod R) for each such
choice of x. For n ≤ M there are

√
n
a choices and checking these takes

O(M
3
2 ) = O(MN

1
2 ). For n ≥ M there are

⌊
M√

an+
√
a(n−M)

⌋
such choices.

We then bound against the integral
∫N
x=M

M

x
1
2

to obtain O(MN
1
2 ).

Thus, we can compute TN,M (and simultaneously the complementary set
XN,M ) in O(RM + N + D3

L + MN
1
2 ). To compute TN it only remains to

compute TN \TM,N or in other words we must determine for each n ∈ XN,M
whether n ∈ TN or n /∈ TN . To do so we compute SN,i, using the algorithm
of Fincke and Pohst again, taking O(RN). Then for each n ∈ XN,M we
check membership for n − ax2 ∈ SN,i for O(N

1
2 ) choices of x. This is

precisely the computation to determine membership of n in TN,N = TN , so
we can conclude decisively whether n ∈ TN or not.

�

In practice we will then start with M = N
1
2 and dyadically increase M

until X ≤ M . Moreover, the above algorithm will compute TN quickly on
average.

Theorem 5.2. The set TN may be computed on average in O(N1+ε), where
the implied constant depends on the lattice L1.

Proof. Let n be an integer which is locally represented by Q on L1. More-
over, assume that n is not a primitive spinor exception. This condition may
be checked in constant time, using the classification given by Schulze-Pillot
[25] or an explicit generalization given by Earnest, Hsia, and Hung [6], and
furthermore there are only finitely many square classes tn2 for which this
condition may not be satisfied, so we could nonetheless check these in O(N)
again using the algorithm above after adding N

1
2 exceptions to XN,M .

Under these conditions, there are Ω(n
1
2−ε) vectors of length n in the

lattice L1. This follows by decomposing the theta series for L1 into an
Eisenstein series and a cuspidal contribution. Since n is locally represented,
the n-th Fourier coefficient of the Eisenstein series is a class number by the
work of Jones [15, Theorem 86], which Siegel [27] has (ineffectively) shown
is Ω(n

1
2−ε). The fact that n is primitively represented by the spinor genus

implies that the n-th Fourier coefficient of the cusp form is the n-th Fourier
coefficient of a cusp form in the orthogonal complement of one dimensional
theta series. Duke [4] has shown that these coefficients are bounded by
O(n

13
28 +ε). Moreover, since the Fourier coefficients of the theta series of

a binary quadratic form are O(1) and L2 is orthogonal to < a >, there
are Ω(n

1
2−ε) choices of x for which there exists a vector (x, y1, y2) ∈ L1 of

length n.
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There are O(n
1
2 ) choices of x for which the vector (x, y1, y2) ∈ L1 may

have length n and Ω(n
1
2−ε) actually have length n. Hence if we choose one

x there is a probability of Ω(n−ε) that there is some (y1, y2) ∈ L2 for which
the vector has length n, and we may treat this as a binomial distribution
with p = n−ε. We now take M := N

1
2 +2ε. Running the algorithm, the

expected number of choices of x for which we will find a vector of length n
is

Ω
(
M√
n
· n−ε

)
= Ω(N ε).

We then note that n ∈ XN,M if and only if there is no such x chosen.
Chernoff’s approximation of the cumulative distribution function implies
that

Pr(n ∈ XN,M )� e−
1
2N
ε
.

Hence the expected value for X is E(X) � Ne−
1
2N
ε � M , and it follows

that the running time of the above algorithm is O(N1+ε) on average. �

5.2. Calculating which |D| are represented by the Gross lattice.
Assume that E is defined over Fp. We next show that LE satisfies the
conditions of Proposition 5.1 with either R = 1 or R = 2.

Lemma 5.3. Let E be a supersingular elliptic curve defined over Fp, LE be
its associated Gross lattice, and R0

E be the lattice of trace zero coefficients.
Then there exists a lattice L satisfying LE ⊆ L ⊂ R0

E such that the reduced
norm on L is

Q(x, y, z) = px2 + (by2 + fyz + cz2).

Proof. Since E is defined over Fp, Ibukiyama [13] has shown that RE is of
one of the following two types,

(5.1) R(q, r) := Z + Z
1 + β

2
+ Z

α(1 + β)
2

+ Z
(r + α)β

q

or

(5.2) R′(q, r′) := Z + Z
1 + α

2
+ Zβ + Z

(r′ + α)β
2q

,

where q is a prime satisfying q ≡ 3 (mod 8) and
(
−q
p

)
= −1, α2 = −p,

β2 = −q, αβ = −βα, r2 + p ≡ 0 (mod q) and r′2 + p ≡ 0 (mod 4q) in the
case when p ≡ 3 (mod 4).

For RE = R(q, r) with basis 1+β
2 , γ1 := β, γ2 := α(1+β)

2 , and γ3 := (r+α)β
q ,

R0
E is generated by γ1, γ2, γ3 while LE is generated by γ1, 2γ2, 2γ3. We take

L to be the lattice generated by γ1, 2γ2, γ3. If an arbitrary element of L
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is written xγ1 + 2yγ2 + zγ3, then the change of variables x′ := x − ry,
y′ := z + qy and z′ := y gives the reduced norm

p(x′)2 + r2 + p

q
(y′)2 + p(z′)2 + 2rx′y′,

as desired. Changing z to 2z above implies that z′ ≡ y′ (mod 2), so that
the reduced norm on LE is precisely the quadratic form given above with
z′ ≡ y′ (mod 2).

If RE = R′(q, r′), we have a simpler task. In this case, the reduced norm
on R0

E is simply

px2 + qy2 + (r′)2 + p

4q
z2 + r′yz.

To get the elements of the Gross lattice, we simply multiply y and z by 2
to get

Q′(x, y, z) := px2 + (4q)y2 + (r′)2 + p

q
z2 + (4r′)yz.

�

Given Lemma 5.3, the reduced norm on LE is either of the form

Q(x′, y′, z′) := q(x′)2 + r2 + p

q
(y′)2 + p(z′)2 + 2rx′y′,

with z′ ≡ y′ (mod 2), or

Q′(x, y, z) := px2 + (4q)y2 + (r′)2 + p

q
z2 + (4r′)yz.

We then compute the integers represented by the reduced norm on LE
by using the algorithm given in Proposition 5.1 with R = 2 or R = 1,
respectively.

Appendix A. Data
We now use the algorithm from Section 4 to compute good bounds for

p ≤ 113, using X = 455, σ = 1.15, N0 = 1000, and σ2 = 1.3256 (These
were chosen by a binary search for σ and a heuristically based search for
σ2 given σ.). Tables 1, 2, 3, and 4 give the good bounds for E. Combining
the good bounds for every E/Fp2 we obtain good bounds for p in Table
11. For each maximal order RE , we list the prime p, then the size of
the field Fq (q = p or q = p2) which the corresponding elliptic curve is
defined over. We then list the corresponding ternary quadratic form as
[a, b, c, d, e, f ] = ax2 + by2 + cz2 + dxy + exz + fyz. We next list a good
bound D0 for E which suffices when (D, p) = 1, and a good bound D1
which also suffices when p | D. We separate these cases since a better
bound is obtained for D relatively prime to p and skipping (D, p) = 1 is
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a computational gain. We omit here the primes 3, 5, 7, and 13, since we
have Dp = 1 trivially.

For N ∈ N∪{∞}, let ENE be the set of positive integers n ≤ N with p2 - n
not represented by QE . We omit those n with p2 | n since p is an anisotropic
prime and hence n is represented if and only if n

p2 is represented. In Tables
5, 6, 7, 8, 9, and 10 we list ENE computed using the method described
in section 5 when E is defined over Fp and otherwise using the standard
method [9]. For each elliptic curve we have chosen N0 and N1 and compute
EN0
E and {n ∈ EN1

E |n ≡ 0 (mod p)}. When #ENE is small we list the full
set ENE , while we otherwise simply list #ENE and max(ENE ). Although we
are only able to determine Ep for p = 11, 17, 19 under GRH, we are able to
determine EE := E∞E for a number of forms, which we denote by an asterisk
next to the form.

Table 1. Good Bounds DE for E/Fp2 .

p #Fq Quadratic Form D0 D1

11 p [4,11,12,0,4,0] 1.813× 108 3.163× 108

11 p [3,15,15,-2,2,14] 5.142× 108 8.973× 109

17 p [7,11,20,-6,4,8] 1.002× 1010 1.748× 1011

17 p [3,23,23,-2,2,22] 8.652× 1013 1.510× 1015

19 p [7,11,23,-2,6,10] 3.020× 109 5.270× 1010

19 p [4,19,20,0,4,0] 9.198× 1011 1.606× 1013

23 p [8,12,23,4,0,0] 7.459× 1010 3.700× 1011

23 p [4,23,24,0,4,0] 2.050× 1014 2.522× 1015

23 p [3,31,31,-2,2,30] 8.297 × 1014 6.955× 1015

29 p [11,12,32,8,4,12] 6.739× 1011 1.008× 1012

29 p [8,15,31,4,8,2] 3.836× 1013 3.130× 1014

29 p [3,39,39,-2,2,38] 1.900× 1016 1.550× 1017

31 p [7,19,36,-6,4,16] 3.836× 1012 4.359× 1013

31 p [8,16,31,4,0,0] 1.245× 1013 2.069× 1014

31 p [4,31,32,0,4,0] 8.558× 1014 1.008× 1016

37 p2 [15,20,23,-4,14,8] 2.101× 1011 3.667 × 1012
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Table 2. Good Bounds DE for E/Fp2 .

p #Fq Quadratic Form D0 D1

37 p [8,19,39,4,8,2] 6.399× 1013 1.117 × 1015

41 p [11,15,47,-2,10,14] 1.834× 1014 3.201× 1015

41 p [12,15,44,8,12,4] 2.520× 1014 7.830× 1015

41 p [7,24,47,4,2,24] 1.967 × 1015 1.447 × 1016

41 p [3,55,55,-2,2,54] 4.375× 1017 3.579× 1018

43 p2 [15,23,24,2,8,12] 2.565× 1012 4.476× 1013

43 p [11,16,47,4,2,16] 4.056× 1013 7.079× 1014

43 p [4,43,44,0,4,0] 1.364× 1016 2.379× 1017

47 p [12,16,47,4,0,0] 1.492× 1014 2.604× 1015

47 p [7,27,55,-2,6,26] 1.080× 1015 1.527 × 1016

47 p [8,24,47,4,0,0] 1.056× 1015 1.842× 1016

47 p [4,47,48,0,4,0] 2.339× 1017 4.082× 1018

47 p [3,63,63,-2,2,62] 3.702× 1017 6.461× 1018

53 p2 [20,23,32,-12,4,20] 1.174× 1014 1.428× 1015

53 p [12,19,56,8,12,4] 4.015× 1015 6.101× 1016

53 p [8,27,55,4,8,2] 5.825× 1016 4.883× 1017

53 p [3,71,71,-2,2,70] 6.918× 1018 5.467 × 1019

59 p [15,16,63,4,2,16] 5.715× 1015 4.395× 1016

59 p [12,20,59,4,0,0] 6.442× 1015 3.794× 1016

59 p [15,19,64,-14,8,12] 3.103× 1016 3.982× 1017

59 p [7,35,68,-6,4,32] 1.330× 1016 1.739× 1017

59 p [4,59,60,0,4,0] 4.413× 1018 4.573× 1019

59 p [3,79,79,-2,2,78] 6.579× 1018 8.386× 1019

61 p2 [23,24,32,16,4,12] 8.254× 1014 6.927 × 1015

61 p [7,35,71,-2,6,34] 5.007 × 1015 2.545× 1016

61 p [8,31,63,4,8,2] 5.892× 1016 2.803× 1017

61 p [11,23,68,-6,8,20] 5.240× 1016 3.797 × 1017

67 p2 [23,24,35,8,2,12] 5.517 × 1014 9.628× 1015

67 p2 [15,36,39,-4,14,16] 1.105× 1015 1.928× 1016

67 p [16,19,71,12,16,6] 1.207 × 1016 1.987 × 1017

67 p [4,67,68,0,4,0] 2.623× 1018 2.642× 1019

71 p [15,20,76,8,4,20] 7.313× 1016 5.485× 1017

71 p [12,24,71,4,0,0] 3.235× 1016 2.936× 1017

71 p [15,19,79,-2,14,18] 1.343× 1017 5.962× 1017
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Table 3. Good Bounds DE for E/Fp2 .

p #Fq Quadratic Form D0 D1

71 p [16,20,71,12,0,0] 1.693× 1017 1.667 × 1018

71 p [8,36,71,4,0,0] 1.450× 1017 2.531× 1018

71 p [4,71,72,0,4,0] 2.876× 1019 1.379× 1020

71 p [3,95,95,-2,2,94] 2.725× 1019 2.191× 1020

73 p2 [15,39,40,2,8,20] 8.979× 1015 1.147 × 1017

73 p2 [20,31,44,-12,4,28] 6.740× 1016 4.422× 1017

73 p [7,43,84,-6,4,40] 1.025× 1017 5.334× 1017

73 p [11,28,80,8,4,28] 1.767 × 1018 1.452× 1019

79 p2 [23,31,44,18,16,20] 2.150× 1015 2.481× 1016

79 p [16,20,79,4,0,0] 2.923× 1016 3.458× 1017

79 p [19,20,84,16,8,20] 5.009× 1016 8.741× 1017

79 p [11,31,87,-10,6,26] 1.112× 1017 1.305× 1018

79 p [8,40,79,4,0,0] 1.169× 1017 1.503× 1018

79 p [4,79,80,0,4,0] 6.499× 1018 1.121× 1020

83 p2 [23,31,44,-14,8,12] 4.054× 1015 6.477 × 1016

83 p [12,28,83,4,0,0] 1.721× 1016 2.591× 1017

83 p [7,48,95,4,2,48] 3.913× 1016 6.251× 1017

83 p [16,23,87,12,16,6] 8.775× 1016 1.328× 1018

83 p [11,31,92,-6,8,28] 1.574× 1016 2.514× 1018

83 p [3,111,111,-2,2,110] 4.776× 1018 7.089× 1019

83 p [4,83,84,0,4,0] 6.461× 1018 1.033× 1020

89 p2 [23,31,48,2,12,16] 3.896× 1017 4.145× 1018

89 p [19,23,95,-18,10,14] 1.236× 1019 2.906× 1019

89 p [15,27,96,-14,8,20] 2.636× 1019 5.543× 1019

89 p [12,31,92,8,12,4] 4.535× 1019 1.108× 1020

89 p [15,24,95,4,2,24] 1.052× 1020 1.811× 1020

89 p [7,51,103,-2,6,50] 2.994× 1020 3.541× 1020

89 p [3,119,119,-2,2,118] 1.017 × 1022 6.887 × 1022

97 p2 [23,39,51,-22,6,14] 1.241× 1017 6.289× 1017

97 p2 [15,52,55,-4,14,24] 4.517 × 1017 2.630× 1018

97 p [7,56,111,4,2,56] 2.204× 1018 4.357 × 1018

97 p2 [20,39,59,-4,8,38] 5.923× 1018 1.541× 1019

97 p [19,23,104,-14,12,16] 2.188× 1019 7.815× 1019
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Table 4. Good Bounds DE for E/Fp2 .

p #Fq Quadratic Form D0 D1

101 p2 [32,39,44,-12,28,20] 8.477 × 1015 3.603× 1016

101 p [12,35,104,8,12,4] 1.709× 1017 1.223× 1018

101 p [15,28,108,8,4,28] 1.572× 1018 3.193× 1018

101 p [15,27,111,-2,14,26] 5.261× 1017 3.388× 1018

101 p [8,51,103,4,8,2] 2.948× 1018 7.940× 1018

101 p [7,59,116,-6,4,56] 2.341× 1018 1.015× 1019

101 p [11,39,111,-10,6,34] 4.559× 1018 2.415× 1019

101 p [3,135,135,-2,2,134] 9.667 × 1019 5.296× 1020

103 p2 [23,36,59,-4,22,16] 1.076× 1016 1.620× 1016

103 p [16,28,103,12,0,0] 9.459× 1015 4.236× 1016

103 p2 [15,55,56,2,8,28] 4.016× 1016 5.313× 1016

103 p [19,23,111,-10,14,18] 1.645× 1017 5.558× 1017

103 p [7,59,119,-2,6,58] 1.765× 1017 1.861× 1018

103 p [8,52,103,4,0,0] 1.032× 1018 2.160× 1018

103 p [4,103,104,0,4,0] 2.647 × 1019 8.748× 1019

107 p2 [35,39,44,-18,32,4] 1.769× 1016 9.442× 1016

107 p2 [23,40,56,16,4,20] 1.352× 1016 2.102× 1017

107 p [16,27,111,-4,16,2] 7.861× 1016 1.256× 1018

107 p [12,36,107,4,0,0] 1.061× 1017 1.694× 1018

107 p [19,23,116,-6,16,20] 9.625× 1017 5.827 × 1018

107 p [11,39,119,-2,10,38] 1.105× 1018 1.732× 1019

107 p [4,107,108,0,4,0] 4.853× 1019 4.368× 1020

107 p [3,143,143,-2,2,142] 1.102× 1020 1.761× 1021

109 p2 [32,44,47,20,28,36] 4.420× 1016 7.714× 1017

109 p2 [23,39,59,10,14,22] 5.539× 1016 9.666× 1017

109 p [8,55,111,4,8,2] 3.843× 1017 5.604× 1018

109 p2 [24,39,56,16,12,4] 8.005× 1018 1.397 × 1020

109 p [11,40,119,4,2,40] 4.199× 1019 7.329× 1020

109 p [19,23,119,-2,18,22] 1.341× 1020 1.841× 1021

113 p2 [35,39,47,-6,34,10] 1.141× 1018 1.133× 1019

113 p2 [23,40,59,8,2,20] 2.158× 1018 2.062× 1019

113 p2 [20,47,68,-12,4,44] 4.539× 1018 3.297 × 1019

113 p [23,24,119,20,10,24] 3.219× 1019 1.853× 1020

113 p [19,24,119,4,2,24] 1.649× 1019 2.877 × 1020

113 p [12,39,116,8,12,4] 1.610× 1019 1.029× 1020

113 p [3,151,151,-2,2,150] 1.105× 1022 1.041× 1023
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Table 5. The set of exceptions ENE .

p Quadratic Form N0/N1 EE or (#EE and max(EE))

11 [4,11,12,0,4,0]∗ 3× 109 3, 67, 235, 427
11 [3,15,15,-2,2,14]∗ 1010 4, 11, 88, 91, 163, 187, 232, 499,

595, 627, 715, 907, 1387, 1411,
3003, 3355, 4411, 5107,6787,
10483, 11803

17 [7,11,20,-6,4,8]∗ 2× 1011 3, 187, 643
17 [3,23,23,-2,2,22]∗ 9× 1013 / #ENE = 88 max(ENE ) = 89563

2× 1015

19 [7,11,23,-2,6,10]∗ 1011 4, 19, 163, 760, 1051
19 [4,19,20,0,4,0]∗ 1012/ 7, 11, 24, 43, 115, 123, 139, 228,

2× 1013 232, 267, 403, 424, 435, 499, 520,
568, 627, 643, 691, 883, 1099, 1411,
1659, 1659, 1672, 1867, 2139, 2251,
2356, 2851, 3427, 4123, 5131, 5419,
5707, 6619, 7723, 8968, 12331,
22843, 27955

23 [8,12,23,4,0,0]∗ 4× 1011 3,4,27, 115, 123,163,403,427, 443,
667,1467, 2787, 3523

23 [4,23,24,0,4,0] 3× 109 #ENE = 78, max(ENE ) = 72427
23 [3,31,31,-2,2,30] 3× 109 #ENE = 196, max(ENE ) = 286603
29 [11,12,32,8,4,12]∗ 7 × 1011 / #ENE = 24, max(ENE ) = 22243

2× 1012

29 [8,15,31,4,8,2]∗ 4× 1013/ #ENE = 23, max(ENE ) = 7987
4× 1014

29 [3,39,39,-2,2,38] 109 #ENE = 382, max(ENE ) = 1107307
31 [7,19,36,-6,4,16]∗ 2× 1013/ #ENE = 29, max(ENE ) = 15283

3× 1014

31 [8,16,31,4,0,0]∗ 4× 1012/ #ENE = 36, max(ENE ) = 17515
5× 1013

31 [4,31,32,0,4,0] 1011 #ENE = 166, max(ENE ) = 174003
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Table 6. The set of exceptions ENE .

p Quadratic Form N0/N1 ENE or (#ENE and max(ENE ))

37 [15,20,23,-4,14,8] 109 8,19,43,163,427,723,2923,3907
37 [8,19,39,4,8,2]∗ 6.5× 1013/ #ENE = 55, max(ENE ) = 24952

2× 1015

41 [11,15,47,-2,10,14] 1010 #ENE = 65, max(ENE ) = 48547
41 [12,15,44,8,12,4] 1010 #ENE = 60, max(ENE ) = 82123
41 [7,24,47,4,2,24] 3× 109 #ENE = 82, max(ENE ) = 83107
41 [3,55,55,-2,2,54] 1010 #ENE = 896, max(ENE ) = 5017867
43 [15,23,24,2,8,12] 3.6× 1010 4, 11, 16, 52, 67, 187, 379, 403,

568, 883, 1012, 2347, 2451
43 [11,16,47,4,2,16]∗ 4.5× 1013/ #ENE = 81, max(ENE ) = 73315

8× 1014

43 [4,43,44,0,4,0] 109 #ENE = 439, max(ENE ) = 1079467
47 [12,16,47,4,0,0] 109 #ENE = 106, max(ENE ) = 272083
47 [7,27,55,-2,6,26] 109 #ENE = 112, max(ENE ) = 78772
47 [8,24,47,4,0,0] 109 #ENE = 108, max(ENE ) = 85963
47 [4,47,48,0,4,0] 2× 109 #ENE = 556, max(ENE ) = 5345827
47 [3,63,63,-2,2,62] 109 #ENE = 1165, max(ENE ) = 4812283
53 [20,23,32,-12,4,20] 109 #ENE = 30, max(ENE ) = 33147
53 [12,19,56,8,12,4] 109 #ENE = 138, max(ENE ) = 178027
53 [8,27,55,4,8,2] 109 #ENE = 152, max(ENE ) = 137323
53 [3,71,71,-2,2,70] 109 #ENE = 1604, max(ENE ) = 6474427
59 [15,16,63,4,2,16] 2× 109 #ENE = 158, max(ENE ) = 304027
59 [12,20,59,4,0,0] 2× 109 #ENE = 193, max(ENE ) = 316747
59 [15,19,64,-14,8,12] 2× 109 #ENE = 174, max(ENE ) = 318091
59 [7,35,68,-6,4,32] 2× 109 #ENE = 228, max(ENE ) = 132883
59 [4,59,60,0,4,0] 2× 109 #ENE = 920, max(ENE ) = 3136219
59 [3,79,79,-2,2,78] 2× 109 #ENE = 2072, max(ENE ) = 8447443
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Table 7. The set of exceptions ENE .

p Quadratic Form N0/N1 ENE or (#ENE and max(ENE ))

61 [23,24,32,16,4,12] 2× 109 #ENE = 43, max(ENE ) = 11923
61 [7,35,71,-2,6,34] 2× 109 #ENE = 271, max(ENE ) = 1096867
61 [8,31,63,4,8,2] 2× 109 #ENE = 233, max(ENE ) = 363987
61 [11,23,68,-6,8,20] 2× 109 #ENE = 201, max(ENE ) = 190747
67 [23,24,35,8,2,12] 109 #ENE = 59, max(ENE ) = 126043
67 [15,36,39,-4,14,16] 109 #ENE = 57, max(ENE ) = 20707
67 [16,19,71,12,16,6] 2× 109 #ENE = 264, max(ENE ) = 421579
67 [4,67,68,0,4,0] 109 #ENE = 1271, max(ENE ) = 3846403
71 [15,20,76,8,4,20] 2× 109 #ENE = 275, max(ENE ) = 321883
71 [12,24,71,4,0,0] 2× 109 #ENE = 307, max(ENE ) = 635947
71 [15,19,79,-2,14,18] 2× 109 #ENE = 273, max(ENE ) = 267883
71 [16,20,71,12,0,0] 2× 109 #ENE = 310, max(ENE ) = 1540771
71 [8,36,71,4,0,0] 2× 109 #ENE = 346, max(ENE ) = 1053427
71 [4,71,72,0,4,0] 2× 109 #ENE = 1450, max(ENE ) = 6463627
71 [3,95,95,-2,2,94] 2× 109 #ENE = 3170, max(ENE ) = 15135283
73 [15,39,40,2,8,20] 109 #ENE = 81, max(ENE ) = 53188
73 [20,31,44,-12,4,28] 109 #ENE = 72, max(ENE ) = 111763
73 [7,43,84,-6,4,40] 2× 109 #ENE = 420, max(ENE ) = 364708
73 [11,28,80,8,4,28] 2× 109 #ENE = 336, max(ENE ) = 723795
79 [23,31,44,18,16,20] 109 #ENE = 88, max(ENE ) = 50955
79 [16,20,79,4,0,0] 2× 109 #ENE = 383, max(ENE ) = 1419867
79 [19,20,84,16,8,20] 2× 109 #ENE = 391, max(ENE ) = 1210675
79 [11,31,87,-10,6,26] 2× 109 #ENE = 409, max(ENE ) = 12778803
79 [8,40,79,4,0,0] 2× 109 #ENE = 495, max(ENE ) = 1116507
79 [4,79,80,0,4,0] 2× 109 #ENE = 1886, max(ENE ) = 25575460
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Table 8. The set of exceptions ENE .

p Quadratic Form N0/N1 ENE or (#ENE and max(ENE ))

83 [23,31,44,-14,8,12] 109 #ENE = 97, max(ENE ) = 36763
83 [12,28,83,4,0,0] 2× 109 #ENE = 432, max(ENE ) = 635347
83 [7,48,95,4,2,48] 2× 109 #ENE = 529, max(ENE ) = 1358107
83 [16,23,87,12,16,6] 2× 109 #ENE = 416, max(ENE ) = 1202587
83 [11,31,92,-6,8,28] 2× 109 #ENE = 469, max(ENE ) = 1381867
83 [3,111,111,-2,2,110] 2× 109 #ENE = 4639, max(ENE ) = 62337067
83 [4,83,84,0,4,0] 2× 109 #ENE = 2134, max(ENE ) = 9405643
89 [23,31,48,2,12,16] 109 #ENE = 118, max(ENE ) = 137707
89 [19,23,95,-18,10,14] 5× 108 #ENE = 540, max(ENE ) = 981403
89 [15,27,96,-14,8,20] 5× 108 #ENE = 464, max(ENE ) = 1534723
89 [12,31,92,8,12,4] 5× 108 #ENE = 478, max(ENE ) = 653227
89 [15,24,95,4,2,24] 5× 108 #ENE = 502, max(ENE ) = 682147
89 [7,51,103,-2,6,50] 5× 108 #ENE = 646, max(ENE ) = 1427827
89 [3,119,119,-2,2,118] 2× 109 #ENE = 5357, max(ENE ) = 28654707
97 [23,39,51,-22,6,14] 109 #ENE = 283, max(ENE ) = 74011
97 [15,52,55,-4,14,24] 109 #ENE = 295, max(ENE ) = 94963
97 [7,56,111,4,2,56] 109 #ENE = 814, max(ENE ) = 851272
97 [20,39,59,-4,8,38] 109 #ENE = 277, max(ENE ) = 118243
97 [19,23,104,-14,12,16] 109 #ENE = 636, max(ENE ) = 1336483
101 [32,39,44,-12,28,20] 109 #ENE = 158, max(ENE ) = 123523
101 [12,35,104,8,12,4] 109 #ENE = 652, max(ENE ) = 1157083
101 [15,28,108,8,4,28] 109 #ENE = 625, max(ENE ) = 1299163
101 [15,27,111,-2,14,26] 109 #ENE = 652, max(ENE ) = 901363
101 [8,51,103,4,8,2] 109 #ENE = 803, max(ENE ) = 1996467
101 [7,59,116,-6,4,56] 109 #ENE = 881, max(ENE ) = 1720048
101 [11,39,111,-10,6,34] 109 #ENE = 723, max(ENE ) = 1305627
101 [3,135,135,-2,2,134] 109 #ENE = 7304, max(ENE ) = 24487147
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Table 9. The set of exceptions ENE .

p Quadratic Form N0/N1 ENE or (#ENE and max(ENE ))

103 [23,36,59,-4,22,16] 109 #ENE = 174, max(ENE ) = 121027
103 [16,28,103,-12,0,0] 109 #ENE = 696, max(ENE ) = 1004347
103 [15,55,56,2,8,28] 109 #ENE = 200, max(ENE ) = 353728
103 [19,23,111,-10,14,18] 109 #ENE = 709, max(ENE ) = 1086547
103 [7,59,119,-2,6,58] 109 #ENE = 903, max(ENE ) = 1959163
103 [8,52,103,4,0,0] 109 #ENE = 896, max(ENE ) = 1019467
103 [4,103,104,0,4,0] 109 #ENE = 2358, max(ENE ) = 6390532
107 [35,39,44,-18,32,4] 109 #ENE = 186, max(ENE ) = 169467
107 [23,40,56,16,4,20] 109 #ENE = 209, max(ENE ) = 274387
107 [16,27,111,-4,16,2] 109 #ENE = 769, max(ENE ) = 2998675
107 [12,36,107,4,0,0] 109 #ENE = 817, max(ENE ) = 695179
107 [19,23,116,-6,16,20] 109 #ENE = 813, max(ENE ) = 3142483
107 [11,39,119,-2,10,38] 109 #ENE = 856, max(ENE ) = 838987
107 [4,107,108,0,4,0] 109 #ENE = 3873, max(ENE ) = 13204228
107 [3,143,143,-2,2,142] 109 #ENE = 8410, max(ENE ) = 44363163
109 [32,44,47,20,28,36] 108 #ENE = 205, max(ENE ) = 193747
109 [23,39,59,10,14,22] 108 #ENE = 215, max(ENE ) = 1034083
109 [8,55,111,4,8,2] 109 #ENE = 1039, max(ENE ) = 2522587
109 [24,39,56,16,12,4] 108 #ENE = 225, max(ENE ) = 215659
109 [11,40,119,4,2,40] 109 #ENE = 891, max(ENE ) = 947755
109 [19,23,119,-2,18,22] 109 #ENE = 857, max(ENE ) = 1300915
113 [35,39,47,-6,34,10] 108 #ENE = 213, max(ENE ) = 142267
113 [23,40,59,8,2,20] 108 #ENE = 220, max(ENE ) = 146787
113 [20,47,68,-12,4,44] 108 #ENE = 247, max(ENE ) = 253363
113 [23,24,119,20,10,24] 5× 109 #ENE = 904, max(ENE ) = 1800643
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Table 10. The set of exceptions ENE .

p Quadratic Form N0/N1 ENE or (#ENE and max(ENE ))

113 [19,24,119,4,2,24] 5× 109 #ENE = 1005, max(ENE ) = 1997835
113 [12,39,116,8,12,4] 5× 109 #ENE = 907, max(ENE ) = 1130803
113 [3,151,151,-2,2,150] 5× 109 #ENE = 9302, max(ENE ) = 30158683

Table 11. Good Bounds Dp from Theorem 1.1 for p ≤ 113.

p Dp p Dp

3, 5, 7, 13 1 61 3.797 × 1017

11 8.973× 109 67 2.642× 1019

17 1.510× 1015 71 2.191× 1020

19 1.606× 1013 73 1.452× 1019

23 6.955× 1015 79 1.121× 1020

29 1.550× 1017 83 1.033× 1020

31 1.008× 1016 89 6.887 × 1022

37 1.117 × 1015 97 7.815× 1019

41 3.579× 1018 101 5.296× 1020

43 1.364× 1017 103 8.748× 1019

47 6.461× 1018 107 1.761× 1021

53 5.467 × 1019 109 1.841× 1021

61 8.396× 1019 113 1.041× 1023
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