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Representation of finite abelian group elements
by subsequence sums

par David J. GRYNKIEWICZ, Luz E. MARCHAN et Oscar ORDAZ

Résumé. Soit G ∼= Cn1 ⊕ . . . ⊕ Cnr un groupe abélien fini non
trivial avec n1|n2| . . . |nr. Une conjecture d’Hamidoune dit que
si W = w1 · . . . · wn est une suite d’entiers, tous, sauf au plus
un, premiers à |G|, et S une suite d’éléments de G avec |S| ≥
|W | + |G| − 1 ≥ |G| + 1, la multiplicité maximale de S au plus
|W |, et σ(W ) ≡ 0 mod |G|, alors il existe un sous-groupe non
trivial H tel que tout élément g ∈ H peut être représenté par une
somme pondérée de la forme g =

n∑
i=1
wisi, avec s1 · . . . ·sn une sous-

suite de S. Nous donnons deux exemples qui montrent que cela
n’est pas vrai en général, et nous caractérisons les contre-exemples
pour les grands |W | ≥ 1

2 |G|.
Un théorème de Gao, généralisant un résultat plus ancien d’Ol-

son, dit que si G est un groupe abélien fini, et S une suite d’élé-
ments de G avec |S| ≥ |G| + D(G) − 1, alors, soit tout élément
de G peut être représenté par une sous-somme de S à |G| termes,
soit il existe une classe g+H telle que tous sauf au plus |G/H|−2
termes de S sont dans g +H. Nous établissons quelques cas très
spéciaux d’un analogue pondéré de ce théorème, conjecturé par
Ordaz et Quiroz, et quelques conclusions partielles dans les autres
cas, qui impliquent un résultat récent d’Ordaz et Quiroz. Cela est
fait, en partie, en étendant un théorème de Grynkiewicz sur les
partitions pondérées, que nous utilisons également pour améliorer
le résultat de Gao cité précédemment en montrant que l’hypo-
thèse |S| ≥ |G|+D(G)−1 peut être affaiblie en |S| ≥ |G|+d∗(G),
où d∗(G) =

r∑
i=1

(ni − 1). Nous utilisons aussi cette méthode pour

déduire une variante de la conjecture d’Hamidoune valide si au
moins d∗(G) des wi sont premiers à |G|.
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Abstract. Let G ∼= Cn1 ⊕ . . . ⊕ Cnr be a finite and nontrivial
abelian group with n1|n2| . . . |nr. A conjecture of Hamidoune says
that if W = w1 · . . . · wn is a sequence of integers, all but at
most one relatively prime to |G|, and S is a sequence over G with
|S| ≥ |W |+ |G| − 1 ≥ |G|+ 1, the maximum multiplicity of S at
most |W |, and σ(W ) ≡ 0 mod |G|, then there exists a nontrivial
subgroup H such that every element g ∈ H can be represented
as a weighted subsequence sum of the form g =

n∑
i=1
wisi, with

s1 · . . . ·sn a subsequence of S. We give two examples showing this
does not hold in general, and characterize the counterexamples for
large |W | ≥ 1

2 |G|.
A theorem of Gao, generalizing an older result of Olson, says

that if G is a finite abelian group, and S is a sequence over G
with |S| ≥ |G| + D(G) − 1, then either every element of G can
be represented as a |G|-term subsequence sum from S, or there
exists a coset g + H such that all but at most |G/H| − 2 terms
of S are from g + H. We establish some very special cases in a
weighted analog of this theorem conjectured by Ordaz and Quiroz,
and some partial conclusions in the remaining cases, which imply
a recent result of Ordaz and Quiroz. This is done, in part, by
extending a weighted setpartition theorem of Grynkiewicz, which
we then use to also improve the previously mentioned result of
Gao by showing that the hypothesis |S| ≥ |G|+ D(G)− 1 can be
relaxed to |S| ≥ |G|+ d∗(G), where d∗(G) =

r∑
i=1

(ni − 1). We also

use this method to derive a variation on Hamidoune’s conjecture
valid when at least d∗(G) of the wi are relatively prime to |G|.

1. Notation
We follow the conventions of [9] and [11] for notation concerning

sequences over an abelian group. For real numbers a, b ∈ R, we set
[a, b] = {x ∈ Z | a ≤ x ≤ b}. Throughout, all abelian groups will be writ-
ten additively. Let G be an abelian group, and let A, B ⊆ G be nonempty
subsets. Then

A+B = {a+ b | a ∈ A, b ∈ B}
denotes their sumset. The stabilizer of A is defined as H(A) = {g ∈
G | g + A = A}, and A is called periodic if H(A) 6= {0}, and aperiodic
otherwise. If A is a union of H-cosets (i.e., H ≤ H(A)), then we say A is
H-periodic. The order of an element g ∈ G is denoted ord(g), and we use
φH : G→ G/H to denote the natural homomorphism. We use gcd(a, b) to
denote the greatest common divisor of a, b ∈ Z.

For a set P (often with P = G an abelian group), let F(P ) be the free
abelian monoid with basis P . The elements of F(P ) are called sequences
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over P . We write sequences S ∈ F(P ) in the form

S = s1 · . . . · sr =
∏
g∈G
gvg(S) , where vg(S) ≥ 0 and si ∈ G.

We call |S| := r =
∑
g∈P

vg(S) the length of S, and vg(S) the multiplicity of

g in S. The support of S is

supp(S) := {g ∈ P | vg(S) > 0}.

A sequence S1 is called a subsequence of S if S1|S in F(P ) (equivalently,
vg(S1) ≤ vg(S) for all g ∈ P ), and in such case, SS1

−1 denotes the sub-
sequence of S obtained by removing all terms from S1. The sum of S
is

σ(S) :=
r∑
i=1
si =

∑
g∈G

vg(S)g,

and we use
h(S) := max{vg(S) | g ∈ P}

to denote the maximum multiplicity of a term of S. A sequence S is
zero-sum if σ(S) = 0. Given any map ϕ : G → G′, we extend ϕ to a map
of sequences, ϕ : F(G) → F(G′), by letting ϕ(S) := ϕ(s1) · . . . · ϕ(sr).
We say that two sequences S1, S2 ∈ F(Z) are congruent modulo n, and we
write S1 ≡ S2 mod n, if ϕ(S1) = ϕ(S2) for the canonical homomorphism
ϕ : Z→ Z/nZ. We say that at most n terms of the sequence S = g1 · . . . · gl
are from a given subset A ⊆ G if

|{i ∈ [1, l] | gi ∈ A}| ≤ n .

Next we introduce notation for weighted subsequence sums, which we
will do in the more general context of R-modules (though the focus of this
paper is R = Z). Let R be a ring and G a (left) R-module (thus G is also
an abelian group with the two notions coinciding when R = Z). If w ∈ R
and A ⊆ G, then w · A = {wa | a ∈ A} denotes the dilation of A. Let
S ∈ F(G), W ∈ F(R) and s = min{|S|, |W |}. Define

W · S =
{
s∑
i=1
wigi

∣∣∣∣∣w1 · . . . · ws is a subsequence of W and
g1 · . . . · gs is a subsequence of S

}
,

and for 1 ≤ n ≤ s, let

Σn(W,S) =
{
W ′ · S′ : S′|S, W ′|W and |W ′| = |S′| = n

}
Σ≤n(W,S) =

n⋃
i=1

Σi(W,S) and Σ≥n(W,S) =
s⋃
i=n

Σi(W,S),

Σ(W,S) = Σ≤s(W,S).
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If W = 1|S| (with 1 the identity in R), then Σ(W,S) (and other such
notation) is abbreviated by Σ(S), which is the usual notation for the set of
subsequence sums. Note that Σ|W |(W,S) =W · S when |W | ≤ |S|.

Let P denote the set of nonempty subsets of G. The elements of F(P )
will be called setpartitions (over G), and an n-setpartition B (over G) is an
element in F(P ) of length n (in other words, B is a formal product of n
nonempty subsets of G). If B = B1 · . . . ·Bn ∈ F(P ), with ∅ 6= Bi ⊆ G for
all i ∈ [1, n], then we say that B is an n-setpartition of the sequence

T :=
n∏
i=1

∏
b∈Bi

b ∈ F(G) ,

and we call T the sequence associated to B. Note T is finite if and only
if each Bi is finite. Conversely, we say that S has an n-setpartition if S is
the associated sequence of some n-setpartition. It is easily shown (see [4]
[18] [19]) that S has an n-setpartition if and only if h(S) ≤ n ≤ |S|, and if
such is the case, then S has an n-setpartition with sets of as near equal a
size as possible (i.e., ||Bi| − |Bj || ≤ 1 for all i, j ∈ [1, n]).

2. Introduction
Let

G ∼= Cn1 ⊕ . . .⊕ Cnr
be a finite abelian group with n1|n2| . . . |nr, where Cnj denotes a cyclic
group of order nj ≥ 2. Thus r is the rank r(G), n1 · · ·nr is the order |G|,
and nr is the exponent exp(G). In 1961, Erdős, Ginzburg and Ziv proved
that every sequence S ∈ F(G) with |S| ≥ 2|G| − 1 has 0 ∈ Σ|G|(S) [6] [30].
This sparked the field of zero-sum combinatorics, which has now seen much
development and become an essential component in Factorization Theory
(see [9] [11] for a recent survey and text on the subject).

One of the oldest and most important invariants in this area is the Dav-
enport constant of G, denoted D(G), which is the least integer so that
S ∈ F(G) with |S| ≥ D(G) implies 0 ∈ Σ(S). A very basic argument shows
(1) d∗(G) + 1 ≤ D(G) ≤ |G|
(see [11]), where

d∗(G) :=
r∑
i=1

(ni − 1).

Originally, the lower bound was favored as the likely truth, but later exam-
ples with D(G) > d∗(G) + 1 were found (see [8] [12]), and it is not now well
understood when d∗(G) + 1 = D(G) fails, though it is still thought that
equality should hold for many instances (and known to be the case for a
few) [11].
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Gao later linked the study of zero-sums with the study of |G|-term zero-
sums (and hence results like the Erdős-Ginzburg-Ziv Theorem), by showing
that `(G) = |G|+D(G)−1, where `(G) is the least integer so that S ∈ F(G)
with |S| ≥ `(G) implies 0 ∈ Σ|G|(S) [7]. In the same paper, he also proved
the following generalization of an older result of Olson [31].

Theorem A. Let G be a finite abelian group, and let S ∈ F(G) with
|S| ≥ |G| + D(G) − 1. Then either Σ|G|(S) = G or there exist a proper
subgroup H < G and some g ∈ G such that all but at most |G/H|−2 terms
of S are from the coset g +H.

Thus the number `(G) = |G|+D(G)−1 also guarantees that every element
(not just zero) can be represented as an |G|-term subsequence sum, provided
no coset contains too many of the terms of S.

In this paper, we concern ourselves with weighted zero-sum problems
related to the above results, though some of our results are new in the non-
weighted case as well. Such variations were initiated by Caro in [5] where
he conjectured the following weighted version of the Erdős-Ginzburg-Ziv
Theorem, which, after much partial work [3] [10] [22] [23], was recently
proven in [14]. (Note the condition σ(W ) ≡ 0 mod exp(G) is necessary,
else S with supp(S) = {1} would give a counterexample.)

Theorem B. Let G be a finite abelian group, and let S ∈ F(G) and
W ∈ F(Z) with σ(W ) ≡ 0 mod exp(G). If |S| ≥ |W | + |G| − 1, then
0 ∈ Σ|W |(W,S).

Since then, there have been several other results along these lines (see
[1] [2] [13] [32] for some examples). However, the following conjecture of
Hamidoune remained open [22].

Conjecture 2.1. Let G be a nontrivial, finite abelian group, and let S ∈
F(G) and W ∈ F(Z) with |S| ≥ |W | + |G| − 1 ≥ |G| + 1 and σ(W ) ≡
0 mod |G|. If h(S) ≤ |W | and there is some w ∈ supp(W ) such that
gcd(w′, exp(G)) = 1 for all w′ ∈ supp(w−1W ), then Σ|W |(W,S) contains a
nontrivial subgroup.

Hamidoune verified his conjecture in the case |W | = |G| [22], and under
the additional hypothesis of either h(S) < |W | or |W | ≥ |G| or
gcd(wi, exp(G)) = 1 for all wi|W , Conjecture 2.1 follows from the result in
[14]. In Section 3, we give two examples which show that Conjecture 2.1 is
false in general, and prove the following theorem, which characterizes the
(rather limited) counter-examples for large |W | ≥ 1

2 |G|.
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Theorem 2.2. Let G be a finite, nontrivial abelian group, and let S ∈
F(G) and W ∈ F(Z) with |S| ≥ |W | + |G| − 1 ≥ |G| + 1 and σ(W ) ≡ 0
mod |G|. Suppose h(S) ≤ |W | and that there is some w ∈ supp(W ) such
that gcd(w′, exp(G)) = 1 for all w′ ∈ supp(w−1W ). If also |W | ≥ 1

2 |G|,
then either:

(i) Σ|W |(W,S) contains a nontrivial subgroup, or
(ii) |supp(S)| = 2, |W | = |G| − 1, G ∼= Z/2rZ and

W ≡ x(n−1)/2(−x)(n−1)/20 mod |G|,
for some r, n, x ∈ Z+.

Another open conjecture is the following weighted generalization of The-
orem A [32]. We remark that, in the same paper, they showed Conjecture
2.3 to be true when |S| = 2|G| − 1, and thus for cyclic groups.

Conjecture 2.3. Let G be a finite abelian group, and let W ∈ F(Z) with
|W | = |G|, σ(W ) ≡ 0 mod exp(G) and gcd(w, exp(G)) = 1 for all w ∈
supp(W ). If S ∈ F(G) with |S| = |G|+ D(G)− 1, then either :

(i) Σ|G|(W,S) = G, or
(ii) there exist a proper subgroup H < G and some g ∈ G that all but at

most |G/H| − 2 terms of S are from the coset g +H.

In section 5, we prove some limited results related to Conjecture 2.3. In
particular, we verify it in the extremal case h(S) ≥ D(G)− 1 (allowing also
|S| ≥ |G|+D(G)−1 provided h(S) ≤ |G|), and give a corollary that extends
the result of [32] and shows, when h(S) ≤ D(G)− 1, that the hypotheses of
Conjecture 2.3 (assuming (ii) fails) instead imply Σ|S|−|G|(W,S) = G. This
latter result will follow from the following pair of theorems, which improve
(for non-cyclic groups) a corollary from the end of [14] (see also [16] for the
non-weighted version, of which this is also an improvement).

Theorem 2.4. Let G be a finite abelian group, let S, S′ ∈ F(G) with S′ |S
and let W = w1 · . . . · wn ∈ F(Z) be a sequence of integers relatively prime
to exp(G) such that h(S′) ≤ |W | = n ≤ |S′| and d∗(G) ≤ |W |.
Then S has a subsequence S′′ with |S′′| = |S′| such that either :

(i) there exists an n-setpartition A = A1 · . . . ·An of S′′ such that

|
n∑
i=1
wi ·Ai| ≥ min{|G|, |S′| − n+ 1},

or
(ii) there exist an n-setpartition A = A1 ·. . .·An of S′′, a proper, nontriv-

ial subgroup H < G and some element g ∈ G, such that the following
properties are satisfied :
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(a) (g +H) ∩Ai 6= ∅ for all i ∈ [1, n], and supp(SS′′−1) ⊆ g +H,
(b) Ai ⊆ g +H for all i ≤ d∗(H) and all i > d∗(H) + d∗(G/H),

(c) |
n∑
i=1
wi · Ai| ≥ (e + 1)|H| and all but e ≤ |G/H| − 2 terms of S

are from g +H, and
(d)

d∗(H)∑
i=1
wi ·Ai =

d∗(H)∑
i=1
wi

 g +H .

Theorem 2.5. Let G be a finite abelian group, let S, S′ ∈ F(G) with S′ |S
and let W = w1 · . . . · wn ∈ F(Z) be a sequence of integers relatively prime
to exp(G) such that h(S′) ≤ |W | = n ≤ |S′| and d∗(G) ≤ |W |. Suppose
there exists a nontrivial subgroup K ≤ G with the following properties :

there exist g′ ∈ G, T ∈ F(g′+K) with T |S, and a d∗(K)-setpartition
B1 · . . . ·Bd∗(K) of T , such that

d∗(K)∑
i=1
wi ·Bi =

d∗(K)∑
i=1
wi

 g′ +K
and T−1S contains at least n−d∗(K) + |S|− |S′| terms from g′+K.

Let K∗ ≤ G be the maximal subgroup having the above properties. Then
the following hold.

(i) If K∗ = G, then there is an n-setpartition A = A1 · . . . · An of a
subsequence S′′ of S such that |S′| = |S′′| and

n∑
i=1
wi ·Ai = G.

(ii) If K∗ 6= G, then the conclusion of Theorem 2.4(ii) holds with H =
K∗.

Notice that in both Theorems 2.4 and 2.5 one is allowed to chose the
ordering on the sequence W = w1 · . . . · wn (given by the choice of indices)
in any way, which will affect the implication given by Theorem 2.4(ii)(d).
Theorem 2.4 allows the result to applied when n ≥ d∗(G), rather than
n ≥ |G|

p − 1 (as in the original corollary), where p is the smallest prime
divisor of |G| (note, for non-cyclic groups, the number d∗(G) is generally
much smaller than |G|p − 1), and contains similar improvements of bounds
present in (ii)(b). However, the bound present in (ii)(c) remains unaltered,
and improvements here would likely be more difficult. Theorem 2.5 will be
used to prove Theorem 2.4, and also gives a way to force Theorem 2.4(ii)
to hold.
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As a second consequence of Theorems 2.4 and 2.5, we prove the following
variation on Theorem 2.2, which extends Hamidoune’s result from [23] by
showing that it is only necessary to have at least d∗(G) of the weights
relatively prime to exp(G).

Corollary 2.6. Let G be a nontrivial, finite abelian group, and let S ∈
F(G) and W ∈ F(Z) with |S| ≥ |W |+ |G| − 1, h(S) ≤ |W | and σ(W ) ≡ 0
mod exp(G). If W has a subsequence W ′ such that |W ′|+d∗(G) ≤ |W | and
gcd(w, exp(G)) = 1 for all w ∈ supp(W ′−1W ), then Σ|W |(W,S) contains a
nontrivial subgroup.

As a third consequence, we improve Theorem A by relaxing the required
hypothesis from |S| ≥ |G| + D(G) − 1 to |S| ≥ |G| + d∗(G) (recall from
(1) that D(G) − 1 ≥ d∗(G)). This should be put in contrast to the fact
that `(G) = |G| + D(G) − 1 > |G| + d∗(G) is in general possible (since
D(G) − 1 > d∗(G) is possible). The methods of employing Theorems 2.4
and 2.5 from these three applications should also be applicable for other
zero-sum problems.

3. On Conjecture 2.1
We begin by giving the two counter examples to Conjecture 2.1.

Example 1. Let p ≡ −1 mod 4 be a prime, let G = Cp be cyclic
of prime order, let n = p−1

2 , let W = 1(n−1)/2(−1)(n−1)/20 ∈ F(Z), and
let S = 0ngn(2g)n, where g ∈ G \ {0}. Note that h(S) = n = |W |, that
|S| = 3n = |W |+ |G| − 1, that σ(W ) = 0, and that

Σ|W |(W,S) =
(n−1)/2∑
i=1
{0, g, 2g} −

(n−1)/2∑
i=1
{0, g, 2g} = G \ {p+ 1

2
g,
p− 1

2
g}.

Thus G * Σ|W |(W,S), which, since |G| is prime, implies Σ|W |(W,S) does
not contain a nontrivial subgroup.

Example 2. Let m = 2r, let G = Cm, let n = m − 1, let W =
1(n−1)/2(−1)(n−1)/20, and let S = 0ngn, where g ∈ G with ord(g) = m.
Note that h(S) = n = |W |, that |S| = 2n = |W |+ |G| − 1, that σ(W ) = 0,
and that

Σ|W |(W,S) =
(n−1)/2∑
i=1
{0, g} −

(n−1)/2∑
i=1
{0, g} = G \ {m

2
g}.

Hence, since every nontrivial subgroup of G ∼= Z/2rZ contains the unique
element of order 2, namely m2 g, it follows that Σ|W |(W,S) does not contain
a nontrivial subgroup.
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For the proof of Theorem 2.2, we will need to make use of the Kemperman
critical pair theory (though an isoperimetric approach would also be viable,
see e.g. [21]). We begin by stating Kneser’s Theorem [26] [27] [30] [33].

Theorem C (Kneser’s Theorem). Let G be an abelian group, and let
A1, . . . , An ⊆ G be finite, nonempty subsets. Then

|
n∑
i=1
φH(Ai)| ≥

n∑
i=1
|φH(Ai)| − n+ 1,

where H = H(
n∑
i=1
Ai).

Note that |H| · φH(Ai) = |Ai + H|. Also, if H = H(A + B) and ρ =
|A+H|− |A|+ |B+H|− |B| is the number of holes in A in B (by a hole in
A, with respect to H, we mean an element from (A+H)\A), then Kneser’s
Theorem implies |A+B| ≥ |A|+|B|−|H|+ρ. Consequently, if either A or B
contains a unique element from some H-coset, then |A+B| ≥ |A|+ |B|−1.
More generally, if ρ =

n∑
i=1

(|Ai +H| − |Ai|) is the total number holes in the

Ai, then |
n∑
i=1
Ai| ≥

n∑
i=1
|Ai| − (n− 1)|H|+ ρ.

Next we continue with the following two simple cases of Kemperman’s
Structure Theorem [25, Theorem 5.1]. The reader is directed to [15] [19]
[20] [29] for more detailed exposition regarding Kemperman’s critical pair
theory, including the (somewhat lengthy and involved) statement of the
Kemperman Structure Theorem. In what follows, a set A ⊆ G is quasi-
periodic if there is a nontrivial subgroup H (the quasi-period) such that
A = A0 ∪ A1 with A0 nonempty and H-periodic and A1 a subset of an
H-coset.

Lemma 3.1. Let A1, . . . , An, be a collection of n ≥ 3 finite subsets in an
abelian group G of order m with 0 ∈ Ai and |Ai| ≥ 2 for all i. Moreover,
suppose each Ai is not quasi-periodic and 〈Ai〉 = G. If

n∑
i=1
Ai is aperiodic

and

(2) |
n∑
i=1
Ai| =

n∑
i=1
|Ai| − n+ 1,

then the Ai are arithmetic progressions with common difference.

Proof. We provide a short proof using the formulation (including relevant
notation and definitions) of Kemperman’s Structure Theorem as given in
[25, Theorem 5.1].



568 David J. Grynkiewicz, Luz E. Marchan, Oscar Ordaz

Since
n∑
i=1
Ai is aperiodic, it follows that Aj+Ak is aperiodic for any j 6= k.

Thus Kneser’s Theorem implies |Aj + Ak| ≥ |Aj |+ |Ak| − 1, and we must
have

|Aj +Ak| = |Aj |+ |Ak| − 1,
else Kneser’s Theorem would imply

|
n∑
i=1
Ai| ≥

n∑
i=1
i6=j, k

|Ai|+ |Aj +Ak| − (n− 1) + 1 ≥
n∑
i=1
|Ai| − n+ 2,

contradicting (2). Thus we can apply Kemperman’s Structure Theorem to
an arbitrary pair Aj and Ak with j 6= k.

Since Ai is not quasi-periodic, for i = j, k, we conclude from the Kem-
perman Structure Theorem that (Aj , Ak) is an elementary pair of type
(I), (II), (III) or (IV). Since |Aj |, |Ak| ≥ 2 and Aj + Ak is aperiodic, we
cannot have type (I) or (III). Since n ≥ 3, since |Ai| ≥ 2 for all i, and
since

n∑
i=1
Ai is aperiodic (and in particular, |

n∑
i=1
Ai| < |G|), it follows in view

of Kneser’s Theorem that |Aj + Ak| < |
n∑
i=1
Ai| < |G|. Thus, in view of

0 ∈ Aj and 〈Aj〉 = G, it follows that we cannot have type (IV) and that
|Aj |, |Ak| ≤ |G| − 2. Hence (Aj , Ak) is an elementary pair of type (II), i.e.,
Aj and Ak are arithmetic progressions of common difference (say) d ∈ G.
Note ord(d) = |G|, since 〈Aj〉 = G. Since the difference d of an arith-
metic progression A is unique up to sign when 2 ≤ |A| ≤ ord(d)− 2, since
2 ≤ |Aj |, |Ak| ≤ |G| − 2, and since Aj and Ak with j 6= k were arbitrary, it
now follows that all the Ai are arithmetic progressions of common difference
d, as desired. �

Lemma 3.2. Let G be an abelian group and let A, B ⊆ G be finite with
|A| ≥ 2 and |B| = 2. If neither A nor B is quasi-periodic and |A +
B| = |A| + |B| − 1, then A and B are arithmetic progressions of common
difference.

Proof. This follows immediately from the Kemperman Structure Theorem
or may be taken as an easily verified observation. �

The following result from [14] will also be used.

Theorem D. Let G be a nontrivial, finite abelian group, S ∈ F(G) and
W = w1 · . . . · wn ∈ F(Z) such that σ(W ) ≡ 0 mod exp(G) and |S| ≥
|W | + |G| − 1. If S has an n-setpartition A = A1 · . . . · An such that
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|wi · Ai| = |Ai| for all i ∈ [1, n], then there exists a nontrivial subgroup H
of G and an n-setpartition A′ = A′1 · . . . ·A′n of S such that

H ⊆
n∑
i=1
wi ·A′i ⊆ Σ|W |(W,S) and |wi ·A′i| = |A′i| for all i ∈ [1, n] .

We now proceed with the proof of Theorem 2.2.

Proof. Let m = exp(G) and n = |W |. By considering G as a Z/mZ-
module (for notational convenience), we may w.l.o.g. consider W as a
sequence from Z/mZ, say w.l.o.g. W = w1 · . . . · wn, where ord(wi) = m
for i ≤ n− 1 (in view of the hypothesis gcd(wi, exp(G)) = 1 for i ≤ n− 1).
Observe that we may assume |S| = n + |G| − 1 (since n ≥ 2, so that,
if |supp(S)| ≥ 3, then we can remove terms from S until there are only
n + |G| − 1 ≥ 3 left while preserving that |supp(S)| ≥ 3), and that there
are distinct x, y ∈ G with xnyn|S such that wn(x − y) = 0, else Theorem
D implies the theorem (as if such is not the case, then there would exist,
in view of h(S) ≤ |W | = n, an n-setpartition of S satisfying the hypothesis
of Theorem D). Since σ(W ) = 0, we may w.l.o.g. by translation assume
x = 0. If ord(y) < |G|, then, since wiy ∈ 〈y〉 and

n− 1 ≥ |G|
2
− 1 ≥ ord(y)− 1 = ord(wiy)− 1,

for i ≤ n− 1 (in view of ord(wi) = m for i ≤ n− 1), it would follow in view
of Kneser’s Theorem that

〈y〉 =
n−1∑
i=1
{0, wiy} =

n−1∑
i=1
wi · {0, y}+ wn · 0 ⊆ Σ|W |(W,S),

as desired. Therefore we may assume ord(y) = |G|, whence w.l.o.g. G is
cyclic, m = |G| and y = 1. Consequently, since σ(W ) = 0, wn(x − y) = 0
and x = 0, it follows that wn = 0 and σ(W ′) = 0, where W ′ :=Ww−1

n .
Since n ≥ m2 , 0n1n|S and |S| = n+m− 1, it follows that

(3) 2n ≤ |S| ≤ 3n− 1.

Hence let A = A1 · . . . · An−1 be an arbitrary (n − 1)-setpartition of S′ :=
S(01)−1. Note {0, 1} ⊆ Ai for all i, so that

(4) 0 ∈
n−1∑
i=1
wi ·Ai + wn · 0 ⊆ Σ|W |(W,S).

Thus we may assume
n−1∑
i=1
wi · Ai is aperiodic, else the proof is complete.

Consequently, Kneser’s Theorem and ord(wi) = m for i ≤ n − 1 imply
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|
n−1∑
i=1
wi ·Ai| ≥

n−1∑
i=1
|Ai| − (n− 1) + 1 = m− 1, whence

(5) |
n−1∑
i=1
wi ·Ai| =

n−1∑
i=1
|Ai| − (n− 1) + 1 = m− 1,

else G ⊆
n−1∑
i=1
wi ·Ai + wn · 0 ⊆ Σ|W |(W,S), as desired.

Supposem is not a prime power. Then we can chooseH, K ≤ G with |H|
and |K| distinct primes, so that H∩K = {0}. In view of (5), it follows that
Σ|W |(W,S) is missing exactly one element, which in view of (4) cannot be
zero. Consequently, either H ⊆ Σ|W |(W,S) or K ⊆ Σ|W |(W,S), as desired.
So we may assume m = pr for some prime p and r ≥ 1.

Claim A: If x(−x)|W ′, for some x ∈ Z/mZ, then |S| = 2n or |S| = 3n−1,
else the proof is complete.

Proof. Suppose the claim is false. Thus (3) implies 2n+ 1 ≤ |S| ≤ 3n− 2,
so that n ≥ 3, and it follows by the pigeonhole principle that |Ai| ≤ 2 for
some i, say i = n− 1, and that |Aj | ≥ 3 for some j, say j = n− 2, whence
we may w.l.o.g. assume x = wn−2 and −x = wn−1. Let g ∈ An−2 \ {0, 1}
(in view of |An−2| = |Aj | ≥ 3). Observe that

(6)
n−2∑
i=1
wi ·Ai + wn−1 · (An−1 ∪ {g}) =

(
n−1∑
i=1
wi ·Ai

)⋃
(
n−3∑
i=1
wi ·Ai + wn−2 · (An−2 \ {g}) + wn−1 · (An−1 ∪ {g})

)⋃
(
n−3∑
i=1
wi ·Ai + wn−2g + wn−1g

)
.

Note that the first two terms of the right hand side of (6) are contained in
Σ|W |(W,S). Moreover,

wn−2g + wn−1g = xg + (−x)g = 0 = wn−2 · 0 + wn−1 · 0 ∈
wn−2 ·An−2 + wn−1 ·An−1,

so that the third term of the right hand side of (6) is contained in
n−1∑
i=1
wi ·

Ai + wn · 0 ⊆ Σ|W |(W,S) as well. Consequently, it follows from (6) that

(7)
n−2∑
i=1
wi ·Ai + wn−1 · (An−1 ∪ {g}) ⊆ Σ|W |(W,S).



Representation of finite abelian group elements by subsequence sums 571

However, since
n−1∑
i=1
wi · Ai is aperiodic and wn−1g /∈ wn−1 · An−1 (in view

of ord(wn−1) = m, |An−1| = |Ai| = 2, and {0, 1} ⊆ Ai), it follows from
Kneser’s theorem that

|
n−2∑
i=1
wi ·Ai + wn−1 · (An−1 ∪ {g})| >

n−1∑
i=1
|Ai| − (n− 1) + 1 = m− 1.

Thus (7) implies that G ⊆ Σ|W |(W,S), as desired, completing the proof of
Claim A. �

If n = 2, then σ(W ′) = 0 implies w1 = 0, contradicting ord(wi) = m for
i ≤ n− 1. Therefore we may assume n ≥ 3.

Suppose |S| = 2n (so that S = 0n1n). Since |S| = n +m − 1 = 2n and
n ≥ 3, it follows thatm = n+1 ≥ 4. In view of (5) and Lemmas 3.1 and 3.2,
it follows that each wi ·Ai = wi ·{0, 1} = {0, wi} is an arithmetic progression
with common difference. Consequently, it follows that wi = ±wj for all
i, j ≤ n − 1. Since n − 1 < m, since σ(W ′) = 0, and since ord(wi) = m
for all i ≤ n − 1, it follows that the wi cannot all be equal. As a result,
wi = ±wj for all i, j ≤ n − 1 implies that wi = ±x for all i ≤ n − 1, with
(x)(−x)|W ′ (for some x ∈ Z/mZ), whence σ(W ′) = 0 further implies that
W ′ = x(n−1)/2(−x)(n−1)/2 with n − 1 even. Hence, since m = n + 1 is a
prime power, it follows that m = 2r, and we see that (ii) holds. So we may
assume |S| > 2n.

Suppose n = 3. Then σ(W ′) = 0 implies that w1 = −w2. Thus, since
2n < |S| and x(−x)|W ′, where x = w1, it follows in view of Claim A that
|S| = 3n− 1 = 8. Since |S| = n+m− 1 = m+ 2, this implies that m = 6,
contradicting that m is a prime power. So we may assume n ≥ 4.

In view of (3), choose A such that |Ai| ∈ {2, 3} for all i (possible by the
remarks from Section 1). If, for some j, there is g ∈ Aj \ {0, 1} such that
{x, g} is a coset of a cardinality two subgroup H, where x ∈ {0, 1}, then

n−1∑
i=1
i6=j

wix+ wj · {x, g}+ wn · 0

is an H-periodic subset of Σ|W |(W,S) that contains
n−1∑
i=1
wix = σ(W ′)·x = 0;

thus H ⊆ Σ|W |(W,S), as desired. Therefore we may assume otherwise, and

consequently that no Aj is quasi-periodic (in view of |Aj | ≤ 3 and
n−1∑
i=1
Ai

aperiodic).
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As a result, it follows, in view of n ≥ 4, (5) and Lemma 3.1, that the
wi · Ai are all arithmetic progressions of common difference. Thus each
Ai is an arithmetic progression of length two or three that contains {0, 1}.
Hence, since n ≥ 4 and n+m− 1 = |S| > 2n, so that

m ≥ 5,
it follows that each Ai is an arithmetic progression with difference 1 or
m+1

2 (which both are of order m), and thus each wi · Ai is an arithmetic
progression with difference wi or wi · m+1

2 .
Thus, since n−1 ≥ 3, it follows by the pigeonhole principle that there is a

pair Aj and Ak, with j 6= k, that are arithmetic progressions with common
difference d, where ord(d) = m. Thus wj · Ak and wk · Ak are arithmetic
progression with common difference wjd = ±wkd, implying wj = ±wk
(since ord(d) = m). Since the indexing for the wi was arbitrary, then, by
applying this argument to all possible permutations of the indices of the
wi (leaving wn fixed), we conclude that wi = ±wj for all i, j ≤ n − 1. As
in the case |S| = 2n, we cannot have all the wi, with i ≤ n − 1, equal
to each other (in view of σ(W ′) = 0 and n − 1 < m = ord(wi)), whence
W = x(n−1)/2(−x)(n−1)/20 and n is odd, for some x ∈ Z/mZ.

Thus, from claim A and |S| > 2n, we infer that n+m−1 = |S| = 3n−1,
implying 2n = m. Hence m is even. Thus, since m is a prime power, it
follows that m = 2r, whence 2n = m = 2r ≥ 5 implies that n is even, a
contradiction, completing the proof. �

4. On d∗(G)

The main goal of this section is to prove the following pair of seemingly
innocuous lemmas, which will be needed for the proof of Theorem 2.4.
Lemma 4.1 should be compared with the similar [11, Proposition 5.1.11],
whose proof is much easier.

Lemma 4.1. If G is a finite abelian group and H ≤ G, then
d∗(H) + d∗(G/H) ≤ d∗(G).

Lemma 4.2. Let G be a finite abelian group, let A ⊆ G with |A| ≥ 2, let
H = 〈−a0 + A〉, where a0 ∈ A, and let W = w1 · . . . · wd∗(H) be a sequence
of integers relatively prime to exp(H). Then

d∗(H)∑
i=1
wi ·A =

d∗(H)∑
i=1
wi

 a0 +H.

We first gather some basic results from algebra. Proposition 4.3 is easily
proved from the machinery of dual groups, and Proposition 4.4 from the
notion and basic properties of independent elements.
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Proposition 4.3. Let G be a finite abelian group and H ≤ G. Then there
exists K ≤ G such that K ∼= G/H and G/K ∼= H.

Proof. Since finite abelian groups are self-dual [28, Theorem I.9.1], this
follows from [28, Corollory I.9.3]. �

Proposition 4.4. Let G be a finite abelian group, say G ∼=
⊕r
i=1Cmi

∼=⊕l
i=1

(⊕r
j=1Cp

ki,j
i

)
, with 1 < m1| . . . |mr, each pi a distinct prime, and

1 ≤ ki,1 ≤ . . . ≤ ki,r. If H ≤ G, then

H ∼=
r⊕
i=1
Cm′i
∼=
l⊕
i=1

 r⊕
j=1
C
p
k′
i,j
i

 ,
with 1 ≤ m′1| . . . |m′r and m′i|mi and 0 ≤ k′i,1 ≤ . . . ≤ k′i,r and k′i,j ≤ ki,j,
for all i and j. Moreover, if m′s = ms for some s, then k′i,s = ki,s for all i.

Proof. Since mj = pk1,j
1 p

k2,j
2 · · · pkl,jl (see [24, Section II.2]), it suffices to

show k′i,j ≤ ki,j for all i and j. For this, it suffices to consider p-groups (the
case l = 1). We may assume k′1,1 ≤ . . . ≤ k′1,r, and now, if the proposition
is false, then k′1,j > k1,j for some j, whence H, and hence also G, contains
r− j + 1 independent elements of order at least pk1,j+1

1 , say e1, . . . , er−j+1.
But now pk1,j

1 e1, . . . p
k1,j
1 er−j+1 are r−j+1 independent elements in pk1,j

1 ·G
(the image of G under the multiplication by pk1,j

1 map), which has total rank
r∗(pk1,j

1 · G) at most r − j (in view of ki,1 ≤ . . . ≤ ki,r), contradicting that
the total rank of a group is the maximal number of independent elements
(see [11, Apendix A]). �

The next lemma will provide the key inductive mechanism for the proof
of Lemma 4.1.

Lemma 4.5. Let G be a finite abelian group, say G ∼=
⊕r
i=1Cmi, with

1 < m1| . . . |mr, and let H ≤ G, say H ∼=
⊕r
i=1Cm′i, with 1 ≤ m′1| . . . |m′r.

If m′t = mt for some t, then there exists a subgroup K ≤ H such that
K ∼= Cmt and K is a direct summand in both H and G.

Proof. Let G ∼=
⊕l
i=1

(⊕r
j=1Cp

ki,j
i

)
and H ∼=

⊕l
i=1

(⊕r
j=1C

p
k′
i,j
i

)
, with

each pi a distinct prime, 1 ≤ ki,1 ≤ . . . ≤ ki,r and 0 ≤ k′i,1 ≤ . . . ≤ k′i,r for
all i. In view of Proposition 4.4 and our hypotheses, we have m′i|mi and
k′i,j ≤ ki,j , for all i and j, and k′i,t = ki,t for all i. Thus it suffices to prove
the lemma for p-groups, and so we assume mi = psi and m′i = ps′i for some
prime p.
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By hypothesis, H contains r− t+ 1 independent elements f1, . . . , fr−t+1
of order at least mt = pst (by an appropriate subselection of elements from
a basis of H). Let e1, . . . , er be a basis for G with ord(ei) = psi , and let
fj =

r∑
i=1
αj,iei, where αj,i ∈ Z. If

ord(fj) = ord(αj,iei) = ord(ei) = pst ,
for some i and j, then e1, . . . , ei−1, fj , ei+1, . . . , er is also a basis for G, and
the result follows with K = 〈fj〉. So we may assume otherwise.

Now f ′1 := pst−1f1, f
′
2 := pst−1f2, . . . , f

′
r−t+1 := pst−1fr−t+1 are r − t+ 1

independent elements in pst−1 ·G. However, in view of the conclusion of the
previous paragraph, each pst−1fj with ord(fj) = pst must lie in the span of
pst−1et+1, . . . , p

st−1er (as ord(ei) ≤ pst for i ≤ t).
Let φL : pst−1 · G → (pst−1 · G)/L, where L = 〈pst−1e1, . . . , p

st−1et〉,
be the natural homomorphism. Then φL(f ′1), . . . , φL(f ′r−t+1) are r − t + 1
independent elements in φL(pst−1 · G), as the following argument shows.
Take any relation

0 =
r−t+1∑
i=1
αiφL(f ′i) =

∑
i∈I
αiφL(f ′i) +

∑
i/∈I
αiφL(f ′i),

where i ∈ I are those indices such that ord(f ′i) > p (and thus ord(fi) > pst)
and αi ∈ Z. Then, in view of the conclusion of the previous paragraph, we
see that

0 =
r−t+1∑
i=1
ps
′
αif
′
i

is a relation in pst−1 ·G, where s′ := max{0, 1−min{vp(αi) | i ∈ I}} (here
vp(αi) is the p-valuation of αi ∈ Z). If s′ = 0, then the independence of
the f ′i implies that αif ′i = 0, and thus φL(αif ′i) = αiφL(f ′i) = 0, for all i.
If s′ = 1, then the definition of s′ implies that vp(αj) = 0 for some j ∈ I,
whence ord(αjf ′j) > p follows from the definition of I. As a result, pαjf ′j 6=
0, contradicting that the f ′i are independent. Thus φL(f ′1), . . . , φL(f ′r−t+1)
are r − t + 1 independent elements in φL(pst−1 · G), which is a group of
total rank at most r − t, contradicting that the total rank is the maximal
number of independent elements (see [11, Apendix A]). This completes the
proof. �

We can now prove Lemma 4.1.

Proof. If G is cyclic, then d∗(G) = |G|−1, d∗(H) = |H|−1 and d∗(G/H) =
|G|
|H|−1. Hence d∗(G) ≥ d∗(H)+d∗(G/H) follows from the general inequality
xy ≥ x + y − 1 for x, y ∈ Z≥1. Therefore we may assume r(G) ≥ 2 and
proceed by induction on the rank r(G) = r.
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Let G ∼=
⊕r
i=1Cmi , H ∼=

⊕r
i=1Cm′i and G/H ∼=

⊕r
i=1Cm′′i , with 1 <

m1| . . . |mr and 1 ≤ m′1| . . . |m′r and 1 ≤ m′′1| . . . |m′′r . In view of Propositions
4.4 and 4.3, we see that m′i|mi and m′′i |mi for all i. Hence, if m′i < mi and
m′′i < mi for all i, then m′i ≤ 1

2mi and m′′i ≤ 1
2mi, whence m′i−1+m′′i −1 <

mi− 1; consequently, summing over all i yields the desired bound d∗(G) ≥
d∗(H) + d∗(G/H). Therefore we may assume m′s = ms or m′′s = ms for
some s, and in view of Proposition 4.3, we may w.l.o.g. assume m′s = ms.

Now applying Lemma 4.5, we conclude that there are subgroupsK, H0 ≤
H and G0 ≤ G such that H = K ⊕H0 and G = K ⊕ G0 with K ∼= Cms .
Moreover, we can choose the complimentary summand H0 such that H0 ≤
G0. Note d∗(H) = d∗(K) + d∗(H0) and d∗(G) = d∗(K) + d∗(G0), while
G/H = (K⊕G0)/(K⊕H0) ∼= G0/H0, so that d∗(G0/H0) = d∗(G/H). Thus
d∗(G) ≥ d∗(H) + d∗(G/H) follows by applying the induction hypothesis to
G0 with subgroup H0. �

Having established Lemma 4.1, we conclude the section with the proof
of Lemma 4.2.

Proof. By translation, we may w.l.o.g. assume a0 = 0 ∈ A and H = G.
Since |A| ≥ 2, we have 〈A〉 = H = G nontrivial. Let K ≤ H = G be
the maximal subgroup such that there exists a subset B ⊆ A with 0 ∈ B,
K = 〈B〉 and

(8) |
d∗(K)∑
i=1
wi ·B| = |K|,

if such K exists, and otherwise let K = B = {0}. We may assume K <
H = G, else the proof is complete.

Since 〈B〉 = K 6= G and 〈A〉 = G, choose g ∈ A \ B such that 〈B′〉 :=
K ′ > K, where B′ = B ∪ {g}. Let L = 〈g〉. Note K ′/K = (K + L)/K ∼=
L/(K ∩ L) is cyclic. Hence, in view of Lemma 4.1, we have

|K ′/K| − 1 = d∗(K ′/K) ≤ d∗(K ′)− d∗(K) ≤ d∗(G)− d∗(K).

Thus Kneser’s Theorem implies, in view of wig ∈ L and gcd(wi, exp(H)) =
1 (so that ord(wig) = ord(g)) and 〈g〉 = L (so that 〈φK(g)〉 = K ′/K =
(K + L)/K), that

|
d∗(K′)∑
i=d∗(K)+1

φK(wi ·B′)| = |
d∗(K′)∑
i=d∗(K)+1

φK(wi · {0, g})| = |K ′/K|,

and thus from (8) it follows that

|
d∗(K′)∑
i=1
wi ·B′| = |K ′|,
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contradicting the maximality of K, and completing the proof. �

5. Theorems 2.4 and 2.5
Theorems 2.4 and 2.5 will be derived by an inductive argument from the

following result. (Theorem E is easily derived from the proof of [16] us-
ing the both the modifications mentioned in [14] and those in [17]; see
[19] for a unified presentation of the arguments, though the condition
gcd(w, ord(g)) = 1, for all w ∈ supp(W ) and all torsion elements g ∈
supp(S), is misstated in the statement of Theorem 3.1 in [19], and is cor-
rected below.)

Theorem E. Let G be an abelian group, let S, S′ ∈ F(G) with S′|S, and let
W = w1 ·. . .·wn ∈ F(Z) be a sequence of integers such that h(S′) ≤ n ≤ |S′|
and gcd(w, ord(g)) = 1 for all w ∈ supp(W ) and all torsion elements
g ∈ supp(S). Then there exists H ≤ G and an n-setpartition A = A1·. . .·An
of a subsequence S′′ of S such that

n∑
i=1
wi ·Ai is H-periodic, |S′| = |S′′|, and

(9) |
n∑
i=1
wi ·Ai| ≥ ((N − 1)n+ e+ 1)|H|,

where

N = 1
|H|
|
n⋂
i=1

(Ai +H)| and e =
n∑
j=1

(|Aj | − |Aj ∩
n⋂
i=1

(Ai +H)|).

Furthermore, if H is nontrivial, then N ≥ 1 and supp(S′′−1S) ⊆⋂n
i=1(Ai +H).

The following basic result, which is a simple consequence of the pigeon-
hole principle, will be used in the proof [11, Lemma 5.2.9].

Proposition F. Let G be a finite abelian group and let A, B ⊆ G be
nonempty subsets. If |A|+ |B| ≥ |G|+ 1, then A+B = G.

We proceed with the proof of Theorems 2.4 and 2.5 simultaneously.

Proof. Observe that the hypotheses of Theorem 2.4 allow us to apply The-
orem E with G, S′|S, W = w1 · . . . · wn and n the same in both theorems.
Let H, S′′, A = A1 · . . . · An, N and e be as given by Theorem E. If H
is trivial, then (9) implies |

n∑
i=1
wi · Ai| ≥ |S′| − n + 1, and if H = G, then

n∑
i=1
wi ·Ai being H-periodic implies |

n∑
i=1
wi ·Ai| = |G|; in either case, (i) fol-

lows. Therefore we may assume H is a proper, nontrivial subgroup. This
completes the case when |G| is prime in Theorem 2.4.
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Concerning Theorem 2.5(i), in view of h(S′) ≤ n and |T−1S| ≥ n −
d∗(G) + |S| − |S′|, it is easily seen that the setpartition B1 · . . . · Bd∗(G) of
T can be extended to a setpartition A1 · . . . · An of a sequence S′′′|S, with
Bi ⊆ Ai for i ≤ d∗(G), T |S′′′ and |S′′′| = |S′|, by the following argument.
Begin with Ai = Bi for i ≤ d∗(G) and Ai = ∅ for d∗(G) < i ≤ n. If W |S
are all terms with multiplicity at least n and W ′ =

∏
g∈supp(W ) g

n, then
augment the sets Ai so that supp(W ) ⊆ Ai for all i (that is, simply include
each g ∈ supp(W ) in each set Ai if it was not already there). We must have
|W ′−1W | ≤ |S|−|S′|, else it would have been impossible that a subsequence
of S with length |S′| had an n-setpartition, which we know is the case since
h(S′) ≤ n ≤ |S′|. All remaining terms in T−1W−1S have multiplicity at
most n− 1, and so we can distribute all but |S| − |S′| − |W ′−1W | of them
among the Ai so that no Ai contains two equal terms, always choosing to
place an element in an empty set if available. Since |T−1S| ≥ n− d∗(G) +
|S|−|S′|, we are either assured that there are enough terms to fill all empty
sets in this manner, or that we can move some of the terms from W ′ (but
not from T ) placed in the Ai with i ≤ d∗(G) so that this is the case, and
then the resulting Ai give the n-setpartition with the desired properties.

Consequently, (i) in Theorem 2.5 is trivial, and since the only nontrivial
subgroup of G, when |G| is prime, is G, we see that the case |G| prime is
complete for Theorem 2.5 as well.

We now proceed by induction on the number of prime factors of |G|. We
first show that (i) failing in Theorem 2.4 implies the hypotheses of Theorem
2.5 hold (this is Claim B below), from which we infer that Theorem 2.5
implies Theorem 2.4. The remainder of the proof will then be devoted to
proving Theorem 2.5 assuming by induction hypothesis that Theorem 2.4
holds in any abelian group G′ with |G′| having a smaller number of prime
factors than |G|.

To this end, we assume (i) fails. Since (i) holds trivially when n = 1 (in
view of n ≥ h(S′)), we may assume n ≥ 2. Let x := |S| − |S′| ≥ 0. Since
(i) fails, it follows from (9) that

(10) ((N − 1)n+ e+ 1)|H| ≤ |S′| − n.

Much of the proof is contained in the following claim.

Claim B: There exists a nontrivial subgroup K, g′ ∈ G, and an d∗(K)-
setpartition B = B1 · . . . ·Bd∗(K) of a subsequence T |S with T ∈ F(g′+K),
such that

(11)
d∗(K)∑
i=1
wi ·Bi =

d∗(K)∑
i=1
wi

 g′ +K
and T−1S contains at least n− d∗(K) + x terms from g′ +K.
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Proof. There are two cases.
Case 1: N ≥ 2. If there does not exist g′ ∈

⋂n
i=1(Ai +H) and Aj and

Ak such that j 6= k and

(12) |Ak ∩ (g′ +H)|+ |Aj ∩ (g′ +H)| ≥ |H|+ 1,

then it would follow from the pigeonhole principle (since n ≥ 2) that

|S′| = |S′′| ≤ 1
2
|H|Nn+ e,

which combined with (10) implies ((N − 1)n + e)|H| ≤ 1
2 |H|Nn + e − n,

whence
|H|nN ≤ 2(|H| − 1)(n− e) ≤ 2n(|H| − 1),

implying N < 2, a contradiction. Therefore we may assume such g′ and Aj
and Ak exist, and w.l.o.g. j = 1 and k = 2 (by re-indexing the Ai but not
the wi; note we lose the sumset bound given by (9) in doing so, but we will
only need the information it implied about the structure of S and not use
the bound itself in the remainder of Case 1). By translation we may also
assume g′ = 0.

From Proposition F, (12) and gcd(wi, exp(G)) = 1, it follows that

(13) |w1 · (A1 ∩H) + w2 · (A2 ∩H)| = |H|.

Let Bj = Aj ∩
⋂n
i=1(Ai + H) for j = 1, . . . , n, and note that φH(Bi) =

φH(Bj) for all i and j. LetK = H+〈Bi〉 and T =
∏d∗(K)
i=1 Bi ∈ F(K). From

the conclusion of Theorem E, we know T−1S contains at least n−d∗(K)+x
terms from K (since each Ai intersects

⋂n
i=1(Ai + H) in at least N ≥ 1

points and supp(S′′−1S) ⊆
⋂n
i=1(Ai + H), both of which were preserved

when re-indexing the Ai).
If d∗(H) ≥ 2, then from (13) and g′ = 0 we find that

(14) H ⊆
d∗(H)∑
i=1
wi ·Bi.

On the otherhand, if d∗(H) = 1, then |H| = 2, whence (12) and the
pigeonhole principle imply that w.l.o.g. |A1 ∩ H| = |H|, and thus (14)
holds in this case as well. Since n ≥ d∗(G) ≥ d∗(K), it follows by Lemma
4.1 that

n− d∗(H) ≥ d∗(K)− d∗(H) ≥ d∗(K/H).
Thus, applying Lemma 4.2, taking φH(Bi) for A and G/H for G (recall
that g′ = 0 and |φH(Bi)| = N ≥ 2), it follows that

d∗(K)∑
i=d∗(H)+1

φH(wi ·Bi) = K/H,



Representation of finite abelian group elements by subsequence sums 579

which in view of (14) implies that (11) holds. In view of the conclusion of
the previous paragraph, this completes the claim.

Case 2: N = 1. Let T be the subsequence of S consisting of all
terms from g+H, let T ′|T be the subsequence consisting of all terms with
multiplicity at least d∗(H), and let B = supp(T ′). From (10) and Theorem
E, it follows that
(15) |T | ≥ x+ |S′| − e ≥ (e+ 1)|H|+ n+ x− e ≥ n+ |H|+ x.
By translation, we may w.l.o.g. assume 0 ∈ supp(T ), and that 0 ∈ supp(T ′)
if supp(T ′) 6= ∅. We handle two subcases.

Subcase 2.1: Suppose there exists a subsequence T0|T with h(T0) ≤
d∗(H) and |T0| = d∗(H) + |H| − 1. Then we can apply the induction
hypothesis to T0|T with G taken to be H and n taken to be d∗(H). Let
B = B1 · . . . · Bd∗(H) be the resulting setpartition and T ′0 the resulting
subsequence of T . From (15), we see that
(16)
|T ′0
−1
T | = |T | − |T ′0| = |T | − |T0| = |T | − d∗(H)− |H|+ 1 ≥ n+ x− d∗(H).

If (i) holds, then |T0| = d∗(H) + |H| − 1 implies that

|
d∗(H)∑
i=1
wi ·Bi| = |H|,

and the claim is complete (in view of (16)) using T ′0 for T and H for K.
On the otherhand, if (ii) holds with (say) subgroup K ≤ H, g′ ∈ H and
setpartition B1 · . . . ·Bd∗(H), then (11) follows from (ii)(d) (taking T to be
the associated sequence to B1 · . . . · Bd∗(K)), while (ii)(a) and (15) imply
T ′′0
−1T contains at least

d∗(H)− d∗(K) + |T | − |T0| = −d∗(K) + |T | − |H|+ 1 ≥ n− d∗(K) + x
terms from g′ +K, whence the claim follows.

Subcase 2.2: There does not exist a subsequence T0|T with h(T0) ≤
d∗(H) and |T0| = d∗(H) + |H| − 1. Consequently,

|supp(T ′)|d∗(H) + |T ′−1
T | ≤ d∗(H) + |H| − 2,

which, in view of (15), yields
(17) |T ′| ≥ n+ x+ 2 + (|supp(T ′)| − 1)d∗(H).
Since vg(T ′) ≤ vg(T ) ≤ n+x for all g ∈ G (in view of h(S′) ≤ n), it follows
that |T ′| ≤ (n + x)|supp(T ′)|. Thus, in view of n ≥ d∗(G) ≥ d∗(H) and
x ≥ 0, we conclude from (17) that |supp(T ′)| ≥ 2.

Let K = 〈supp(T ′)〉 ≤ H and let T0 :=
∏
g∈supp(T ′) g

d∗(K) be the sub-
sequence of T ′ (recall the definition of T ′) obtained by taking each term
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with multiplicity exactly d∗(K) ≤ d∗(H). Observe, in view of (17) and
d∗(K) ≤ d∗(H), that

|T−1
0 T

′| = |T ′| − |T0| = |T ′| − |supp(T ′)|d∗(K)(18)
≥ n+ x+ 2 + (|supp(T ′)| − 1)(d∗(H)− d∗(K))− d∗(K)
≥ n+ x− d∗(K).

Applying Lemma 4.2 with A taken to be supp(T ′), we conclude (recall
0 ∈ supp(T ′)) that

d∗(K)∑
i=1
wi ·Bi = K,

where Bi = supp(T ′) for i = 1, . . . , d∗(K). Hence, in view of (18), we see
that the claim follows (taking T to be T0). �

Having now established Claim B, we see that it suffices to prove Theorem
2.5 to complete the inductive proofs of Theorems 2.4 and 2.5. Let K be a
maximal subgroup satisfying Claim B, and let g′, T and B1 · . . . · Bd∗(K)
be as given by Claim B. By translation we may w.l.o.g. assume g′ = 0.
Let S0|S be the subsequence consisting of all terms x with φK(x) 6= 0, and
let e := |S0|. As remarked earlier, if K = G, then Theorem 2.5(i) follows
trivially. Therefore assume K < G. Observe that Claim B implies

(19) |T−1S−1
0 S| ≥ n− d∗(K) + x.

Suppose h(φK(S0)) ≥ d∗(G/K). Then let g ∈ supp(S0) with
vφK(g)(φK(S0)) ≥ d∗(G/K) and let L = K + 〈g〉. By Lemma 4.1, we
have

(20) d∗(L) ≥ d∗(K) + d∗(L/K).

In view of (19), h(φK(S0)) ≥ d∗(G/K) ≥ d∗(L/K) and n ≥ d∗(G) ≥ d∗(L),
we can find a subsequence T ′|T−1S such that φK(T ′) =
φK(g)d∗(L/K)0d∗(L)−d∗(K), and thus such that (TT ′)−1S contains at least

(21) n− d∗(K) + x− (d∗(L)− d∗(K)) = n− d∗(L) + x

terms from L. In view of (20), let Bd∗(K)+1 · . . . · Bd∗(L) be a setpartition
of T ′ such that |Bi| = 2 and φK(Bi) = {0, φK(g)}, for i = d∗(K) + 1, . . . ,
d∗(K) + d∗(L/K), and |Bi| = 1 and φK(Bi) = {0}, for i = d∗(K) +
d∗(L/K) + 1, . . . , d∗(L).

Applying Lemma 4.2 to {0, φK(g)}, we conclude that

|
d∗(K)+d∗(L/K)∑
i=d∗(K)+1

φK(wi ·Bi)| = |L/K|,
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and consequently (in view of (11) and (20)) that

|
d∗(L)∑
i=1
wi ·Bi| = |L|.

But now, in view also of (21), we see that the maximality of K is contra-
dicted by L. So we may instead assume h(φK(S0)) < d∗(G/K).

Let R be a subsequence of T−1S such that S0|R and |R| = |S0|+d∗(G/K)
(possible in view of (19), x ≥ 0, n ≥ d∗(G) and Lemma 4.1). Moreover,
from (19),

(22) |(TR)−1S| ≥ n+ x− d∗(K)− d∗(G/K),

with all term of (TR)−1S contained in K (since S0|R).
Since h(φK(S0)) < d∗(G/K), since φK(y) = 0 for y|S−1

0 S, and since
φK(y) 6= 0 for y|S0, it follows that h(φK(R)) ≤ d∗(G/K). Thus we can
apply the induction hypothesis to the subsequence φK(R)|φK(R)0|G/K|−1

with n = d∗(G/K) and G taken to be G/K. Let φK(Bd∗(K)+1) · . . . ·
φK(Bd∗(K)+d∗(G/K)) be the resulting setpartition and φK(R′) the result-
ing sequence, where R′|R0|G/K|−1 and Bd∗(K)+1 · . . . · Bd∗(K)+d∗(G/K) is a
setpartition of R′. Observe, since v0(φK(R)) = d∗(G/K), that
supp(φK(R′)−1φK(R)0|G/K|−1) = {0}, and thus that we can w.l.o.g. as-
sume R′ = R and likewise that Bd∗(K)+1·. . .·Bd∗(K)+d∗(G/K) is a setpartition
of R.

Suppose (ii) holds and let L/K be the corresponding subgroup. Since
v0(φK(R)0|G/K|−1) ≥ |G/K| − 1, it follows in view of (ii)(c) that w.l.o.g.
g = 0 (where g is as given by (ii)). But then (ii)(d) implies

d∗(K)+d∗(L/K)∑
i=d∗(K)+1

wi · φK(Bi) = L/K,

whence (11) implies
d∗(K)+d∗(L/K)∑

i=1
wi ·Bi = L.

In view of (ii)(a) and (22), it follows that there are still at least
(23)
n+x−d∗(K)−d∗(G/K)+(d∗(G/K)−d∗(L/K)) = n+x−d∗(K)−d∗(L/K)

terms remaining in
(∏d∗(K)+d∗(L/K)
i=1 Bi

)−1
S that are contained in L. Thus

(in view of Lemma 4.1) by appending on an additional d∗(L)− d∗(L/K)−
d∗(K) ≥ 0 terms Bi, for i = d∗(K) + d∗(L/K) + 1, . . . , d∗(L), with each
such new Bi consisting of a single element from L contained in
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i=1 Bi

)−1
S (that is, supp(

∏d∗(L)
i=d∗(K)+d∗(L/K)+1Bi) ⊆ L where

we have
∏d∗(L)
i=d∗(K)+d∗(L/K)+1Bi|

(∏d∗(K)+d∗(L/K)
i=1 Bi

)−1
S), we see that

d∗(L)∑
i=1
wi ·Bi = L

and with (
∏d∗(L)
i=1 Bi)−1S containing at least (in view of (23))

n+ x− d∗(K)− d∗(L/K)− (d∗(L)− d∗(L/K)− d∗(K)) = n+ x− d∗(L)
terms from L. Hence L contradicts the maximality ofK. So we may assume
instead that (i) holds.

As above, let Bi, for i = d∗(K) + d∗(G/K) + 1, . . . , n (in view of (22)),
be defined by partitioning, as singleton terms (i.e., |Bi| = 1), n− d∗(K)−
d∗(G/K) of the terms of the sequence

(∏d∗(K)+d∗(G/K)
i=1 Bi

)−1
S = (TR)−1S

(which are all from K in view of the comment after (22)).
If

(24)
d∗(K)+d∗(G/K)∑
i=d∗(K)+1

wi · φK(Bi) = G/K,

then (11), n ≥ d∗(G) and Lemma 4.1 imply that
d∗(G)∑
i=1
wi ·Bi = G.

Thus, in view of (22), we see that Claim B holds with K = G, contrary to
assumption. Therefore we can assume (24) fails, which, in view of |R| =
|S0|+ d∗(G/K) and (i) holding for φK(R) with n = d∗(G/K), implies that
e := |S0| ≤ |G/K| − 2 and, in view of (11), that

|
n∑
i=1
wi ·Bi| ≥ (e+ 1)|K|.

The remaining conclusions for (ii) now follow easily from Claim B holding
with K (by the same arguments used for establishing Theorem 2.5(i)), so
that (ii) holds for S′ with subgroup K, as desired. This completes the
proof. �

With the proof of Theorems 2.4 and 2.5 complete, the improvement to
Theorem A follows as a simple corollary.

Corollary 5.1. Let G be a finite abelian group, and let S ∈ F(G) with
|S| ≥ |G|+ d∗(G). Then either

(i) Σ|G|(S) = G, or
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(ii) there exist a proper subgroup H < G and some g ∈ G such that all
but at most |G/H| − 2 terms of S are from the coset g +H.

Proof. Let |S| = |G| + d∗(G) + x, so x ≥ 0. We assume (ii) fails for every
H and prove (i) holds. Note (ii) failing with H trivial implies h(S) ≤
d∗(G) + x+ 1.

Suppose h(S) ≤ d∗(G) + x. Then we can apply Theorem 2.4 with n =
d∗(G) + x, S = S′ and wi = 1 for all i. If Theorem 2.4(ii) holds, then
Theorem 2.4(ii)(c) implies Corollary 5.1(ii), contrary to assumption. If
instead Theorem 2.4(i) holds, then from |S| = |G|+ d∗(G) +x we conclude
that Σd∗(G)+x(S) = G. Since Σn(S) = σ(S)− Σ|S|−n(S) holds trivially for
any n (there is a natural correspondence between S0|S and S0

−1S|S), it
now follows that (i) holds for S, as desired. So we may assume h(S) =
d∗(G) + x+ 1.

By translation, we may w.l.o.g. assume 0 is a term with multiplicity
h(S) in S. We may also assume there is a nonzero g ∈ G with vg(S) =
v0(S) = h(S), else applying Theorem 2.4 to 0−1S|S completes the proof
as in the previous paragraph. Let S′|S be a maximal length subsequence
with h(S′) = d∗(G) + x, let A = supp(S′−1S), and let K = 〈A〉. Notice
{0, g} ⊆ A. Hence, since h(S) = d∗(G) + x + 1, it follows from Lemma
4.2 that the hypotheses of Theorem 2.5 hold with n = d∗(G) + x, S′|S,
K, and wi = 1 and Bi = A for all i. If Theorem 2.5(i) holds, then |G| =
|Σd∗(G)+x(S)| = |Σ|G|(S)| (as in the case h(S) ≤ d∗(G) + x), yielding (i).
On the otherhand, Theorem 2.5(ii) implies (ii) holds (in view of Theorem
2.4(ii)(c)). Thus the proof is complete. �

Next, the related corollary concerning Conjecture 2.3. Note the coset
condition assumed below for H trivial implies h(S) ≤ |S| − |G|+ 1, so the
hypothesis h(S) ≤ h ≤ |S| − |G|+ 1 is not vacuous. The case h = |G| and
|S| = 2|G| − 1 in Corollary 5.2 is the result from [32].

Corollary 5.2. Let G be a finite abelian group, let S ∈ F(G), let h ∈ Z
with max{h(S), d∗(G)} ≤ h ≤ |S|−|G|+1, and let W ∈ F(Z) be a sequence
of integers relatively prime to exp(G) with |W | ≥ h. Suppose there does
not exist a proper subgroup H < G and g ∈ G such that all but at most
|G/H| − 2 terms of S are from the coset g +H. Then Σh(W,S) = G. In
particular, Σ(W,S) = G

Proof. The proof is identical to the case h(S) ≤ d∗(G) + x in Corol-
lary 5.1 using n = h, the only other exception being that the identity
|Σn(W,S)| = |Σ|S|−n(W,S)| is not necessarily valid for arbitrary W , S and
n, thus preventing the proof of Conjecture 2.3 itself. �

Now we derive Corollary 2.6 from Theorem 2.5.
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Proof. Let m = exp(G), n = |W | and t = |W ′|. By considering G as a
Z/mZ-module (for notational convenience), we may w.l.o.g. consider W as
a sequence from Z/mZ, say w.l.o.g. W = w1 · . . . · wn, where ord(wi) = m
for i ≤ n − t (in view of the hypothesis gcd(w, exp(G)) = 1 for all w ∈
supp(W ′−1W )). Observe that we may assume |S| = n + |G| − 1 and that
there are distinct x, y ∈ G with xn−t+1yn−t+1|S, else Theorem D implies
the theorem (as if such is not the case, then in view of h(S) ≤ n = |W |
there would exist a n-setpartition of S with t sets of cardinality one). Since
σ(W ) = 0, we may w.l.o.g. by translation assume x = 0.

Let A ⊆ supp(S) be all those elements with multiplicity at least n − t,
let K = 〈A〉, let R|S be the maximal subsequence with supp(R) = A, let
T :=

∏
g∈A g

d∗(K), and let T0 =
∏
g∈A g

n−t. Notice {0, y} ⊆ A. Hence,
since h(S) ≤ n and |W | − t = n− t ≥ d∗(G) by hypothesis, it follows from
Lemma 4.2 applied to A that the hypotheses of Theorem 2.5 hold with n
taken to be n− t, Bi = A for i = 1, . . . , d∗(K), and S′ = T0(R−1S)|S.

If |R| ≤ |A|(n − t) + t, then Theorem D once more completes the proof
(as then there exists an n-setpartition of S with at least t sets of cardinality
one, in view of h(S) ≤ n). Therefore |R| ≥ |A|(n− t) + t+ 1, and so

(25) |S| − |S′′| = |S| − |S′| = |R| − |T0| ≥ t+ 1,

where S′′ is as given by Theorem 2.5. Consequently, if Theorem 2.5(i)
holds, then it follows that Σn−t(W ′−1W,S′′) = G with |S′′−1S| ≥ t, whence
Σn(W,S) = Σ|W |(W,S) = G follows, as desired. On the otherhand, if
Theorem 2.5(ii) holds, then Theorem 2.4(ii)(a)(d) implies(

n−t∑
i=1
wi

)
g +H ⊆

n−t∑
i=1
wi ·Ai ⊆ Σn−t(W ′−1

W,S′′),

where g, H and the Ai are as given by Theorem 2.4(ii), whence (25),
supp(S′′−1S) ⊆ g +H (in view of (ii)(a)), and σ(W ) = 0 imply

H =
(
n∑
i=1
wi

)
g +H ⊆ Σn(W,S) = Σ|W |(W,S),

as desired. �

Finally, we show Conjecture 2.3 holds when h(S) ≥ D(G)− 1. For this,
we need the following modification of a result from [7].

Lemma 5.3. Let R be a ring, G an R-module, W ∈ F(R) and S ∈ F(G)
with |S| ≥ |W |+ D(G)− 1. If v0(S) = h(S) ≥ D(G)− 1, then

Σ(W,S) = Σ|W |(W,S) .
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Proof. Let S′|S be the subsequence consisting of all nonzero terms. Let
g ∈ Σ(W,S) be arbitrary. Since Σ|W |(W,S) ⊆ Σ(W,S), we need to show
that g ∈ Σ|W |(W,S).

If g = 0 and h(S) ≥ |W |, then 0 ∈ Σ|W |(W, 0h(S)) ⊆ Σ|W |(W,S) (in view
of v0(S) = h(S)), as desired. If g = 0 and h(S) ≤ |W | − 1, then h(S) ≥
D(G)− 1 implies |W | ≥ D(G), while |S′| ≥ |W |+ D(G)− 1− h(S) ≥ D(G).
Thus
(26) g ∈ Σ(W,S′)
follows from the definition of D(G) applied to the sequence (w1s1)(w2s2) ·
. . . · (wD(G)sD(G)) ∈ F(G), where w1 · . . . · wD(G)|W and s1 · . . . · sD(G)|S′.
On the otherhand, if g 6= 0, then (26) holds trivially. Thus we can assume
(26) regardless, and we chooseW1|W and S1|S′ such thatW1 = w1 · . . . ·wt,

S1 = s1 · . . . · st and g =
t∑
i=1
wisi, with t maximal.

Note t ≤ |W |. If t ≥ |W |−h(S), then g ∈ Σ|W |(W,S10h(S)) ⊆ Σ|W |(W,S),
as desired. So we may assume
(27) t ≤ |W | − h(S)− 1.
Hence
(28) |S−1

1 S
′| ≥ |W |+ D(G)− 1− h(S)− t ≥ D(G).

Observe, in view of (27) and the hypotheses, that
(29) |W−1

1 W | = |W | − t ≥ h(S) + 1 ≥ D(G).
Let S′ = s1 · . . . · stst+1 · . . . · s|S|−h(S) and W = w1 · . . . · wtwt+1 · . . . · wn.
In view of (28) and (29), let

T := (wt+1st+1)(wt+2st+2) · . . . · (wt+D(G)st+D(G)) ∈ F(G).
Observe |T | = D(G), whence the definition of D(G) implies T has a zero-
sum subsequence, say (by re-indexing if necessary) (wt+1st+1)(wt+2st+2) ·
. . . · (wt+rst+r), where r ≥ 1. But now the sequences w1 · . . . · wt+r and
s1 · . . . · st+r contradict the maximality of t, completing the proof. �

Note that Corollary 5.4(ii) failing with H trivially implies h(S) ≤ |G| for
|S| ≤ 2|G| − 1, and that 2|G| − 1 ≥ |G| + D(G) − 1 in view of the trivial
bound D(G) ≤ |G| (see [11]). Thus the restriction h(S) ≤ |G| in Corollary
5.4 can be dropped when |S| ≤ 2|G| − 1, and thus, in particular, when
|S| = |G|+ D(G)− 1.

Corollary 5.4. Let G be a finite abelian group, S ∈ F(G) with |S| ≥
|G| + D(G) − 1 and |G| ≥ h(S) ≥ D(G) − 1, and let W ∈ F(Z) with
|W | = |G| and gcd(w, exp(G)) = 1 for all w ∈ supp(W ). Then either

(i) Σ|G|(W,S) = G, or
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(ii) there exist a proper subgroup H < G and some g ∈ G such that all
but at most |G/H| − 2 terms of S are from the coset g +H.

Proof. We may w.l.o.g. assume v0(S) = h(S). Thus our hypotheses allow
us to apply Lemma 5.3, whence
(30) Σ(W,S) = Σ|G|(W,S).
Since we may assume (ii) fails with H trivial, it follows that h(S) ≤ |S| −
|G| + 1. Consequently, since |W | = |G| ≥ h(S), then the result follows
from (30) and Corollary 5.2 applied with h = h(S) (in view of D(G) ≥
d∗(G) + 1). �
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