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Algebraic properties of a family of Jacobi
polynomials

par John CULLINAN, Farshid HAJIR et Elizabeth SELL

Résumé. La famille des polynômes à un seul paramètre Jn(x, y)
=
∑n

j=0

(
y+j

j

)
xj est une sous-famille de la famille (à deux para-

mètres) des polynômes de Jacobi. On montre que pour chaque
n ≥ 6, quand on spécialise en y0 ∈ Q, le polynôme Jn(x, y0) est
irréductible sur Q, sauf pour un nombre fini des valeurs y0 ∈ Q.
Si n est impair, sauf pour un nombre fini des valeurs y0 ∈ Q,
le groupe de Galois de Jn(x, y0) est Sn ; si n est pair, l’ensemble
exceptionnel est mince.

Abstract. The one-parameter family of polynomials Jn(x, y) =∑n
j=0

(
y+j

j

)
xj is a subfamily of the two-parameter family of Ja-

cobi polynomials. We prove that for each n ≥ 6, the polynomial
Jn(x, y0) is irreducible over Q for all but finitely many y0 ∈ Q. If
n is odd, then with the exception of a finite set of y0, the Galois
group of Jn(x, y0) is Sn; if n is even, then the exceptional set is
thin.

1. Introduction

For an integer n ≥ 1 and complex parameters α, β, define the polynomial

J (α,β)
n (x) :=

n∑
j=0

(
n + α

n− j

)(
n + α + β + j

j

)
xj .

It is a slightly renormalized version of the Jacobi polynomial

P (α,β)
n (x) := J (α,β)

n

(
x− 1

2

)
.

In terms of the Gauss hypergeometric series

2F1(a, b;−, c|z) :=
∞∑

ν=0

(a)ν(b)ν

(c)ν

zν

ν!
, (a)ν := (a)(a + 1) · · · (a + ν − 1),

we have

P (α,β)
n (x) = 2F1

(
−n, n + α + 1 + β;−, α + 1

∣∣1− x

2

)
.

Mots clefs. Orthogonal polynomials, Jacobi polynomial, Rational point, Riemann-Hurwitz
formula, Specialization.



98 John Cullinan, Farshid Hajir, Elizabeth Sell

Many important families of polynomials are obtained as specializations of
Jacobi polynomials; among them we mention the Tchebicheff polynomials
of the first (Tn(x)) and second kind (Un(x)), the ultraspherical polynomials
P

(α,α)
n (x) (also called Gegenbauer polynomials), and the Legendre polyno-

mials P
(0,0)
n (x). Jacobi polynomials, together with the Generalized Laguerre

polynomials

L(α)
n (x) :=

n∑
j=0

(
n + α

n− j

)
(−x)j

j!
,

and the Hermite polynomials

H2n(x) := (−1)n22nn!L(−1/2)
n (x2)

H2n+1(x) := (−1)n22n+1n!xL(1/2)
n (x2)

are the three classical families of orthogonal polynomials. Among all fam-
ilies of orthogonal families, they are distinguished by the fact that their
derivatives are also members of the same family. Orthogonal polynomials
play a very important role in analysis, mathematical physics, and represen-
tation theory.

The systematic study of algebraic properties of families of orthogonal
polynomials was initiated by Schur. He showed, for instance, that the Her-
mite polynomials are irreducible over Q and determined their Galois groups
[13].

The algebraic properties of some of the specializations of P
(α,β)
n (x) have

been known for quite some time (e.g. Tn, Un) whereas for others they appear
to be quite difficult to establish (e.g. the Legendre polynomials P

(0,0)
n ).

Other hypergeometric families related to the theory of modular forms are
specializations of Jacobi polynomials. For example, that the polynomials
P

(±1/2,±1/3)
n (x) are irreducible with Galois group Sn is equivalent to the

conjecture introduced and studied by Mahlburg and Ono in [11]; these
polynomials are on the one hand related to traces of singular moduli via
work of Kaneko-Zagier [9], and, up to simple factors, the supersingular
polynomial for a prime p where n = bp/12c ([1], [2]).

In a recent work, Hajir-Wong [7] describe a method for studying the
exceptional set for a one-parameter family F

(t)
n (x) ∈ Q[x, t] of polynomi-

als, i.e. the set of α ∈ Q for which F
(α)
n (x) is reducible. By applying their

method, which is a combination of group theory and algebraic geometry,
they showed that for each n ≥ 5, for all but finitely many α ∈ Q the gen-
eralized Laguerre polynomial L

(α)
n (x) is irreducible over Q and has Galois

group Sn.
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In the current work, we show a similar result for the polynomial

Jn(x, y) = (−1)nJ (−1−n,y+1)
n (−x) =

n∑
j=0

(
y + j

j

)
xj ;

more precisely:

Theorem 1.1. Let n ≥ 6 be an integer and let Jn(x, y) =
∑n

j=0

(y+j
j

)
xj.

Then the polynomials Jn(x, y0) are irreducible over Q for all but finitely
many y0 ∈ Q. Moreover, if n is odd then the Galois group of Jn(x, y0) is
equal to Sn for all but finitely many y0 ∈ Q. If n is even, then there is a
thin set of y0 for which the Galois group is An.

This result is far from effective, however, since the main tool for obtaining
the result is Faltings’ theorem. We follow the strategy outlined in Hajir-
Wong. We show that, as a polynomial over Q(y), Jn(x, y) is irreducible
with Galois group Sn. We then estimate the genus of the curve defined by
the polynomial, as well as other minimal subfields in the Galois closure of
its function field, allowing us to apply the theorem of Faltings to obtain
the finitude of the exceptional set using a criterion described, for example,
in Müller [12]. In addition we also obtain an exact expression for the genus
of the curve X1.

Theorem 1.2. Let X1 be the algebraic curve defined by Jn(x, y). Then the
genus of the normalization of X1 is

(n−1
2

)
.

Acknowledgements. We would like to thank Siman Wong for useful dis-
cussions and the referee for many helpful comments and suggestions.

2. The one-parameter family

The linear change of variables

r = −1− n− α

s = −1− r + β

allows us to rewrite the Jacobi polynomials in terms of the parameters r
and s:

P 〈r,s〉
n (x) := (−1)nP (−1−n−r,r+s+1)

n (−x) =
n∑

j=0

(
−1− r

n− j

)(
s + j

j

)
xj .(2.1)

Set r = 0 to get the one-parameter family (with s = y) given by:

Jn(x, y) = P 〈0,y〉
n (x) =

n∑
j=0

(
y + j

j

)
xj =

n∑
j=0

(y + 1) · · · (y + j)
xj

j!
.
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Let P̂n(x, y) be the reverse of Jn(x, y) as a polynomial in x, i.e.

P̂n(x, y) := xnJn(1/x, y) =
n∑

j=0

(
y + j

j

)
xn−j .

Clearly P̂n(x, y) and Jn(x, y) have the same irreducibility and Galois-theore-
tic properties. With another linear change of variables we obtain a more
convenient form of the polynomial, which we will work with for the rest of
the paper:

Pn(x, y) := (−1)nP̂n(−x,−y − 1) =
n∑

j=0

(
y

j

)
xn−j .

Fix n ≥ 6 and define the algebraic curve X1 ⊂ P2
Q as the projective

closure of the zero-set of Pn(x, y). Let X ′ denote the smooth curve corre-
sponding to the Galois closure K ′ of Pn(x, y) over Q(y). Following [7], we
will show:

• For each n ≥ 6, the polynomial Pn(x, y) has an irreducible Q-
rational specialization with Galois group Sn.

• The genera of the intermediate subfields Q(y) ⊂ E ⊂ K ′ are all
≥ 2 with the exception of the fixed-field of An when n is even.

In fact, when n is even there will be a thin set of y0 for which the specialized
polynomial Pn(x, y0) has Galois group An. These steps will constitute a
proof of Theorem 1.1 following the strategy outlined in [7].

3. Galois properties of Pn(x, y)

In this section, we compute the Galois group of our polynomial Pn(x, y)
over Q(y). In a first draft of this paper, we did this by effectively finding
an irreducible specialization with Galois group Sn over Q. We give a brief
sketch of our original argument. To establish irreducibility, we compare
the p-adic Newton polygons (for each p|n) of the Pn(x, y) to those of the
truncated exponential polynomials en(x) which are known to be irreducible
[5, lem. 2.7]. Once irreducibility is established, one can show that there
exists a prime in the interval (n/2, n − 2) such that the `-adic Newton
polygons of Pn(x, y) and en(x) coincide. By [6, thm. 2.2], the Galois group
of Pn(x, y) then contains An. To conclude that the Galois group is all of Sn,
it suffices to show the discriminant of Pn(x, y) is not a square. Effectivity
is not required for the results of the paper, and the details are intricate,
so we present a simpler proof. We would like to take this opportunity to
thank the referee for providing us with this approach. We start by writing
down the discriminant formula for Pn(x, y) as a polynomial in y, which
we get easily by specializing the formula for the discriminant of the Jacobi
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Polynomial [16, p. 143]:

disc(Pn(x, y)) =
(−1)n(n−1)/2

(n!)n−2
(y)(y − n)

n∏
j=0

(y − j)n−2.

Proposition 3.1. For all n ≥ 2 the polynomial Pn(x, y) is irreducible and
has Galois group Sn over Q(y).

Proof. It is easy to check that Pn(x, y) =
∑n

j=0

(y
j

)
xn−j is Eisenstein at the

place y. This gives irreducibility.
For the Galois group G, the discriminant formula above shows that spe-

cialization of Pn(x, y) at y0 = 0, . . . , n factors as Pn(x, y0) = xn−k(x + 1)k

for all k = 0, . . . , n. Hence, the inertia subgroup of G contains permuta-
tions of cycle type (n− k, k) for all k = 0, . . . n. When k = 1, this means G
contains an (n − 1)-cycle and hence is a 2-transitive subgroup of Sn. If n
is odd, then the (n− 2)th power of an element of cycle type (n− 2, 2) is a
transposition. This implies G is all of Sn.

If n is even, let n = 2`u with u and odd integer. If u = 1, take k = 3, if
u = 3 take k = 5, and if u ≥ 7, take k = u − 2. This ensures that, except
when n = 4 or 6, G contains a k-cycle with k in the range [2, n/2). Thus G
contains An. Since G contains odd permutations, G is all of Sn.

When n = 2, 4 or 6, the specialization y = 3, 8, or 11 (for example) yields
a polynomial with Galois group S2, S4 or S6, respectively. Since the Galois
group of Pn(x, y0) is a subgroup of the Galois group of Pn(x, y) for all
good specializations, this means means P2(x, y), P4(x, y) and P6(x, y) have
Galois groups S2, S4 and S6, respectively. This completes the proof. �

4. A genus formula

The goal of this section is to prove Theorem 4.1 below on the genus of the
curve X1. We remark that X1 is a singular curve, so by abuse of language,
we refer to the genus of the normalization of X1 as the genus of X1. Let
ιn : X1 −→ P1 be the projection-to-y map. The discriminant formula above
shows that the branch locus of ιn is given by

Bn = {0, . . . , n}.

The Riemann-Hurwitz formula implies

2g(X1)− 2 = deg(ιn)(−2) +
∑

P∈X1

(eP − 1).

As in the previous section, one checks that Pn(x, ν) = xn−ν(x + 1)ν for
all ν ∈ Bn. Moreover, one checks easily that there is no ramification at
infinity (taking note of the fact that en(x) =

∑n
j=0 xj/j! has discriminant

n!
∏n

j=2 jj−1 by [13, p. 229] hence is separable). Thus, there are 2n points
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of X1 ramified above P1, with the given ramification indices. The degree
of ιn is n, so altogether this gives

g(X1) =
1
2

(
−2n +

n(n + 1)
2

+
n(n + 1)

2
− 2n

)
+ 1 =

1
2

(
n2 − 3n + 2

)
,

and hence:

Theorem 4.1. Let gn denote the geometric genus of the normalization of
X1. Then gn =

(n−1
2

)
.

5. Genus of maximal subfields

Recall the following notation: K ′ is the Galois closure of the field K1/Q(y)
which is the function field of the covering X1/P1 where X1 is given by the
model Pn(x, y) = 0. We have shown in Section 3 that the Galois group of
K ′/Q(y) is Sn. We adopt the notation of [7]. Let E be an intermediate
field of K ′/Q(y), let E = Gal(K ′/E), and let XE be the smooth curve with
function field E. Following [7, thm. 3], we will now show that if Pn(x, y) is
reducible over E, then the genus of XE is greater than 1. We will achieve
this by showing that the genera of the minimal subfields of K ′ over which
Pn(x, y) is reducible (corresponding to maximal subgroups of Sn) are each
greater than 1.

Recall the definition of simple branch point from [7, def. 2], and recall
our notation: Bn = {0, . . . , n} is the branch locus of the projection-to-y
map ιn : X1 −→ P1. Consequently:

Lemma 5.1. The branch points ν = 0, 1, (n−1), and n are simple of index
n, n− 1, n− 1, and n, respectively.

Now we estimate the genera of the intermediate subfields. Our strategy is
as follows. We start with the maximal subgroups of Sn other than An; they
will all be shown to have fixed field of genus exceeding 1. For even n, the
fixed field of An has genus 0 but it turns out that Pn(x, y) is irreducible over
that field. It will then remain to show that the fixed fields of the maximal
subgroups of An all have genus exceeding 1.

Since the rest of the paper involves computations with the maximal sub-
groups of Sn, we appeal to the structure theorem of [10]: if G is An or Sn,
and E is any maximal subgroup of G with E 6= An, then E satisfies one of
the following:
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(a) E = (Sm × Sk) ∩G, with n = m + k and m 6= k.
(b) E = (Sm o Sk) ∩G, with n = mk, m > 1 and k > 1.
(c) E = AGLk(Fp) ∩G, with n = pk and p prime.
(d) E = (T k · (Out T×Sk)) ∩G, with T a non-abelian simple group,

k ≥ 2 and n = #T k−1.
(e) E = (Sm o Sk) ∩G, with n = mk, m ≥ 5 and k > 1, excluding

the case where E is imprimitive.
(f) T C E ≤ AutT , with T a non-abelian simple group, T 6= An,

and E primitive.

For completeness, we recall the notion of a primitive group [4, p. 12]. Let
G be a group acting transitively on a set Ω. A non empty subset ∆ of Ω
is called a block for G if for each x ∈ G either ∆x = ∆ or ∆x ∩ ∆ = ∅.
The group G is called primitive if it has no nontrivial blocks. The groups
of type (a) and (b) are imprimitive, while types (c)-(f) are primitive.

Proposition 5.1. Let n ≥ 6. If E is a maximal subgroup of Sn other than
An, with corresponding fixed-field E, then g(XE) > 1.

Proof. Let V = {0, 1, n − 1, n} be the set of simple branch points of ιn :
X1 −→ P1. Following [7], let d(k) be the least prime divisor of the positive
integer k, and define c1(ν) as in [7, defn. 1]. Every ν ∈ V is simple, so by
[7, lem. 6], c1(ν) is easily computed:

c1(ν) =
(# of eν-cycles in E)

#E
× eν(n− eν)! < eν(n− eν)!.

We now employ the genus estimate of [7, (4.1)]

g(XE) ≥ 1+
[Sn : E ]

2

(
−2 +

∑
ν∈V

(
1− 1

d(eν)

))
− 1

2

∑
ν∈V

c1(ν)
(

1− 1
d(eν)

)
.

For each ν ∈ V , the ramification index eν is either n or n−1. In particular,
two of the four eν are even and for those, d(eν) = 2; for the others d(eν) ≥ 3.
Let N be the odd element of the set {n, n− 1}. Then(

−2 +
∑
ν∈V

(
1− 1

d(eν)

))
= −2 + 4− 1

2
− 1

2
− 2

d(N)
≥ 1− 2

3
=

1
3
.

We now split the rest of the proof into three cases based on the structure
of the maximal subgroup E .

Case 1 – imprimitive wreath products

Here we must take n ≥ 4. The maximal imprimitive wreath products
contain no n or (n − 1)-cycles, hence c1(ν) = 0 for all ν ∈ V . The genus
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estimate for E = Sj o Sn/j is therefore

g(XE) ≥ 1 +
1
6
· n!
(j!)n/j(n/j)!

,

which is greater than 1.

Case 2 – intransitive subgroups

Take n ≥ 3. None of the subgroups Sj×Sn−j will contain an n-cycle, and
will only contain an (n− 1)-cycle when j = 1. Hence for j = 2, . . . , bn−1

2 c,
the genus estimate is

g(XE) ≥ 1 +
n!

j!(n− j)!
,

which is greater than 1. When j = 1, the subgroup Sn−1 of Sn contains
(n− 2)! cycles of length (n− 1). Hence the genus estimate becomes

g(XE) ≥ 1 +
1
6

n!
(n− 1)!

− 1
2
· 2 · (n− 2)!

(n− 1)!
· (n− 1) · 1!(1− 1

3
) =

n

6
+

1
3
,

which is greater than 1 when n ≥ 5.

Case 3 – primitive subgroups

If E is a proper primitive subgroup of Sn other than An, then Bochert’s
theorem [4, p. 79] bounds its index in Sn:

[Sn : E ] ≥ bn + 1
2

c!.

The basic estimate (1− 1/d(eν)) ≤ 1− 1/n gives us

g(XE) ≥ 1 +
1
6
· bn + 1

2
c!− 1

2

(
1− 1

n

)∑
ν∈V

c1(ν)

≥ 1 +
1
6
· bn + 1

2
c!− 1

2

(
1− 1

n

)
(n + (n− 1) + (n− 1) + n)

= 1 +
1
6
· bn + 1

2
c!−

(
2n− 3 +

1
n

)
.

This gives g(XE) > 1 when n ≥ 9. For a more refined estimate, we investi-
gate the primitive subgroups of the symmetric groups.

Let n = 8. Then the maximal primitive subgroups of S8 other than A8

are 23.PSL2(F7) and PGL2(F7). The group 23.PSL2(F7) has order 1344,
contains 384 7-cycles, and no 8-cycles. This gives

g(XE) ≥ 1+
1
6
· 8!
1344

−1
2

(
1− 1

8

)(
0 + 0 +

384
1344

· 7 · 1! +
384
1344

· 7 · 1!
)

=
17
4

.
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The order of PGL2(F7) is 336 and it contains 48 7-cycles and 84 8-cycles,
hence

g(XE) ≥ 1 +
1
6
· 8!
336

− 1
2

(
1− 1

8

)(
2 · 48

336
· 7 · 1! + 2 · 84

336
· 8 · 0!

)
=

147
8

.

Now take n = 7. There is a unique maximal primitive subgroup of S7

other than A7, namely PSL2(F7), which contains 48 7-cycles and no 6-
cycles. Therefore

g(XE) ≥ 1 +
1
6
· 7!
168

− 1
2

(
1− 1

7

)(
2 · 48

168
· 7 · 0!

)
=

30
7

.

The group S6 has a unique maximal primitive subgroup other than A6,
namely PGL2(F5). But PGL2(F5) ' S5 ' S5×S1 is an intransitive direct-
product subgroup of S6 and hence was already analyzed. This completes
the proof of the Proposition. �

Remark. When n = 5, the unique maximal primitive subgroup of S5 other
than A5 is the Frobenius group F20 of order 20. It contains 10 4-cycles and
4 5-cycles. Using the exact values for the d(eν) yields

g(XE) ≥ 1 +
1
2
· 5!
20

(
−2 + 2

(
1− 1

d(5)

)
+ 2

(
1− 1

d(4)

))
− 1

2

(
2 · 10

20
· 4 · 1! ·

(
1− 1

d(4)

)
+ 2 · 5

20
· 5 · 0! ·

(
1− 1

d(5)

))
=

4
5
,

so a more detailed analysis would be required determine whether the genus
of XE is greater than 1.

The unique index-2 subgroup An of Sn corresponds to the field Q(y, ∆n)
where ∆n :=

√
disc(Pn(x, y)). We have two different results based on

whether n is even or odd.

Lemma 5.2. Let Cn be the curve corresponding to the degree-2 field exten-
sion Q(y, ∆n)/Q(y). If n is odd, then Cn has genus bn−2

2 c; if n is even,
then Cn has genus 0. In particular, for odd n ≥ 7 and E = An, we have
g(XE) > 1.

Proof. Recall the discriminant of Pn(x, y) as a polynomial in y is given by

disc(Pn(x, y)) = ± 1
(n!)n−2

(y)(y − n)
n−1∏
j=1

(y − j)n−2,

where ± = (−1)n(n−1)/2. When n is even the square-free part of the dis-
criminant is ±y(y − n), hence a model for C is given by

z2 = ±y(y − n),
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which defines a smooth curve of genus 0. If n is odd, the square-free part
of the discriminant is ±1

n!

∏n−1
j=1 (y − j), and a model for Cn is given by

z2 =
±1
n!

n−1∏
j=1

(y − j).

Therefore Cn is a hyperelliptic curve of genus bn−2
2 c. �

We now take up the case where n is even, so that the genus of the
fixed-field of An is always 0. By [7, Prop. 3], it suffices to consider the
maximal proper subgroups of An, which are described in the structure
theorem above. The groups of type (a) and (b) are imprimitive, while types
(c)-(f) are primitive. None of the imprimitive groups are contained in An,
so their indices in Sn are as follows:

[Sn : E ∩An] =

{
2 ·
(n
k

)
if E = Sm × Sk

2 · n!
j!n/j(n/j)!

if E = Sj o Sn/j .

Proposition 5.2. Let n ≥ 6 be an even integer and E a maximal proper
subgroup of An. Then the genus of XE is greater than 1.

Proof. As in the proof of Proposition 5.1 we split the proof into three cases
according to the structure of E .

Case 1 – imprimitive wreath products

In this case we require n ≥ 4 and take E = (Sj o Sn/j) ∩ An, so that

[Sn : E ] =
2 · n!

j!n/j(n/j)!
. The subgroup Sj o Sn/j of Sn contains no n or

(n− 1)-cycles so that c1(ν) = 0 for all ν ∈ V . Hence g(XE) > 1.

Case 2 – intransitive subgroups

Here we take n ≥ 4 (recall n is even) and consider the subgroups E =
(Sj × Sn−j) ∩ An. None of the E contain an n-cycle, and only S1 × Sn−1

contains an (n−1)-cycle. When j = 1 we have E = (S1×Sn−1)∩An ' An−1.
The order of An−1 is (n − 1)!/2 and it contains (n − 2)! (n − 1)-cycles.
Altogether this gives:

g(XE) ≥ 1 +
1
6

2 · n!
(n− 1)!

− 1
2

(
0 + 0 + 2

(
1− 1

n

)(
2(n− 2)!
(n− 1)!

· (n− 1) · 1!
))

= 2n− 1 +
2
n

,

which is greater than 1.



Algebraic properties 107

Case 3 – primitive subgroups

If E is a primitive subgroup of An, then it is automatically a primitive
subgroup of Sn, and hence is contained in some maximal primitive subgroup
of Sn. All the maximal primitive subgroups of Sn (other than An) have been
analyzed in Proposition 5.1. Moreover, before the proof of this proposition
we noted that it suffices to consider the maximal proper subgroups of An,
so we need not estimate the genus of the fixed-field coming from An itself.
This completes the proof. �
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