
Christophe DELAUNAY et Xavier-François ROBLOT

Regulators of rank one quadratic twists
Tome 20, no 3 (2008), p. 601-624.

<http://jtnb.cedram.org/item?id=JTNB_2008__20_3_601_0>

© Université Bordeaux 1, 2008, tous droits réservés.

L’accès aux articles de la revue « Journal de Théorie des Nom-
bres de Bordeaux » (http://jtnb.cedram.org/), implique l’accord
avec les conditions générales d’utilisation (http://jtnb.cedram.
org/legal/). Toute reproduction en tout ou partie cet article sous
quelque forme que ce soit pour tout usage autre que l’utilisation à
fin strictement personnelle du copiste est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://jtnb.cedram.org/item?id=JTNB_2008__20_3_601_0
http://jtnb.cedram.org/
http://jtnb.cedram.org/legal/
http://jtnb.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Journal de Théorie des Nombres
de Bordeaux 20 (2008), 601-624

Regulators of rank one quadratic twists

par Christophe DELAUNAY et Xavier-François ROBLOT

Dédié à Henri Cohen pour son soixantième anniversaire
avec toute notre amitié et notre reconnaissance

Résumé. Nous étudions les régulateurs des courbes elliptiques de
rang 1 appartenant à des familles de tordues quadratiques d’une
courbe fixée. En particulier, nous formulons des conjectures sur
la taille moyenne de ces régulateurs. Nous décrivons également
un algorithme performant pour calculer explicitement les inva-
riants des tordues quadratiques de rang 1 d’une courbe elliptique
(régulateur, ordre du groupe de Tate-Shafarevich, etc.) et nous
comparons les données numériques obtenues avec les prédictions.

Abstract. We investigate the regulators of elliptic curves with
rank 1 in some families of quadratic twists of a fixed elliptic curve.
In particular, we formulate some conjectures on the average size of
these regulators. We also describe an efficient algorithm to com-
pute explicitly some of the invariants of a rank one quadratic
twist of an elliptic curve (regulator, order of the Tate-Shafarevich
group, etc.) and we discuss the numerical data that we obtain and
compare it with our predictions.

1. Introduction and notations

We study the regulators of elliptic curves of rank 1 in a family of qua-
dratic twists of a fixed elliptic curve E defined over Q. Methods coming
from Random Matrix Theory, as developed in [K-S], [CKRS], [CFKRS],
etc., allow us to derive precise conjectures for the moments of those regula-
tors. Our hope is that these moments will help to make predictions for the
number of curves with extra-rank (i.e. the number of even quadratic twists1

with a Mordell-Weil rank ≥ 2, or the number of odd quadratic twists with
Mordell-Weil rank ≥ 3). Then, we describe an efficient method, using the
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1An odd (resp. even) quadratic twist of E is a quadratic twist such that the sign of the func-

tional equation of its L-function is −1 (resp. +1). By the Birch and Swinnerton-Dyer conjecture
this is equivalent to say that its Mordell-Weil rank is odd (resp. even)
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Heegner-point construction, for computing the regulator (and the order of
the Tate-Shafarevich group) of an elliptic curve of rank 1 in a family of
quadratic twists. Finally, we discuss and compare our extensive numerical
data (for some families of odd quadratic twists of the curves 11a1, 14a1,
15a1 and 17a1) with our predictions.

From a numerical and experimental point of view, the situation of odd
quadratic twists really differs from the one of even quadratic twists. Indeed,
in the latter case, for each curve Ed in a family (Ed)d of even quadratic
twists of a fixed elliptic curve E, one has to compute the special value
L(Ed, 1) of its L-function at s = 1 and determine if it is zero or not.
If L(Ed, 1) = 0 then the curve Ed has extra-rank. Otherwise the curve
has rank 0, the regulator is simply 1, and the Birch and Swinnerton-Dyer
conjecture allows us to deduce the value of |X(Ed)| from that of L(Ed, 1).
The computation of L(Ed, 1) is done via a Waldspurger’s formula which,
roughly speaking, states that L(Ed, 1) is, up to a fudge factor, the square of
the |d|-th coefficient of a weight 3/2 modular form given by an explicit linear
combination of theta series. It follows that, in this case, computations are
possible for very large families of quadratic twists (see for example [Rub],
[Qua], etc.). Note that the numerical data coming from these computations
are in close agreement with the well-known conjectures of [CKRS] about
extra-vanishing (coming from the models of Random Matrix Theory), or
on the behavior of the Tate-Shafarevich groups X(Ed) of Ed (see [Qua],
[De1]).

In the rank 1 case, numerical investigation appears to be much more
complicated and, as far as we know, has never been done before. In that
case, we first have to compute the value of the derivative L′(Ed, 1) for
each curve Ed in the family of odd quadratic twists. However, there is no
Waldspurger’s formula to compute this value directly, and furthermore from
this value one can only deduce (assuming it is non-zero and under the Birch
and Swinnerton-Dyer conjecture) the value of the product R(Ed) |X(Ed)|
where R(Ed) is the regulator of Ed. Thus we also need to be able to evaluate
at least one of the two terms of this product.2 The only (known) efficient
way to do this is to write down a generator Gd of Ed(Q) and to compute
R(Ed) = ĥ(Gd) where ĥ is the canonical height3 of Ed.

2For some families of elliptic curves (Fj)j , there exists a generic point in the Mordell-Weil
group Fj(Q), thus one can separate the terms in this product and a direct investigation is
possible (see [De-Du]). However, such families for which we know in advance the regulator are
very special and in particular are not quadratic families, although we must say that it is possible
to get sometimes a generic point for some very specific and tiny sub-family of quadratic twists.

3This equality fixes once and for all our choice of the canonical height. Note that this height
is twice the height in Silverman’s book [Sil] or in Krir’s paper [Kri] so this explains the difference
of a factor 2 between the formulae in this paper and theirs.
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The method we used in this paper is to first adapt the Heegner-point
construction to our situation in order to construct a generator Gd and then
replace the Waldspurger’s formula by the formula of Gross and Zagier. This
allows us to compute directly the regulator R(Ed) and at the same time
the order of the Tate-Shafarevich group |X(Ed)| (assuming the Birch and
Swinnerton-Dyer conjecture).

Hypothesis. From now on, we assume the truth of the Birch and
Swinnerton-Dyer conjecture.

We now give some notations. Fix an elliptic curve E defined over Q and
let N be its conductor. The L-function of E is

L(E, s) =
∑
n≥1

a(n)n−s , <(s) > 3/2

It is now a classical and deep result that L(E, s) can be analytically con-
tinued to the whole complex plane and satisfies a functional equation:

Λ(E, s) :=

(√
N

2π

)s

Γ(s)L(E, s) = wΛ(E, 2− s)

where w = ±1 gives the parity of the order of vanishing of L(E, s) at s = 1.
Let d be a fundamental discriminant. We denote by Ed the quadratic twist
of E by d. The curves E and Ed are isomorphic over the quadratic field
Q(
√
d) but not over Q. We denote by ψd (ψ if d is clear in the context) the

isomorphism between E and Ed defined in the following way. Assume that
the curves E and Ed are given by:

E : y2 = x3 +Ax2 +Bx+ C

Ed : y2 = x3 +Adx+Bd2x+ Cd3

then ψd is:
ψd : E

∼−→ Ed

(x, y) 7−→ (dx, d3/2y)

The non-trivial automorphism x 7→ x̄ of Q(
√
d), which is the restriction of

the complex conjugation if d < 0, acts by:

(1.1) ψd(P ) = −ψd(P )

Whenever d and N are coprime (and this will always be the case in our
families), the conductor of Ed is Nd2 and we have:

L(Ed, s) =
∑
n≥1

a(n)χd(n)n−s
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where χd(.) =
(

d
.

)
is the quadratic character associated to d. The sign of

the functional equation satisfied by L(Ed, s) is

w(Ed) = w · χd(−N).

In the odd rank case (i.e. w(Ed) = −1), we are interested in the values at
s = 1 of the derivatives of the L-functions. We have:

L′(Ed, 1) =
Ω(Ed) c(Ed)
|Ed(Q)tors|2

R(Ed)S(Ed)

where as usual Ω(Ed) is the real period, R(Ed) is the regulator and c(Ed)
is the product of the local Tamagawa numbers cp(Ed) for p | Nd. The
Birch and Swinnerton-Dyer conjecture predicts that S(Ed) = |X(Ed)| if
L′(Ed, 1) 6= 0 and S(Ed) = 0 otherwise.

2. Families of quadratic twists

For each prime p dividing the conductor N of E, we fix a sign wp = ±1
so that

∏
p|N wp = w. We then define the set:

F =
{
d < 0, fundamental discriminant with

(
d

p

)
= wp for all p | N

}
and we let:

F(T ) =
{
d ∈ F , |d| < T

}
Then, our family of quadratic twists is the set (Ed)d∈F and, for all these
curves Ed, we have w(Ed) = −1 by the above assumption on the product
of the wp’s. It will be convenient for us to partition the family F into two
subfamilies corresponding to the odd and even discriminant cases. Therefore
we define:

Fodd =
{
d ∈ F , d odd

}
and Fodd(T ) =

{
d ∈ F(T ), d odd

}
Note that we will not need to consider the subfamilies corresponding to the
even discriminants.

For d ∈ F with |d| large enough, it follows from Proposition 2 of [De2]
that, if we denote by c4 the usual invariant of E (cf. [Coh1, §7.1]), we have:

(2.1) S(Ed)R(Ed) =
√
|d|L′(Ed, 1)

δ8(d, c4) ΩF
∏
p|d
cp(Ed)

where δ8(d, c4) = 2 if 8 | d and 2 | c4, and δ8(d, c4) = 1 otherwise, and
ΩF is some positive number which does not depend on d. When L′(Ed, 1)
is not zero then Ed(Q) has rank 1 and the regulator R(Ed) is equal to
the canonical height ĥ(Gd) of a generator Gd of Ed. So, the problem of
studying the behavior of R(Ed) is roughly speaking the same as the one of
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studying the complexity of rational solutions of the associated Diophantine
equations.

2.1. On upper bounds for h(Gd). Lang’s conjecture [Sil, Conjecture
10.2] predicts that for a general elliptic curve E:

R(E) � |∆min(E)|1/2+ε

where ∆min(E) is the minimal discriminant of E. In our family, we have
∆min(Ed) = d6∆min(E) hence, this yields:

R(Ed) � |d|3+ε

Of course, this upper bound is very far from what we really expect for our
family. Indeed, using equation (2.1) and the fact that S(Ed) and cp(Ed) are
positive integers (so greater or equal to 1), the Lindelöf hypothesis applied
to L′(Ed, 1) gives the following conditional upper bound:

R(Ed) �ε |d|1/2+ε

In some cases, this upper bound can be proved on average. Anticipating
on the results and notations of Section 3.1, we prove:

Proposition 2.1. Assume that N is square-free, L(E, 1) 6= 0 and wp = +1
for all p | N . Then we have:

(2.2)
1

|Fodd(T )|
∑

d∈Fodd(T )
L′(Ed,1) 6=0

R(Ed) � T 1/2 log T

Proof. This is a direct corollary of a theorem of Ricotta and Vidick. Indeed,
with the notations of section 3.1 we have

R(Ed) = ĥ(Gd) ≤ ĥ(Rd) = 4ĥE(Pd),

where ĥE is the canonical height on E and Pd ∈ E(Q
√
d) is the Heegner

point constructed in 3.1. Now, we apply the corollaire 3.2 of [Ri-Vi]. �

Remark. Classical conjectures predict that the number of discriminants d
in our family for which L′(Ed, 1) = 0 should have density 0 (we will come
back to this fact later), so |Fodd(T )| is equivalent, as T →∞, to the number
of terms in the sum of the formula above and hence the proposition really
asserts that on average R(Ed) � |d|1/2+ε for all d ∈ Fodd.

2.2. On lower bound for R(Ed). Another conjecture of Lang asserts
that ĥ(Gd) � log |∆min(Ed)|, thus we get:

(2.3) ĥ(Gd) � log |d|

In fact, we have the more precise result:
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Proposition 2.2. If j(E) 6= 0, 1728, then there is an explicit constant M ,
depending on E and on the wp’s, such that we have for all d ∈ F :

ĥ(Gd) >
1
M

log |d|

If wp = +1 for all p | N , then one can take M = 1296 c(E)2.

Proof. We estimate lcm(cp(Ed))p|Nd where cp(Ed) is the local Tamagawa
number at the prime p dividing Nd. If p | N , then cp(Ed) is either cp(E)
if wp = +1, or cp(E∗) if wp = −1 where E∗ is any fixed twist of E by a
discriminant that is not a square in Qp. If p | d, then cp(Ed) is either 1, 2
or 4. Hence, we have

lcm(cp(Ed))p|N ≤ 4
∏

p|N, wp=+1

cp(E)
∏

p|N, wp=−1

cp(E∗)

Now, the result follows using Corollaire 2.2 of [Kri] and the fact that
|∆min(Ed)| = |d|6|∆min(E)|. �

Remark.

(1) With the same techniques, we can obtain similar results for j(E) =
0 or 1728.

(2) One can prove (see for example [Sil, exercise 8.17]) the following
lower bound:

(2.4) ĥ(Gd) ≥
1
3

log |d|+ C

where C is some constant depending on E. The factor 1/3 in this
formula is much better than the factor 1/M in Proposition 2.2.
However, the constant C (which comes from the difference between
the naive and the canonical heights) is negative and thus the esti-
mate (2.4) is useless for small d (and in practice for all the d’s we are
dealing with). On the other hand, the estimate of Proposition 2.2
is good enough for our applications and has no consequence on the
main complexity of our method.

(3) The lower bound in Proposition 2.2 is optimal in the following sense:
suppose that E is given by the equation y2 = P (x) where P (x) is
a degree 3 polynomial. Then, one can easily check that the point
(rP (r), P (r)2) belongs to EP (r)(Q) and that the height of this point
is ≈ 4/3 log |P (r)|.
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One expect much better lower bounds on average: indeed, it is proved
in [De2] that predictions coming from Random Matrix Theory for deriva-
tives of L-functions (see [Sna]) and Cohen-Lenstra type heuristics for Tate-
Shafarevich groups (see [De1]) imply that for k > 0:

(2.5)
1

|F(T )|
∑

d∈F(T )
L′(Ed,1) 6=0

ĥ(Gd)k � T k/2−ε

where the implied constant depends on E, k, ε and the wp’s.

2.3. Heuristics for the moments of R(Ed). For k > 0 we let:

Mk(T ) =
1

|F(T )|
∑

d∈F(T )
L′(Ed,1) 6=0

R(Ed)k

Equations (2.2) and (2.5) imply that on average ĥ(Gd) should be of the
size of |d|1/2. In fact, one can make similar computations as in [De2] to
estimate: ∑

d∈F(T )
L′(Ed,1) 6=0

R(Ed)kS(Ed)k

Then, Cohen-Lenstra type heuristics for Tate-Shafarevich groups (see [De1])

predict that
1

|F(T )|
S(Ed)k tends to a finite limit as T → ∞ whenever

0 < k < 1. Therefore, using an empirical argument, we replace the term
S(Ed)k by a constant and deduce the following heuristics:

Heuristic for Mk(T ). For 0 < k < 1 we have as T →∞:

(2.6) Mk(T ) ∼ Ak T
k/2 log(T )k(k+1)/2+ak−1

for some constants Ak and ak.

The number ak comes from the contribution of the Tamagawa numbers in
the Birch and Swinnerton-Dyer conjecture. More precisely we should have:

• If E (or an isogenous curve) has full rational 2-torsion then ak =
4−k.

• If E has exactly one rational 2-torsion point (and no isogenous curve
has full 2-torsion) then ak = 1

2(4−k + 2−k).
For the other cases, we need to make the rather technical assumption that
our restrictions on the discriminants are not incompatible with the use of
the Chebotarev density theorem (see [De2]). Then we should have:

• If E has no rational 2-torsion point and its discriminant is not a
square then ak = 1

6 4−k + 1
2 2−k + 1

3 .
• If E has no rational 2-torsion point and its discriminant is a square

then ak = 1
3 4−k + 2

3 .
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Indeed, the equivalence (2.6) depends only on the isogenous class of the
curve, and this explains why we have to consider the curve in the class
with the maximal rational 2-torsion point.

If we restrict our family to negative prime discriminants, the effect of the
Tamagawa numbers disappears and we have ak = 1. More precisely if we
let:

F ′ =
{
d < 0, fund. disc. with

(
d

p

)
= wp for all p | N and |d| is prime

}
F ′(T ) =

{
d ∈ F ′, |d| < T

}
and

M ′
k(T ) =

1
|F ′(T )|

∑
d∈F′(T )

L′(Ed,1) 6=0

R(Ed)k ,

we expect the following heuristic:

Heuristic for M ′
k(T ). For 0 < k < 1, we have as T →∞:

(2.7) M ′
k(T ) ∼ A′k T

k/2 log(T )k(k+1)/2

Remark. These two heuristics are supported by our numerical data for
the elliptic curves of conductor N ≤ 17 as we will see in the last section.

The asymptotics (2.6) and (2.7) imply that on average the regulators
of (Ed)d∈F behave as ≈ |d|1/2+ε suggesting that θ = ε in the Saturday
Night Conjecture (see [CRSW]). From this we get a density of T 1−ε for
the subset of d ∈ F(T ) such that L′(Ed, 1) = 0, which is really surprising
compared to the even-rank case. The numerical data seems to support this
fact. On the other hand, extensive numerical computations by Watkins
[Wat] seem to indicate otherwise. Indeed we want to emphasize that one has
always to be careful with deducing too strong of statements from numerical
investigations.

3. Computation of generators

We need to make a certain number of restrictions in order to be able
to apply the method described in this section. First, we assume that E
is the strong Weil curve in its isogeny class (in fact, we just need that
the Manin’s constant of E is equal to 1) and that j(E) 6= 0, 1728. These
are just technical and not essential assumptions. Furthermore, we assume
L(E, 1) 6= 0 which implies that E(Q) has rank 0 and that w = +1. This
is a fundamental assumption and the method would not work without it.
Finally, the family of discriminants F is obtained by taking wp = +1 for
all p | N . Hence, w(Ed) = −1 and d is a square modulo 4N for all d ∈ F .
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The latter condition implies that one can apply the Heegner point con-
struction to get a point Pd ∈ E(Q(

√
d)) of infinite order if L′(Ed, 1) 6= 0.4

For that one has to evaluate the modular parametrization at well chosen
points τ ∈ X0(N):

ϕ : X0(N)
φ−→ C/Λ ℘−→ E(C)

τ 7−→ ∑
n≥1

a(n)
n

e2iπnτ

withX0(N) = Γ0(N)\H where Γ0(N) is the congruence subgroup of SL2(Z)
of matrices with lower left entry divisible by N , H = H ∪ Q is the com-
pleted upper half plane, Λ is the period lattice associated to E and ℘ is the
analytic isomorphism given by the Weierstrass function (and its derivative).

3.1. Description of the method. We now briefly describe the algorithm
step by step.

STEP 1. For each ideal class C in the class group Cl(d) of Q(
√
d), we

choose an integral ideal a ∈ C such that:

(3.1) a = A Z +
−B +

√
d

2
Z with N | A and B ≡ β (mod 2N)

where β = βd is a fixed integer such that β2 ≡ d (mod 4N).
Then, to C = [a], we associate the Heegner point:

τ[a] =
−B +

√
d

2A

Comments. The point τ[a] lies in the upper half plane and is a well defined
point in X0(N). Nevertheless, in order to make the computations as easy
as possible, we need to choose a such that A is as small as possible. Us-
ing classical algorithms (see [Coh1]), we can compute a set of ideals {ai}i

representing all the classes of Cl(d):

ai = aiZ +
−bi +

√
d

2
Z

4Classically the Heegner point method is used to construct directly a rational point on Ed(Q),
see [Coh2, Chapter 8.5]. However the direct construction of a point in a quadratic extension has
been already done in connection with the problem of congruent numbers by N. Elkies, see [Elk].
The main difference with the construction used in this article is that Elkies just wanted a strategy
to compute efficiently a rational point of some quadratic twists of the elliptic curve 32a2, whereas
we want to compute a generator of all the Ed(Q) for d ∈ F(T ) of some large T . Hence, we really
need to be careful in all the steps of the method in order to be as efficient as possible. We also
have to use the full force of the Gross-Zagier formula and of the Birch and Swinnerton-Dyer
conjecture in order to get as much information as possible all throughout our computations.
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with 0 < ai � |d|1/2 where the implied constant is explicit. We can assume
without loss of generality that the ai’s are relatively prime with N . Then,
the ideals ain satisfy (3.1) where

n = N Z +
β −

√
d

2
Z

From this it follows that one can choose the ideals ai’s in such a way that
we have the following lower bound:

(3.2) =(τ[ai]) � 1/N

The complexity of this step is thus dominated by the class number of Q(
√
d),

hence is at most O(|d|1/2 log |d|).
STEP 2. We compute

zd =
∑
[a]

φ(τ[a])

where the sum is over the classes of Cl(d), and then a complex approxi-
mation of Pd = ℘(zd) ∈ E(C). The theories of complex multiplication and
of Heegner points imply that Pd ∈ E(Q(

√
d)). Using this approximation,

we try to recognize the four rational numbers r1, s1, r2 and s2 such that
Pd = (r1 + s1

√
d, r2 + s2

√
d) and test if Pd is a point of infinite order.

Comments. This is the main step of the method. Note that one can reduce
the number of evaluations of φ by 2 using the following trick. Once we have
already computed ϕ(τ[a]), since w = +1 we can deduce from it ϕ(τ[a−1n])
using the formula:

(3.3) ϕ(τ[a]) = −ϕ(τ[a−1n]) +Q

where Q is an explicit rational torsion point in E(Q) depending only on E.
Given a complex number x̃Pd

that is an approximation of the x-coordi-
nate xPd

of the point Pd computed as explained above, we need to recover
from it the two rational numbers r1 and s1 such that xPd

= r1 + s1
√
d.

Note that for candidate values r1 and s1, one can check if they are indeed
correct by trying to compute two rationals r2 and s2 such that

(r1 + s1
√
d, r2 + s2

√
d) ∈ E(Q(

√
d)).

Let r̃ = <(x̃Pd
) and s̃ = =(x̃Pd

)/
√
d. For e ≥ 1 we look for a small integral

relation (using the LLL-algorithm) between the columns C1, C2, C3 of the
matrix  −10e 0 b10e r̃ e

0 −10e b10e s̃ e
0 0 1


where b.e denotes the closest integer. Indeed, for such a relation, say

λ1C1 + λ2C2 + λ3C3
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of norm M , we have that λ1/λ3, resp. λ2/λ3, is an approximation of r̃,
resp. s̃, with an error less than

√
M/10e, and the denominator λ3 is smaller

(in absolute value) than
√
M . In order for this method to work, we need

to compute r̃ and s̃ at a suitably large enough precision and to choose e
accordingly. More precisely, to recognize xPd

as an element of Q(
√
d) we

need about ĥ(Pd) digits. Bounding the coefficients a(n)/n by 1 in the sum
defining φ and using (3.2), we see that we need to sum approximatively
ĥ(Pd) coefficients for φ. The Gross-Zagier theorem [Gro-Zag] asserts that:5

(3.4) ĥ(Pd) =
L(E, 1)L′(Ed, 1)

√
|d|

4 vol(E)

Applying the Lindelöf hypothesis we deduce that ĥ(Pd) � |d|1/2+ε. Hence,
the complexity of this step is � |d|1/2+ε|Cl(d)| � |d|1+ε.6 This step can
fail in two ways. First case: the computation has not been done to a
large enough precision. In that case we have to increase the precision and
start over. Second case: the point Pd is a torsion point and in that case
L′(Ed, 1) = 0. If we suspect Pd to be in fact a torsion point, we can com-
pute directly an approximation of L′(Ed, 1) and prove that it is indeed zero
using the following proposition (whose proof we postpone to after the proof
of the next proposition).

Proposition 3.1. If

L′(Ed, 1) ≤ vol(E)
1296 c(E)2 L(E, 1)

|d|−1/2 log |d|

then L′(Ed, 1) = 0.

STEP 3. If Pd is a point of infinite order, i.e. STEP 2 has succeeded, then
the point Rd = ψ(Pd − Pd) is a point of infinite order in Ed(Q). We divide
it in the Mordell-Weil group E(Q) until we get a generator Gd of Ed(Q)
modulo torsion. We define the integer `d by Rd = `dGd (mod Ed(Q)tor).
Comments. The point Rd is rational since Rd = ψ(Pd) + ψ(Pd) by (1.1).
If L′(Ed, 1) 6= 0 then we know that Gd is a generator of Ed(Q) modulo
torsion.

Proposition 3.2. ĥ(Rd) = 4 ĥE(Pd), hence Rd is non-torsion if and only
if Pd is non-torsion (that is if and only if L′(Ed, 1) 6= 0).

Proof. The height does not depend on the model of the elliptic curve, hence
ĥ(Rd) = ĥE(Pd − Pd). Furthermore, equation (3.3) implies that Pd = −Pd

plus a rational torsion point. �

5Actually, the Gross-Zagier theorem only applies for odd d’s. For even d’s the formula is a
conjecture of Hayashi [Hay].

6In fact, using fast simultaneous polynomial evaluation, one gets a complexity of � |d|1/2+ε.
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Proof of proposition 3.1. We use the lower bound from proposition 2.2 for
ĥ(Rd) and equation (3.4). �

From Proposition 2.2 we know that:

(3.5) |`d| < 36 c(E)

√√√√ ĥ(Rd)
log |d|

� |d|1/4+ε

Hence there are finitely many primes p for which we need to check p-di-
visibility. Also, it is well-known that Ed(Q)tors does not depend upon d (for
all d’s except at most one) and can only be ' {0}, Z/2Z or Z/2Z× Z/2Z.
Therefore we need to be careful about torsion only when we consider 2-
divisibility which can be tested easily using 2-division polynomial. For an
odd prime p, we use the following method to rule out p-divisibility. We find
a prime r, of good reduction, such that the order α of the group Ed(Fr) is
divisible by p. Then if (α/p)Rd is not zero in Ed(Fr), we know that Rd is not
divisible by p in E(Fr), and thus in Ed(Q) too. If after having performed a
large number of such tests, we have not been able to prove that Rd is not
divisible by p, then we “know” that the point must be divisible by p and
we perform the division.7

STEP 4. We compute the regulator of Ed (in the rank 1 case) which is
equal to ĥ(Gd) and the order of the Tate-Shafarevich group |X(Ed)|.
Comments. We can compute the order of |X(Ed)| using:

Proposition 3.3. Under the Birch and Swinnerton-Dyer conjecture8, the
following equality holds

|X(Ed)| =
|E(Q)tor|2 |Ed(Q)tor|2

|X(E)| c(E)2
`2d

2sg(∆min(E)) δ8(d, c4)
∏
p|d
cp(Ed)

where sg(x) = 1 if x < 0 and sg(x) = 2 otherwise.

Proof. Indeed, we have:

`2d ĥ(Gd) = 4ĥ(Pd) =
L(E, 1)L′(Ed, 1)

√
|d|

vol(E)

Now we replace L(E, 1) and L′(Ed, 1) by the values predicted by the Birch
and Swinnerton-Dyer conjecture. After simplifying the regulator ĥ(Gd) on
both sides, we get:

`2d =
|X(Ed)| |X(E)| c(E)
|E(Q)tor|2 |Ed(Q)tor|2

· c(Ed) ·
Ω(E) Ω(Ed)

√
|d|

vol(E)
(×4 if ∆min(E) > 0)

7Indeed, in all cases, either we could prove that the point is not divisible by p by such a test,
or we could actually divide it by p.

8For even d’s, we need again to assume the conjecture of Hayashi [Hay].
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Since for all p | N we have wp = +1, the curves E and Ed are isomorphic
over Qp and thus cp(Ed) = cp(E). So c(Ed) = c(E)

∏
p|d cp(Ed). Finally a

computation of the periods of Ed shows that:

Ω(E) Ω(Ed)
√
|d|

vol(E)
=
{

2 δ8(d, c4) if ∆min(E) < 0
δ8(d, c4) if ∆min(E) > 0

and the proposition follows. �

Remark. The order of the Tate-Shafarevich group is a square, therefore
the proposition implies that the following quantity must be a square:

2 sg(∆min(E)) δ8(d, c4)
∏
p|d
cp(Ed)

From the above we see that for each individual d the complexity for
computing ĥ(Gd) and |X(Ed)| is at worst O(|d|1+ε). From these values we
can deduce the value of L′(Ed, 1) at arbitrary precision. Note that the direct
computation of L′(Ed, 1) by the rapidly converging series needs also O(|d|)
terms.9 Nevertheless, for large precisions, in practice, it is often much more
efficient to compute L′(Ed, 1) as a by product of our computations than
to evaluate it directly. This is probably due to the fact (see the discussion
on the computations) that the implied constant is small in the prediction
M1(T ) = O(T 1/2(log T )a).

3.2. An example. We take E = 11a1 : y2 + y = x3− x2− 10x− 20 and
d = −79 so that the curve Ed has minimal equation:

Ed : y2 + y = x3 + x2 − 64490x+ 11396008

We take β = 3 so that β2 ≡ −79 (mod 44). The class group Cl(−79) of
Q(
√
−79) is cyclic of order 5, and the ideals:

a = 11Z +
−3 +

√
−79

2
Z , b = 22Z +

−3 +
√
−79

2
Z ,

c = 44Z +
−3 +

√
−79

2
Z , a−1n and b−1n

where

n = NZ +
β +

√
d

2
Z = 11Z +

3 +
√
−79

2
Z

form a complete set of representatives of the ideal class group. We compute

z = 2<
(
φ(τ[a]) + φ(τ[b])

)
+ φ(τ[c]) ∈ C/Λ

and we find

Pd = ℘(z) ≈ (−3.5900 · · ·+0.2200 · · ·
√
−79, 5.17600 · · ·+0.61600 · · ·

√
−79)

9More generally, in order to compute L′(E, 1) for an elliptic curve E, one needs to sum the
first O(

√
N) terms of the series, where N is the conductor of E, and the constant in the “O”

depends on the required accuracy.
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so we easily recognize

Pd =

(
−179 + 11

√
−79

50
,
647 + 77

√
−79

125

)
∈ E(Q(

√
−79))

From this, we get the point Rd = ψ(Pd) + ψ(Pd) = (47, 2910) ∈ Ed(Q).
And Formula (3.5) says that |`d| ≤ 293 where Gd = `dRd. We find that
the point Rd is divisible by 2, more precisely Rd = −2(26, 3120), so that
(26, 3120) = `′dGd with |`′d| ≤ 73. We then easily check that the point
(26, 3120) is not divisible by any prime ≤ 73 in the group Ed(Q), hence one
can take Gd = (26, 3120) and |`d| = 2. Proposition (3.3) gives:

|X(Ed)| = 1

4. Discussion and numerical data

We have computed, using the method described in the previous section,
the regulators and the order of the Tate-Shafarevich groups of the twists
Ed of E of the four elliptic curves 11a1, 14a1, 15a1 and 17a1, and for
all available discriminants d ∈ F(1.5 × 106) with wp = +1 for all p | N .
We discuss in this section the data we obtained and compare it with the
heuristics. All the computations have been performed using the PARI/GP
system [PARI] and the data is available at

http://math.univ-lyon1.fr/∼roblot/tables.html

For each curve, we give several graphs.
• For the curves 11a1 and 17a1, two graphs of the regulators of the

curve, one with all the regulators and one with the regulators less
than 10 to illustrate Equation (2.4).

• Four different graphs comparing the moments of order 1/4, 1/2, 3/4
and 1 of the regulators with the functions given by the heuristics.

• One graph with the number of twists that have analytic rank at
least 3 and one graph displaying the moments of order 1/4, 1/2,
3/4 and 1 for the order of the Tate-Shafarevich group of the twists.
The heuristics suggest that the moments of order k < 1 tend to a
constant (depending on k) whereas the moment of order 1 should
tend to infinity.

• For the curves 11a1 and 17a1, two graphs comparing the moments
of order 1/2 and 1 of the regulators of the twists by prime discrim-
inants with the functions given by the heuristics.

We begin with the curves of prime conductor (11a1 and 17a1) since for
the last two curves (14a1 and 15a1), the congruence conditions are more
restrictive and therefore the number of discriminants in F(1.5 × 106) is
quite small compared to 1.5× 106.
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4.1. The curve 11a1. The curve E is defined by

y2 + y = x3 − x2 − 10x− 20.

It has conductor N = 11 and rank 0 over Q. We have w11 = +1.

4.1.1. Numerical results for all discriminants.
• Number of discriminants: |F(1.5× 106)| = 208977.
• Largest regulator: ≈ 9945 (for d = −1482139).
• Number of extra-vanishing: 638.

We have E(Q)tors ' Z/5Z and there is no curve in its isogeny class
having rational 2-torsion. Hence the heuristics predict that:

Mk(T ) ∼ AkT
k/2 log(T )

k(k+1)
2

+ 1

6·4k + 1

2·2k−
2
3

for some constant Ak. We computed Ak numerically to fit the data (values
found: A1/4 ≈ 0.60, A1/2 ≈ 0.33, A3/4 ≈ 0.16, A1 ≈ 0.07) and we plot the
graph of the function given by the heuristics and the points (T,Mk(T )) for
T = 1, 2, . . . , 150× 3 · 104 and for k = 1/4, 1/2, 3/4 and 1. As it can been
seen the graphs (see Figure 2) are in close agreement.

4.1.2. Numerical results for prime discriminants.
• Number of prime discriminants: 28535.
• Largest regulator: ≈ 9250 (for d = −1433539).
• Number of extra-vanishing: 0.10

The heuristics for prime discriminants predict that:

M ′
k(T ) ∼ A′kT

k/2 log(T )k(k+1)/2

for some constant A′k. We computed A′k numerically to fit the data (values
found: A′1/2 ≈ 0.20, A′1 ≈ 0.03) and we plot the graph of the function given
by the heuristics and the points (T,M ′

k(T )) for T = 1, 2, . . . 150 × 3 · 104,
and k = 1/2, 1 (see Figure 4).

4.2. The curve 17a1. The curve E is defined by

y2 + xy + y = x3 − x2 − x− 14.

It has conductor 17 and rank 0 over Q. We have w17 = +1.

4.2.1. Numerical results for all discriminants.
• Number of discriminants: 215305.
• Largest regulator: ≈ 31746 (for d = −1257787).
• Number of extra-vanishing: 1140.

10There is no extra-vanishing in this case using the results of [An-Bu-Fr].
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(a) All the regulators. (b) Regulators less than 10.

Figure 1. Regulators of the twists of 11a1.

(a) Order 1/4 (b) Order 1/2

(c) Order 3/4 (d) Order 1

Figure 2. Moments of the regulators of the twists of 11a1
and the function given by the heuristics.
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(a) Extra-vanishing of L′(Ed, 1) for E = 11a1. (b) Moments of different orders for the order
of the Tate-Shafarevich groups of the twists of
11a1.

Figure 3

(a) Order 1/2 (b) Order 1

Figure 4. Moments of the regulators of the twists of 11a1
by prime discriminants and the functions given by the
heuristics.

Remark. Note that the graphs of extra-vanishing for the curves 11a1 (Fig-
ure 3(a)) and 17a1 (Figure 7(a)) suggest that the density of extra-vanishing
is larger for the twists of 17a1 than for those of 11a1. However the asymp-
totic for the moments of the regulators is smaller (as T →∞) for 17a1 than
for 11a1 which suggest that there are more constraints on the regulators
of the twists of 11a1 and thus imply in turn that we should have more
extra-vanishing for this family. In fact, the constants Ak in the asymptotics
of Mk(T ) are larger for the curve 17a1, but asymptotics of the functions
Mk(T ) for the curve 11a1 are larger than for the curve 17a1 for very large
values of T that are completely out of reach for computations. Therefore
our guess is that the density of extra-vanishing for the twists of 11a1 will
become greater than that for the twists of 17a1 for those very large values.
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(a) All the regulators. (b) Regulators less than 10.

Figure 5. Regulators of the twists of 17a1.

(a) Order 1/4 (b) Order 1/2

(c) Order 3/4 (d) Order 1

Figure 6. Moments of the regulators of the twists of 17a1
and the function given by the heuristics.
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(a) Extra-vanishing of L′(Ed, 1) for E = 17a1. (b) Moments of different orders for the order
of the Tate-Shafarevich groups of the twists of
17a1.

Figure 7

(a) Order 1/2 (b) Order 1

Figure 8. Moments of the regulators of the twists of 17a1
by prime discriminants and the functions given by the
heuristics.

The curve 17a2 has full rational 2-torsion, hence the heuristics predict
that

Mk(T ) ∼ AkT
k/2 log(T )

k(k+1)
2

+ 1

4k−1

for some constant Ak. We computed Ak numerically to fit the data (values
found: A1/4 ≈ 0.97, A1/2 ≈ 0.75, A3/4 ≈ 0.47, A1 ≈ 0.25 and we plot the
graph of the function given by the heuristics and the points (T,Mk(T )) for
T = 1, 2, . . . 150× 3 · 104, and k = 1/4, 1/2, 3/4 and 1 (see Figure 6).

4.2.2. Numerical results for prime discriminants.
• Number of prime discriminants: 28601.
• Largest regulator: ≈ 31745 (for d = −1257787).
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• Number of extra-vanishing: 0.11

The heuristics for prime discriminants predicts that:

M ′
k(T ) ∼ A′kT

k/2 log(T )k(k+1)/2

for some constant A′k. We computed A′k numerically to fit the data (values
found: A′1/2 ≈ 0.41, A′1 ≈ 0.12) and we plot the graph of the function given
by the heuristic and the points (T,M ′

k(T )) for T = 1, 2, . . . 150 × 3 · 104,
and k = 1/2, 1 (see Figure 8).

4.3. The curve 14a1. The curve E is defined by

y2 + xy + y = x3 + 4x− 6.

It has conductor N = 14 and rank 0 over Q. We have w2 = w7 = +1.
• Number of discriminants: 66516.
• Largest regulator: ≈ 16937 (for d = −1416631).
• Number of extra-vanishing: 262.

We have E(Q)tors ' Z/3Z, and there is no curve in the isogeny class
having full rational 2-torsion. Hence the heuristics predict that

Mk(T ) ∼ AkT
k/2 log(T )

k(k+1)
2

+ 1
2
(4−k+2−k)−1

for some constant Ak. We computed Ak numerically to fit the data (values
found: A1/4 ≈ 0.82, A1/2 ≈ 0.56, A3/4 ≈ 0.33, A1 ≈ 0.17) and we plot the
graph of the function given by the heuristics and the points (T,Mk(T )) for
T = 1, 2, . . . 150× 3 · 104, and k = 1/4, 1/2, 3/4 and 1 (see Figure 9).

4.4. The curve 15a1. The curve E is defined by

y2 + xy + y = x3 + x2 − 10x− 10.

It has conductor N = 15 and rank 0 over Q. We have w3 = w5 = +1.
• Number of discriminants: 71254.
• Largest generator: ≈ 19352 (for d = −1297619).
• Number of extra-vanishing: 406.

We have E(Q)tors ' Z/4Z×Z/2Z, hence it has full 2-torsion. The heuris-
tics predict that

Mk(T ) ∼ AkT
k/2 log(T )k(k+1)/2+4−k−1

for some constant Ak. We computed Ak numerically to fit the data (values
found: A1/4 ≈ 0.97, A1/2 ≈ 0.75, A3/4 ≈ 0.47, A1 ≈ 0.25) and we plot the
graph of the function given by the heuristic and the points (T,Mk(T )) for
T = 1, 2, . . . 150× 3 · 104, and k = 1/4, 1/2, 3/4 and 1 (see Figure 11).

11There is no extra-vanishing in this case using the results of [An-Bu-Fr].
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(a) Order 1/4 (b) Order 1/2

(c) Order 3/4 (d) Order 1

Figure 9. Moments of the regulators of the twists of 14a1
and the function given by the heuristics.

(a) Extra-vanishing of L′(Ed, 1) for E = 14a1. (b) Moments of different orders for the order
of the Tate-Shafarevich groups of the twists of
14a1.

Figure 10



622 Christophe Delaunay, Xavier-François Roblot

(a) Order 1/4 (b) Order 1/2

(c) Order 3/4 (d) Order 1

Figure 11. Moments of the regulators of the twists of 15a1
and the function given by the heuristics.

(a) Extra-vanishing of L′(Ed, 1) for E = 15a1. (b) Moments of different orders for the order
of the Tate-Shafarevich groups of the twists of
15a1.

Figure 12
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