
Ján MINÁČ, Andrew SCHULTZ et John SWALLOW

Automatic realizations of Galois groups with cyclic quotient of order pn

Tome 20, no 2 (2008), p. 419-430.

<http://jtnb.cedram.org/item?id=JTNB_2008__20_2_419_0>

© Université Bordeaux 1, 2008, tous droits réservés.

L’accès aux articles de la revue « Journal de Théorie des Nom-
bres de Bordeaux » (http://jtnb.cedram.org/), implique l’accord
avec les conditions générales d’utilisation (http://jtnb.cedram.
org/legal/). Toute reproduction en tout ou partie cet article sous
quelque forme que ce soit pour tout usage autre que l’utilisation à
fin strictement personnelle du copiste est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://jtnb.cedram.org/item?id=JTNB_2008__20_2_419_0
http://jtnb.cedram.org/
http://jtnb.cedram.org/legal/
http://jtnb.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Journal de Théorie des Nombres
de Bordeaux 20 (2008), 419-430

Automatic realizations of Galois groups with
cyclic quotient of order pn

par Ján MINÁČ, Andrew SCHULTZ et John SWALLOW

Résumé. Nous établissons des réalisations automatiques de grou-
pes de Galois parmi les groupes MoG où G est un groupe cyclique
d’ordre pn, p premier, et M un groupe quotient de l’anneau Fp[G].

Abstract. We establish automatic realizations of Galois groups
among groups M oG, where G is a cyclic group of order pn for a
prime p and M is a quotient of the group ring Fp[G].

1. Introduction

The fundamental problem in inverse Galois theory is to determine, for a
given field F and a given profinite group G, whether there exists a Galois
extension K/F such that Gal(K/F ) is isomorphic to G. A natural sort
of reduction theorem for this problem takes the form of a pair (A,B) of
profinite groups with the property that, for all fields F , the existence of A as
a Galois group over F implies the existence of B as a Galois group over F .
We call such a pair an automatic realization of Galois groups and denote it
A =⇒ B. The trivial automatic realizations are those given by quotients
of Galois groups; by Galois theory, if G is realizable over F then so is
every quotient H. It is a nontrivial fact, however, that there exist nontrivial
automatic realizations. (See [4, 5, 6] for a good overview of the theory of
automatic realizations. Some interesting automatic realizations of groups of
order 16 are obtained in [2], and these and other automatic realizations of
finite 2-groups are collected in [3]. For comprehensive treatments of related
Galois embedding problems, see [7] and [9].)

The usual techniques for obtaining automatic realizations of Galois
groups involve an analysis of Galois embedding problems. In this paper
we offer a new approach based on the structure of natural Galois modules:
we use equivariant Kummer theory to reformulate realization problems in
terms of Galois modules, and then we solve Galois module problems. We
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take this approach in proving Theorem 1.1, which establishes automatic
realizations for a useful family of finite metacyclic p-groups. Our methods
extend those of [10], [11] and [12]. It is interesting to observe that, although
not visible here, the essential fact underpinning our results is Hilbert 90.
Indeed, the structural results in [12] rely crucially on the repeated applica-
tion of Hilbert 90, using combinatorial and Galois-theoretic arguments to
draw out the consequences.

Let p be a prime, n ∈ N, and G a cyclic group of order pn with generator
σ. For the group ring Fp[G], there exist precisely pn nonzero ring quotients,
namely Mj := Fp[G]/〈(σ− 1)j〉 for j = 1, 2, . . . , pn. Multiplication in Fp[G]
induces an Fp[G]-action on each Mj . In particular, each Mj is a G-module.
Let Mj oG denote the semidirect product.

Theorem 1.1. We have the following automatic realizations of Galois
groups:

Mpi+c oG =⇒ Mpi+1 oG, 0 ≤ i < n, 1 ≤ c < pi+1 − pi.

In Section 2 we recall some facts about the set of quotients Mj and
the semidirect products Mj o G. In Sections 3 through 5 we consider the
case charF 6= p. Following Waterhouse [15], we recall in Section 3 a gen-
eralized Kummer correspondence over K, where K is a cyclic extension
of F of degree pn, and in Section 4 we establish a proposition detect-
ing when such extensions are Galois over F . In Section 5 we decompose
Jε, the crucial Kummer submodule of the module K(ξp)×/K(ξp)×p, as an
Fp[Gal(K(ξp)/F (ξp))]-module, where ξp is a primitive pth root of unity. In
Section 6 we prove Theorem 1.1, using Sections 3 through 5 in the case
charF 6= p and Witt’s Theorem in the case charF = p. The case i = 0 was
previously considered by two of the authors [11, Theorem 1(A)].

2. Groups and Fp[G]-modules

Let p be a prime and G = 〈σ〉 an abstract group of order pn. We recall
some facts concerning R-modules, where R is the group ring Fp[G]. Because
we frequently view R as a module over R, to prevent confusion we write
the module R as

R = ⊕pn−1
j=0 Fpτ

j ,

where σ acts by multiplication by τ . For convenience we set ρ := σ − 1.
The set of nonzero cyclic R-modules is identical to the set of nonzero

indecomposable R-modules, and these are precisely the pn quotients Mj :=
R/〈(τ − 1)j〉, 1 ≤ j ≤ pn. Each Mj is a local ring, with unique maximal
ideal ρMj , and is annihilated by ρj but not ρj−1.

Moreover, for each j there exists a G-equivariant isomorphism from Mj

to its dual M∗
j , as follows. For each i ∈ {1, . . . , pn} we choose the Fp-basis
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of Mj consisting of the images of {1, (τ − 1), . . . , (τ − 1)j−1} and define an
Fp-linear map λ : Mj → Fp by

λ
(
f0 + f1(τ − 1) + · · ·+ fj−1(τ − 1)

j−1
)

= fj−1,

where fk ∈ Fp, k = 0, . . . , j − 1. Observe that kerλ contains no nonzero
ideal of Mj . Then

Q : Mj ×Mj → Fp, Q(a, b) := λ(ab), a, b ∈Mj

is a nonsingular symmetric bilinear form. Thus Mj is a symmetric algebra.
(See [8, page 442].) Moreover, Q induces a G-equivariant isomorphism ψ :
Mj →M∗

j given by (ψ(a))(b) = Q(a, b), a, b ∈Mj .

Remark. In order for ψ to be G-equivariant, we must define the action
on M∗

j by σf(m) = f(σm) for all m ∈ Mj , and since G is commutative,
this action is well-defined. It is worthwhile to observe, however, that M∗

j

is Fp[G]-isomorphic to the module M̃∗
j on which the action of G is defined

by σf(m) = f(σ−1m) for all m ∈Mj . Indeed by the G-equivariant isomor-
phism between Mj and M∗

j it is sufficient to show that the Fp[G]-module
M̃j obtained from Mj by twisting the action of G via the automorphism
σ → σ−1 is naturally isomorphic to Mj . But this follows readily by extend-
ing the automorphism σ → σ−1 to the automorphism of the group ring
Fp[G] and then inducing the required Fp[G]-isomorphism between Mj and
M∗

j .

We also recall some facts about the semidirect products Hj := Mj oG,
j = 1, . . . , pn. For each j, the group Hj has order pj+n; exponent pn, except
when j = pn, in which case the exponent is pn+1; nilpotent index j; rank
(the smallest number of generators) 2; and Frattini subgroup Φ(Hj) =
(ρMj) o Gp. Finally, for j < k, Hj is a quotient of Hk by the normal
subgroup ρjMk o 1.

3. Kummer theory with operators

For Sections 3 through 5 we adopt the following hypotheses. Suppose
that G = Gal(K/F ) = 〈σ〉 for an extension K/F of degree pn of fields of
characteristic not p. For any element τ ∈ G we denote the fixed subfield of τ
as FixK(τ). We let ξp be a primitive pth root of unity and set F̂ := F (ξp),
K̂ := K(ξp), and J := K̂×/K̂×p, where K̂× denotes the multiplicative
group K̂ \ {0}. We write the elements of J as [γ], γ ∈ K̂×, and we write
the elements of F̂×/F̂×p as [γ]F̂ , γ ∈ F̂×. We moreover let ε denote a
generator of Gal(F̂ /F ) and set s = [F̂ : F ]. Since p and s are relatively
prime, Gal(K̂/F ) ' Gal(F̂ /F ) × Gal(K/F ). Therefore we may naturally
extend ε and σ to K̂, and the two automorphisms commute in Gal(K̂/F ).
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Using the extension of σ to K̂, we write G for Gal(K̂/F̂ ) as well. Then
J is an Fp[G]-module. Finally, we let t ∈ Z such that ε(ξp) = ξt

p. Then t
is relatively prime to p, and we let Jε be the t-eigenspace of J under the
action of ε: Jε = {[γ] : ε[γ] = [γ]t}.

Observe that since ε and σ commute, Jε is an Fp[G]-subspace of J . By
[15, §5, Proposition], we have a Kummer correspondence over K of finite
subspaces M of the Fp-vector space Jε and finite abelian exponent p exten-
sions L of K:

M = ((K̂L)×p ∩ K̂×)/K̂×p ↔

L = LM = maximal p-extension of K in L̂M := K̂( p
√
γ : [γ] ∈M).

As Waterhouse shows, for M ⊂ Jε, the automorphism ε ∈ Gal(K̂/K) has
a unique lift ε̃ to Gal(L̂M/K) of order s, and LM is the fixed field of ε̃.

In the next proposition we provide some information about the corre-
sponding Galois modules when LM/F is Galois. Recall that in the situa-
tion above, the Galois groups Gal(LM/K) and Gal(L̂M/K̂) are naturally
G-modules under the action induced by conjugations of lifts of the ele-
ments in G to Gal(LM/F ) and Gal(L̂M/F̂ ). Furthermore, because the Ga-
lois groups Gal(LM/K) and Gal(L̂M/K̂) have exponents dividing p, we see
that Gal(LM/K) and Gal(L̂M/K̂) are in fact Fp[G]-modules.

Proposition 3.1. Suppose that M is a finite Fp-subspace of Jε. Then
(1) LM is Galois over F if and only if M is an Fp[G]-submodule of Jε.
(2) If LM/F is Galois, then base extension F → F̂ induces a natural

isomorphism Gal(LM/F ) ' Gal(L̂M/F̂ ) compatible with our iso-
morphism Gal(K̂/F̂ ) ∼→ Gal(K/F ) ' G under the restriction map.

(3) If LM/F is Galois, then as G-modules,

Gal(LM/K) ' Gal(L̂M/K̂) 'M.

Proof. (1). Suppose first that LM/F is Galois. Then L̂M = LK̂/F̂ is Galois
as well. Every automorphism of K̂ extends to an automorphism of L̂M , and
therefore M is an Fp[G]-submodule of J . From [15, §5, Proposition] we see
that M is an Fp[G]-submodule of Jε.

Going the other way, suppose that M is a finite Fp[G]-submodule of
Jε. By the correspondence above, LM/K is Galois. Then M is also an
Fp[Gal(K̂/F )]-submodule of Jε and therefore L̂M/F is Galois. Now since
K/F is Galois, every automorphism of L̂M sends K to K. Moreover, since
LM is the unique maximal p-extension of K in L̂M , every automorphism
of L̂M sends LM to LM . Therefore LM/F is Galois.

(2). Suppose LM/F is Galois. Since F̂ /F and LM/F are of relatively
prime degrees, we have Gal(LM F̂ /F ) ' Gal(F̂ /F )×Gal(LM/F ). Therefore
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we have a natural isomorphism G = Gal(K/F ) ' Gal(K̂/F̂ ), which is
compatible with the natural isomorphism Gal(L̂M/F̂ ) ' Gal(LM/F ) under
the usual restriction maps provided by Galois theory.

(3). Suppose LM/F is Galois. By (2), it is enough to show that Gal(L̂M/K̂) '
M as G-modules. Under the standard Kummer correspondence over K̂,
finite subspaces of the Fp-vector space J correspond to finite abelian expo-
nent p extensions L̂M of K̂, and M and Gal(L̂M/K̂) are dual G-modules
under a G-equivariant canonical duality 〈m, g〉 = g( p

√
m)/ p

√
m. (See [15,

pages 134 and 135] and [11, §2.3].) Because M is finite, M decomposes
into a direct sum of indecomposable Fp[G]-modules. From Section 2, all
indecomposable Fp[G]-modules are G-equivariant self-dual modules. Hence
there is a G-equivariant isomorphism between M and its dual M∗, and
Gal(L̂M/F̂ ) 'M as G-modules. �

4. The index

We keep the same assumptions given at the beginning of Section 3. Set
A := annJ ρ

pn−1 = {[γ] ∈ J : ρpn−1−1[γ] = [1]}. The following homomor-
phism appears in a somewhat different form in [15, Theorem 3]:

Definition. The index e(γ) ∈ Fp for [γ] ∈ A is defined by

ξe(γ)
p =

(
p

√
NK̂/F̂ (γ)

)ρ
.

The index is well-defined, as follows. First, since

1 + σ + · · ·+ σpn−1 = (σ − 1)pn−1 = ρpn−1

in Fp[G], [NK̂/F̂ (γ)] = [γ]ρ
pn−1 , which is the trivial class [1] by the assump-

tion [γ] ∈ A. As a result, p

√
NK̂/F̂ (γ) lies in K̂ and is acted upon by σ and

therefore ρ. Observe that e(γ) depends neither on the representative γ of
[γ] nor on the particular pth root of NK̂/F̂ (γ).

The index function e is a group homomorphism from A to Fp. Therefore
the restriction of e to any submodule of A is either trivial or surjective.
Moreover, the index is trivial for any [γ] in the image of ρ:

ξe(γρ)
p = p

√
NK̂/F̂ (γρ)

ρ
= p
√

1
ρ

= 1,

or e(γρ) = 0.
Following Waterhouse, we show how the index function permits the de-

termination of Gal(L̂M/F̂ ) as a G-extension.
For 1 ≤ j ≤ pn and e ∈ Fp, write Hj,e for the group extension of

Mj by G with σ̃pn
= e(τ − 1)j−1, where σ̃ is a lift of σ. Observe that

Hj,0 = Hj = Mj oG.
Let Nγ denote the cyclic Fp[G]-submodule of J generated by [γ].
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Proposition 4.1. (See [15, Theorem 2].) Let [γ] ∈ Jε and M = Nγ.
(1) If M ' Mj for 1 ≤ j < pn and e = e(γ), then Gal(LM/F ) ' Hj,e

as G-extensions.
(2) If M ' Fp[G] then Gal(LM/F ) ' Fp[G] oG.

Before presenting the proof, we note that if M 'Mj for 1 ≤ j < pn then
we have

ρpn−1[γ] = ρpn−1−j
(
ρj [γ]

)
= ρpn−1−j [1] = [1].

Hence [γ] ∈ A, and so e(γ) is defined. Furthermore, Waterhouse tells us in
this case that if e 6= 0, then Hj,e 6' Hj (see [15, Theorem 2]). He also shows
that if j = pn then there is a G-extension isomorphism Hpn,e ' Hpn for
every e. In particular, we may use Proposition 4.1 later to deduce that if
M 'Mj for j < pn and Gal(LM/F ) 'Mj oG, then e(γ) = 0.

Proof. Suppose M ' Mj for some 1 ≤ j ≤ pn. By Proposition 3.1(3),
Gal(LM/K) ' Mj as G-modules. Hence Gal(LM/F ) ' Hj,e for some e.
If j = pn then from the isomorphism Hpn,e ' Hpn above we have the
second item. By Proposition 3.1(2), it remains only to show that if j < pn,
Gal(L̂M/F̂ ) ' Hj,e(γ).

Let σ̃ denote a pullback of σ ∈ G to Gal(L̂M/F̂ ). Then σ̃pn lies in
Z(Gal(L̂M/F̂ ))∩Gal(L̂M/K̂), where Z(Gal(L̂M/F̂ )) denotes the center of
Gal(L̂M/F̂ ). Using the G-equivariant Kummer pairing

〈·, ·〉 : Gal(L̂M/K̂)×M → 〈ξp〉 ' Fp

we see that Z(Gal(L̂M/K̂)) annihilates ρM . Furthermore, since this pairing
is nonsingular we deduce that Z(Gal(L̂M/K̂)) 'M/ρM and we can choose
a generator η of Z(Gal(L̂M/K̂)) such that

〈η, [γ]〉 = η( p
√
γ)/ p

√
γ = ξp.

In particular, if σ̃pn
= ηe then

( p
√
γ)(σ̃

pn−1) = ξe
p.

Therefore
p
√
γ(σ̃pn−1) = p

√
γ(1+σ̃+···+σ̃pn−1)(σ̃−1) =

(
p

√
NK̂/F̂ (γ)

)ρ
= ξe(γ)

p .

�

5. The Fp[G]-module Jε

Again we keep the same assumptions given at the beginning of Sec-
tion 3. In this section we develop the crucial technical results needed for
Theorem 1.1: a decomposition of the Fp[G]-module Jε into cyclic direct
summands, and a determination of the value of the index function e on
certain of the summands.
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We first show that Jε is indeed a summand of J . Then we combine a
decomposition of J into indecomposables, taken from [12, Theorem 2], with
uniqueness of decompositions into indecomposables, to achieve important
restrictions on the possible summands of Jε. Much of the remainder of the
proof is devoted to establishing that we have an “exceptional summand” of
dimension pr +1 on which the index function is nontrivial. In the argument
we need [12, Proposition 7] in particular to derive a lower bound for the
dimension of that summand.

Theorem 5.1. Suppose that p > 2 or n > 1. The Fp[G]-module Jε decom-
poses into a direct sum Jε = U ⊕α∈A Vα, with A possibly empty, with the
following properties:

(1) For each α ∈ A there exists i ∈ {0, . . . , n} such that Vα 'Mpi.
(2) U 'Mpr+1 for some r ∈ {−∞, 0, 1, . . . , n− 1}.
(3) e(U) = Fp.
(4) If Vα 'Mpi for 0 ≤ i ≤ r, then e(Vα) = {0}.

Here we observe the convention that p−∞ = 0.

Proof. We show first that Jε is a direct summand of J by adapting an
approach to descent from [13, page 258]. Recall that [F̂ : F ] = s and
ε(ξp) = ξt

p. Thus s and t are both relatively prime to p. Let z ∈ Z satisfy
zsts−1 ≡ 1 (mod p), and set

T = z ·
s∑

i=1

ts−iεi−1 ∈ Z[Gal(K̂/F )].

We calculate that (t−ε)T ≡ 0 ( mod p), and hence the image of T on J lies
in Jε. Moreover, ε acts on Jε by multiplication by t, and therefore T acts as
the identity on Jε. Finally, since ε and σ commute, T and I − T commute
with σ. Hence J decomposes into a direct sum Jε ⊕ Jν , with associated
projections T and I − T .

We claim that e((I − T )A) = {0}. Since ξp ∈ F̂ , the fixed field FixK̂(σp)
may be written F̂ ( p

√
a) for a suitable a ∈ F̂×. By [15, §5, Proposition],

ε([a]F̂ ) = [a]t
F̂

. Suppose γ ∈ K̂× satisfies [γ] ∈ A. Then, since ε and σ
commute,

[NK̂/F̂ (ε(γ))]F̂ = [ε(NK̂/F̂ (γ))]F̂ = ε([NK̂/F̂ (γ)]F̂ ) = [NK̂/F̂ (γ)]t
F̂
.

Hence e(ε([γ])) = t · e([γ]), and we then calculate that e(T [γ]) = e([γ]).
Therefore e((I − T )[γ]) = 0, as desired.

Now since Fp[G] is an Artinian principal ideal ring, every Fp[G]-module
decomposes into a direct sum of cyclic Fp[G]-modules [14, Theorem 6.7].
Since cyclic Fp[G]-modules are indecomposable, we have a decomposition
of J = Jε ⊕ Jν as a direct sum of indecomposables. From Section 2 we
know that each of these indecomposable modules are self-dual and local,
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and therefore they have local endomorphism rings. By the Krull-Schmidt-
Azumaya Theorem (see [1, Theorem 12.6]), all decompositions of J into
indecomposables are equivalent. (In our special case one can check this fact
directly.)

On the other hand, we know by [12] several properties of J , including its
decomposition as a direct sum of indecomposable Fp[G]-modules, as follows.
By [12, Theorem 2],

J = X ⊕
n⊕

i=0

Yi,

where each Yi is a direct sum, possibly zero, of Fp[G]-modules isomorphic to
Mpi , and X = Nχ for some χ ∈ K̂× such that NK̂/F̂ (χ) ∈ awF̂×p for some
w relatively prime to p. Moreover, X 'Mpr+1 for some r ∈ {−∞, 0, . . . , n−
1}. We deduce that e(χ) 6= 0 and that e is surjective on X. Furthermore,
considering each Yi as a direct sum of indecomposable modules Mpi , we
have a decomposition of J into a direct sum of indecomposable modules.

We deduce that every indecomposable Fp[G]-submodule appearing as a
direct summand in Jε is isomorphic to Mpi for some i ∈ {0, . . . , n}, except
possibly for one summand isomorphic to Mpr+1. Moreover, we find that e
is nontrivial on Jε, as follows. From the hypothesis that either p > 2 or
n > 1 we deduce that pr + 1 < pn. Therefore since Nχ ' Mpr+1 we have
[χ] ∈ A. Let θ, ω ∈ K̂× satisfy [θ] = T [χ] ∈ Jε and [ω] = (I − T )[χ]. From
e((I − T )A) = {0} we obtain e(ω) = 0. Therefore e(θ) 6= 0. Observe that
ρpr+1[θ] = [1].

We next claim that e is trivial on any Fp[G]-submodule M of Jε such
that M 'Mj for j < pr + 1. Suppose not: M is an Fp[G]-submodule of Jε

isomorphic to Mj for some j < pr + 1 and e(M) 6= {0}. Then M = Nγ for
some γ ∈ K̂×. Since e is an Fp[G]-homomorphism and M is generated by
[γ], we have e(γ) 6= 0. But [12, Proposition 7 and Theorem 2] tells us that
c = pr + 1 is the minimal value of c such that ρc[β] = [1] for β ∈ K̂ with
NK̂/F̂ (β) 6∈ F̂×p. Hence we have a contradiction.

Because Jε decomposes into a direct sum of cyclic Fp[G]-modules, we may
write θ as an Fp[G]-linear combination of generators of such Fp[G]-modules,
and we will use this combination and the fact that e(θ) 6= 0 to prove that
there exists a summand isomorphic to Mpr+1 on which e is nontrivial. Let
M = Nδ be an arbitrary summand of Jε. Then M ' Mj for some j. Let
[θδ] be the projection of [θ] on M . Since ρpr+1[θ] = [1], we deduce that
ρpr+1[θδ] = [1]. Now if j > pr +1 then [θδ] lies in a proper submodule of M .
Because ρM is the unique maximal ideal of M and e is an Fp[G]-module
homomorphism, e(θδ) = 0. On the other hand, if j < pr + 1 then we have
already observed that e(M) = {0}. From e(θ) 6= 0 we deduce that there
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must exist a summand isomorphic to Mpr+1 and on which e is nontrivial.
Let U denote such a summand.

Now let {Vα}, α ∈ A, be the collection of summands of Jε apart from U .
Hence Jε = U ⊕α∈A Vα. Since every summand of Jε is isomorphic to Mpi

where i ∈ {0, 1, . . . , n}, except possibly for one summand isomorphic to
Mpr+1, we have (1). From the last paragraph, we have (2) and (3). Finally,
since e is trivial on Fp[G]-submodules isomorphic to Mj with j < pr + 1,
we have (4). �

6. Proof of Theorem 1.1

Proof. We first consider the case charF 6= p.
Suppose that L/F is a Galois extension with group Mpi+c o G, where

0 ≤ i < n and 1 ≤ c < pi+1 − pi. Let K = FixL(Mpi+c) and identify G

with Gal(K/F ). Define F̂ , K̂, J , Jε, and A as in Sections 3 through 5. By
the Kummer correspondence of Section 3 and Proposition 3.1, L = LM

for some Fp[G]-submodule M of Jε such that M ' Gal(L/K) ' Mpi+c as
Fp[G]-modules. Let γ ∈ K̂× be such that M = Nγ . Since pi + c < pn, we
see that M ⊂ A and so e is defined on M . By Proposition 4.1 and the
discussion following it, from Gal(L/F ) 'Mpi+c oG we deduce e(γ) = 0.

Observe that if p = 2 then from pi + c < pi+1 and 1 ≤ c we see that
i > 0 and hence n > 1. By Theorem 5.1, Jε has a decomposition into
indecomposable Fp[G]-modules

Jε = U ⊕
⊕
α∈A

Vα

such that each indecomposable Vα is isomorphic to Mpj for some j ∈
{0, . . . , n}, U ' Mpr+1 for some r ∈ {−∞, 0, . . . , n − 1}, e(U) = Fp, and
e(Vα) = {0} for all Vα 'Mpi with 0 ≤ i ≤ r. Let U = Nχ for some χ ∈ K̂×.
Then e(χ) 6= 0.

Because ρpi+c−1M 6= {0} we know that Jε is not annihilated by ρpi+c−1.
Therefore either ρpi+c−1 does not annihilate U ' Mpr+1, whence pr + 1 ≥
pi + c, or pr + 1 < pi + c and there exists an indecomposable summand
isomorphic to Mpj for some j > i.

Suppose first that pr+1 < pi+c and Jε contains an indecomposable sum-
mand V isomorphic to Mpj for some j > i. If j = n then by Proposition 3.1
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there exists a Galois extension LV /F such that Gal(LV /K) 'Mpn ' Fp[G].
By Proposition 4.1(2), we have Gal(LV /F ) ' Fp[G] oG. Since Mpi+1 oG
is a quotient of Fp[G]oG, we deduce that Mpi+1 oG is a Galois group over
F .

If instead j < n, then let γ ∈ K̂× such that V = Nγ . Because e is
surjective on U we may find β ∈ K̂× such that [β] ∈ U and e(β) = e(γ).
Now set δ := γ/β. Then e(δ) = 0 and we consider Nδ. From pj > pi + c >

pr + 1 and ρpr+1[β] = [1] we deduce that ρpj−1[β] = [1]. Then ρpj
[δ] = [1]

while ρpj−1[δ] 6= [1], so Nδ ' Mpj . Let W = Nδ. By Propositions 3.1 and
4.1 we obtain a Galois field extension with Gal(LW /F ) ' Mpj o G. Since
Mpi+1 oG is a quotient of Mpj oG, we deduce that Mpi+1 oG is a Galois
group over F .

Suppose now that for every j > i there does not exist an indecomposable
summand isomorphic to Mpj . We claim that r > i. Suppose not. Then from
pr +1 ≥ pi +c we obtain r = i and c = 1. Moreover, U is the only summand
of Jε not annihilated by ρpi . Let θ ∈ K̂× such that [θ] = projU γ. If [θ] ∈ ρU ,
then ρpi

[γ] = [1], whence ρpi
M = {0}, a contradiction. Since [θ] ∈ U \ ρU

and ρU is the unique maximal ideal of U , we obtain that U = Nθ. Since
e(U) = Fp, we deduce that e(θ) 6= 0. Now if Vα ' Mpj for j ≤ r then
e(Vα) = {0}. Hence e(Vα) = {0} for all α ∈ A. We deduce that e(γ) 6= 0, a
contradiction. Therefore r ≥ i+ 1.

Let ω = ρχ and consider Nω = ρNχ = ρU . We obtain that e(ω) = 0
and Nω ' Mpr . By Propositions 3.1 and 4.1, we have that Gal(LW /F ) '
Mpr oG for some suitable cyclic submodule W of Jε. Since Mpi+1 oG is a
quotient of Mpr oG, we deduce that Mpi+1 oG is a Galois group over F .

Finally we turn to the case charF = p. Recall that we denote Mj o G,
j = 1, . . . , pn, by Hj . We have short exact sequences

1 → Fp ' ρpi+c+kMpi+c+k+1 o 1 → Hpi+c+k+1 → Hpi+c+k → 1

for all 1 ≤ i < n, 1 ≤ c < pi+1 − pi, and 0 ≤ k < pi+1 − pi − c. For all
of these, the kernels are central, and the groups Hpi+c+k+1 and Hpi+c+k

have the same rank, so the sequences are nonsplit. By Witt’s Theorem, all
central nonsplit Galois embedding problems with kernel Fp are solvable.
(See [7, Appendix A].) Hence if Hpi+c is a Galois group over F , one may
successively solve a chain of suitable central nonsplit embedding problems
with kernel Fp to obtain Hpi+1 as a Galois group over F . �
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