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Constructing class fields over local fields

par SEBASTIAN PAULI

Dedicated to Michael Pohst on his 60th Birthday

RESUME. Soit K un corps p-adique. Nous donnons une carac-
térisation explicite des extensions abéliennes de K de degré p en
reliant les coefficients des polynémes engendrant les extensions
L/K de degré p aux exposants des générateurs du groupe des
normes Ny, i (L*). Ceci est appliqué & un algorithme de construc-
tion des corps de classes de degré p™, ce qui conduit a un algo-
rithme de calcul des corps de classes en général.

ABSTRACT. Let K be a p-adic field. We give an explicit charac-
terization of the abelian extensions of K of degree p by relating the
coefficients of the generating polynomials of extensions L/K of de-
gree p to the exponents of generators of the norm group Ny, (L*).
This is applied in an algorithm for the construction of class fields
of degree p™, which yields an algorithm for the computation of
class fields in general.

1. Introduction

Local class field theory gives a complete description of all abelian ex-
tensions of a p-adic field K by establishing a one-to-one correspondence
between the abelian extensions of K and the open subgroups of the unit
group K* of K. We describe a method that, given a subgroup of K* of
finite index, returns the corresponding abelian extension.

There are two classic approaches to the construction of abelian exten-
sions: Kummer extensions and Lubin-Tate extensions. Kummer extensions
are used in the construction of class fields over global fields [Fie99, Coh99].
The theory of Lubin-Tate extensions explicitly gives generating polynomials
of class fields over p-adic fields including the Artin map.

The goal of this paper is to give an algorithm that constructs class fields
as towers of extensions from below thus avoiding the computation of a larger
class field and the determination of the right subfield. The wildly ramified
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part of a class field is constructed as a tower of extensions of degree p over
the tamely ramified part of the class field.

Our approach allows the construction of class fields of larger degree than
the approach with Lubin-Tate or Kummer extensions. Given a subgroup G
of K* these methods provide a class field L g that corresponds to a subgroup
H of G and that contains the class field corresponding to G. In general the
degree of L is very large and the computation of the corresponding subfield
expensive. Our approach does not yield a construction of the Artin map
though.

We start by recalling the structure of the unit groups of p-adic fields
(section 2). In section 3 we state the main results of local class field theory
and the explicit description of tamely ramified class fields. It follows that
we can restrict our investigation to cyclic class fields of degree p™. We begin
our investigation by constructing a minimal set of generating polynomials
of all extensions of K of degree p (section 4). In section 5 we relate the
coefficients of the polynomials generating extensions of degree p to the
exponents of the generators of their norm groups. This yields an algorithm
for computing class fields of degree p. Section 6 contains an algorithm for
computing class fields of degree p™. In section 7 we give several examples
of class fields.

Given a fixed prime number p, Q, denotes the completion of Q with
respect to the p-adic valuation |- | = p~() K is a finite extension of
degree n over Q, complete with respect to the extension of | - | to K,
and O = {a € K ||a| <1} is the valuation ring of K with maximal
ideal px = {a € K | |a] <1} = (mx). The residue class field is defined
by K := Ok /pk and f = fx is the degree of K over the finite field with p
elements F,. For v € Ok the class v + pg is denoted by 7. The ramifica-
tion index of px is denoted by e = ex and we recall that ef = n. By dg
we denote the discriminant of K and by d, the discriminant of a polyno-
mial .

2. Units

It is well known that the group of units of a p-adic field K can be de-
composed into a direct product

K* = (mr) x (k) x (1 +pg) ke x K* x (1+pk),

where (g € K a (#K —1)-th root of unity. The multiplicative group 1+ px
is called the group of principal units of K. If n € 1 4+ px is a principal unit
with vy(n — 1) = X we call X the level of 7.

A comprehensive treatment of the results presented in this section can
be found in [Has80, chapter 15].



Constructing class fields over local fields 629

Lemma 2.1 (p-th power rule). Let a be in Ok. Let p = —njfe be the
factorization of p where € is a unit. Then the p—th power of 1+am satisfies

1+ ozpwll? mod p%‘“ if 1<A< 5,
(I+am™P ={ 1+ (af — 804)7#[?\ mod pé’g\ﬂ if A=75,
1- EOHT;\(-’_E mod p;‘?eﬂ if  A> 1% .

The maps h1 : a +p — o + px and hs : a + pg — —ca + px are
automorphisms of KT, whereas hy : o+ — of —ca + g is in general
only a homomorphism. The kernel of ho is of order 1 or p.

As (1+p})/(L+pp™) = pp/pptt =2 K, it follows that if )y 1, ..., 7 1

is a system of generators for the level A < 25 (for the level A > -25), then
TR 1 1s a system of generators for the level pA (for the level A +ef).
If (p — 1) | ex the levels based on the level A\ = 2K need to be discussed

p—1
separately.
We define the set of fundamental levels

Fii={A0<A<EE piA}.

All levels can be obtained from the fundamental levels via the substitutions
presented above. The cardinality of F is

#Fx = |5 | - s ) = e+ [35] - [p] =«

If K does not contain the p-th roots of unity then principal units of the
fundamental levels generate the group of principal units:

Theorem 2.2 (Basis of 1 +px, pp ¢ K). Let wy,...,ws € Ok be a fized
set of representatives of an Fp-basis of K. If p—1 does not divide ex or if
ho is an isomorphism, that is, K does not contain the p-th roots of unity,
then the elements

My =1 + w;m™ where A € Fi,1 <i < fr
are a basis of the group of principal units 1 + pg.
If K contains the p-th roots of unity we need one additional generator:

Theorem 2.3 (Generators of 14+pg, i1, C K). Assume that (p—1) | ex and
ha is not an isomorphism, that is, K contains the p-th roots of unity. Choose
eg and gy such that p does not divide eq and such that ex = p“o_l(pf 1)ep.
Let wy,...,wy € Ok be a fived set of representatives of a Fy-basis of K
with wy chosen such that wfuo — wa%il =0 mod pr and w1 Z 0 mod pg.
Choose wy € Ok such that 2P — ex = w,mod pg has no solution. Then the

group of principal units 1 + p is generated by

e =1 —i—w*ﬂgoeo and ny; =1 +w,~7r}\( where A € Fe, 1 <1i < fxk.
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Algorithms for the computation of the multiplicative group of residue
class rings of global fields and the discrete logarithm therein are presented
in [Coh99] and [HPPO03]. They can be easily modified for the computation
of the unit group of a p-adic field modulo a suitable power of the maximal
ideal p.

3. Class Fields

We give a short survey over local class field theory (see [Ser63] or [Iwa86]).
Yamamoto [Yamb8] proofs the isomorphy and the ordering and uniqueness
theorems of local class field theory in a constructive way. He does not show
that there is a canonical isomorphism.

Theorem 3.1 (Isomorphy). Let L/K be an abelian extension, then there
s a canonical isomorphism

K*/Np k(L) = Gal(L/K).

Theorem 3.2 (Ordering and Uniqueness). If L1 /K and Lo/ K are abelian
extensions, then

N(z,nLe)/x (L1 N L2)*) = N, /g (LT)Np, /i (L3)

and

Ny 12)/x ((L1L2)*) = Np, /5 (LT) N Ng, 5 (L3).

In particular an abelian extension L/K is uniquely determined by its norm
group Ny /g (L*).

The latter result reduces the problem of constructing class fields to the
construction of cyclic extensions whose compositum then is the class field.
The construction of tamely ramified class fields, which is well known and
explicit, is given below. In order to prove the existence theorem of local
class field theory, it remains to prove the existence of cyclic, totally ramified
class fields of degree p™ (m € N). We give this proof by constructing these
fields (algorithm 6.1). The existence theorem for class fields of finite degree
follows:

Theorem 3.3 (Existence). Let G C K* be a subgroup of finite index. There
exists a finite abelian extension L/K with

Npx(L*)=G.

Tamely Ramified Class Fields. An extension L/K is called tamely ram-
ified if p 1 er/x. Tamely ramified extensions are very well understood. It
is well known that the results of local class field theory can be formulated
explicitly for this case.
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Let g = #K. If G is a subgroup of K* with 1+ px C G then

G = (T (s () x (14 pK)
for some integers E | ¢—1, F', and S. There exists a unique tamely ramified
extension L/K with Ny (L*) =G, ep/x = E, and fr = F.
Denote by T the inertia field of L /K. There exists a primitive (¢ —1)-th

root of unity (7, € L, a prime element 7, of L and automorphisms o, 7 in
Gal(L/K) such that

e Ny /k(CL) = Ck and Ny p(7) = (Prx where 0 <t <e—1,
a-1
o (f=Cland 77t =¢;° % mod pL,

g=1
e (7 =(r and Wz_l =(g° -

The Galois group of L/K is generated by o and 7:
Gal(L/K) = (0,7) = (s,t | st =ts, s" =t tF =id).
The Galois group Gal(L/K) is isomorphic to K*/Np g (L*) by the map:
Tg o, (gk— 7, n—id foralln € 1+ pg.

Wildly Ramified Class Fields. We have seen above that subgroups
of (k) correspond to unramified extensions and that subgroups of ((x)
correspond to tamely ramified extensions. Subgroups of K* that do not
contain all of 1 4 px correspond to wildly ramified extensions.

Lemma 3.4. Let L/K be an abelian and wildly ramified extension, that is,
[L: K]=p™ for some m € N. Then

K*/Npyg(L7) = (14 px)/Nrjx(1+pL).-

4. Generating Polynomials of Ramified Extensions of Degree p

Let K be an extension of Q, of degree n = ef with ramification index e,
prime ideal p, and inertia degree f. Set q := p/ = #K. For o, € Ok we
write a = f if vg(a — B) > vk (a).

In this section we present a canonical set of polynomials that generate
all extensions of K of degree p. These were first determined by Amano
[Ama71] using different methods. MacKenzie and Whaples [MW56, FV93]
use p-adic Artin-Schreier polynomials in their description of extensions of
degree p.

There are formulas [Kra66, PRO1] for the number of extensions of a
p-adic field of a given degree and discriminant given by:

Theorem 4.1 (Krasner). Let K be a finite extension of Qp, and let j =
aN + b, where 0 < b < N, be an integer satisfying Ore’s conditions:

min{wvy, (b)N, vy (N)N} < j < vp(N)N.
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Then the number of totally ramified extensions of K of degree N and dis-

criminant pN i1 s
lafel
> eN/p! b0
nq =1 ; — 0, an
R = lafe]
> eN/pi+|(j—lajeleN—1)/pla/el+1 |
n(g—1)q= if b> 0.

There are no totally ramified extensions of degree N with discriminant

p%H_l’ if 7 does not satisfy Ore’s conditions.

Let j = ap + b satisfy Ore’s conditions for ramified extensions of degree
p then
pq° ifb=0
#Kpj = { plg—1)g®  ifb#£0.
We give a set of canonical generating polynomials for every extension in
K, ; with j satisfying Ore’s conditions.

First, we recall Panayi’s root finding algorithm [Pan95, PRO1] which we
apply in the proofs in this section. Second, we determine a set of canonical
generating polynomials for pure extensions of degree p of a p-adic field,
that is, for the case b = 0. Third, we give a set of canonical generating
polynomials for extensions of degree p of discriminant pPtoP+0=1 where

b # 0, of a p-adic field.

Root finding. We use the notation from [PRO1]. Let p(z) = cpa” +-- -+
co € Oklz]. Denote the minimum of the valuations of the coefficients of ¢(x)
by vi(p) := min {vk(co), ..., vi(cn)} and define o (z) := @(x)/mvK ().
For a € Ok, denote its representative in the residue class field K by a, and
for 8 € K, denote a lift of 3 to Ok by S.
In order to find a root of ¢(x), we define two sequences (p;(z)); and (;);

in the following way:

e set @o(x) := gp#(x) and

e let 69 € Ok be a root of o(x) modulo pg.
If ff(x) has a root (3; then

o pini(@) = o (am + B) and

e bip1 = Bimt 4+ 4,
If indeed ¢(x) has a root (in Og) congruent to 8 modulo p, then ¢; is

congruent to this root modulo increasing powers of p. At some point, one
of the following cases must occur:

(a) deg(i) =1 and ¢;_; is an approximation of one root of (z).

(b) deg(i) = 0 and 6;_; is not an approximation of a root of p(z).
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(c) gol# has no roots and thus §;,_; is not an approximation of a root of

the polynomial ¢(x).
While constructing this sequence it may happen that ¢;(x) has more
than one root. In this case we split the sequence and consider one sequence

for each root. One shows that the algorithm terminates with either (a), (b),
or (c) after at most vi(dp) iterations.

Extensions of p-adic fields of discriminant pPTPe~1, Let ¢ be a
(g — 1)-th root of unity and set R = (po, ..., pe—1) = (0,1,¢,¢%,...,¢172).
The set R is a multiplicative system of representatives of K in K.

Theorem 4.2. Let J := {r € Z | 1 < r < pe/(p—1), pt r}. Each
extension of degree p of K of discriminant pPteP~1 is generated by a root
of exactly one of the polynomials of the form

(p—1)|e and
P + 7+ Z pe, T 4 kompe/ (=D gy { P~ + (p/7°)
o(x) = icJ is reducible,
P + 7+ Z e, otherwise,
ieJ

where 6 € Ok is chosen such that 2P — x + § is irreducible over K and
0 < k < p. These extensions are Galois if and only if (p — 1) | e and
2P~ p/7€ is reducible, i.e., if K contains the p-th roots of unity.

It is obvious that a pure extension can be Galois only if K contains the
p-th roots of unity. We prepare for the proof with some auxiliary results.

Lemma 4.3. Assume that ¢(x) = 2P~ + ¢ € Fy[z] has p — 1 roots in
F,. Then there exists d € Fy such that Yp(x) = aP + cx — kd € Fylz] is
irreducible for all 1 < k < p.

Proof. Let h(x) = aP + cx € Fy[x]. As ¢(x) splits completely over F,, there
exists d € Fy \ h(Fy). Now () = aP + cx — d is irreducible. It follows that
kyi(x) = kaP + ckx — kd = (kx)P + c(kz) — kd
is irreducible. Replacing kx by y we find that ¥x(y) = yP + cy — kd is
irreducible over IF,. g

Lemma 4.4. Let
oi(x) =2 + 7+ pe, 7+ kor"t € Oklx] (t € {1,2})
reJ

where pe,, € R, v = pe/(p—1), and 6 € Ok. Let oy be a zero of p1 and
g be a zero of o in an algebraic closure of K.

(a) If c1p # cop for somer € J, then K(aq) 2 K(ag).
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(b) If c1p = oy for allr € J, if K contains the p-th roots of unity, 0
is chosen such that x? — x + § is irreducible, v = pe/(p — 1), and
k1 # ko then K(a1) 2 K(az).

Proof. Let Ly := K(a1) and let p; denote the maximal ideal of L.

(a) We use Panayi’s root-finding algorithm to show that ¢s(z) does not
have any roots over K(aj). As yp2(z) = 2P mod (7), we set pg1(z) =
pa(a1x). Then

o1(7) = afa? + 7 + Z ,002m7rr+1 + kodmv !
reJ

- <_7T - Z pc1,r7TT+1 - k157TU+1)$p + 7+ Z pCQ,rTrT+1 + ]<:2(571'v+1
reJ reJ

=n(—2P +1).
Hence ¢f 1(3:) pa1(x)/m = —2P + 1 and we set
p2,2(x) = ol (na + 1)
(~1= 3 P, — ka8 Y (e + 1P + 1+ 3 pey 7 + b

red reJ
= ( 1- Z ey, T kléw”) odaP +1+ Z Pey, T+ k2dT”.
reJ reJ

Let 3; be a root of ‘Pﬁwz- Let m be minimal with ¢y, = c2,,. Then 3, # 0.
Let m < u < pe/(p — 1). Assume that the root-finding algorithm does not
terminate with deg goéfw = 0 for some m < w < u. After u iterations of the
root-finding algorithm, we have

Y2u+1(x ( 1- qu T — k’157r”>
reJ

(0¥ 4 Bu1a¥ T o Bat F 1)P

+ 1 + chz,r+1ﬂ-i + +k1257rv_1
red
— pu_.p U m r
=—0q T —pagxr — pﬂmal + Z (pCQ,T+1 - pcl,r+1)7r .
red,r>m

The minimal valuation of the coefficients of o ,,+1(z) is either v, (af") =
pu or vr, (pBmaf’) = pe +m. As ged(p,m) = 1 and m < pe/(p — 1), there
exists u € N such that the polynomial gp}% us1(x) is constant. Thus the root-

finding algorithm terminates with the conclusion that ¢o(x) is irreducible
over K(aq).
(b) We set p21(z) = pa2(aiz) and pa2(z) = o (x4 1). After v+
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1 iterations of the root-finding algorithm we obtain ¢ ,42(x) = —a;"2?
— pafx + (ky — k1)om?. By lemma 4.3 Lpiv(x) is irreducible for k; # ko.
Therefore, po(z) has no root in K(aq) and ¢;(x) and ¢a(z) generate non-

isomorphic extensions over K. O

Proof of theorem 4.2. We will show that the number of extensions given by
the polynomials ¢(x) is greater then or equal to the number of extensions
given by theorem 4.1. The number of elements in .J is e (see section 2).

By lemma 4.4 (a), the roots of two polynomials generate non-isomorphic
extensions if the coefficients p., differ for at least one i € J. For every ¢
we have the choice among p/ = ¢ values for pe;- This gives ¢° polynomials
generating non-isomorphic extensions.

If K does not contain the p-th roots of unity, then an extension generated
by a root « of a polynomial ¢(z) does not contain any of the other roots of
(). Hence the roots of each polynomial give p distinct extensions of K.
Thus our set of polynomials generates all pg® extensions.

If K contains the p-th roots of unity, then lemma 4.4 (b) gives us p — 1
additional extensions for each of the polynomials from lemma 4.4 (a). Thus
our set of polynomials generates all pg¢ extensions. O

Extensions of p-adic fields of discriminant pPter+b—1 p £ 0,

Theorem 4.5. Let J:={reZ|1<r<(ap+0b)/(p—1),pt(b+r)} and
if(p—1)| (a+b), set v=(ap+b)/(p—1). Each extension of degree p of
K of discriminant pPT®T0=1 with b # 0 is generated by a root of exactly
one of the polynomials of the form

P+l r 4y pe, w4 kom T if

{ (p—1)|(a+0b) and
xpfl 4 (_l)ap+1@

o(z) = icJ has p — 1 roots ,
:Up+C57r“+1xb+7r+Z pe,m otherwise,
ieJ

where p € R and 6 € O is chosen such that aP + (—1)PT1(5bx + 6 is
irreducible in K and 0 < k < p. These extensions are Galois if and only if
(p—1)| (a+0b) and 2P~ — (b € K|z] is reducible.

Lemma 4.6. Let
2P+ ¢ttt o 4 Z Per, T+ kbt € Oklx] (t € {1,2})
reJ

where pyr € R, v = ‘;pjlb, and 0; € Ok . Let oy be a zero of p1 and as be a

zero of s in an algebraic closure of K.
(a) If s1 # sa, then K(ay) 2 K(a2).
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(b) If s1 = s2 and c1, # 2, for some r € J then K(oq) 2 K(as).

(c) K(an)/K is Galois if and only if a+b=0mod (p—1) and 2P~ +
(—1)2PT1¢51b is reducible over K.

(d) Assume sy = sp and c1, = ¢, for allr € J. If (p—1) | (ap +b),
then for v = ‘;pfzb there exists 6 € Ok such that K(a1) 2 K(a2) if
ki # ko

Proof. Let Ly := K(ay).

(a) Forte {1,2}let vy =3¢ pe., 7" + k&, Then of /m = —(51m%l —
1 — 1. We use Panayi’s root-finding algorithm to show that ¢o(x) has no
root over L1 = K(a1). As before, we get @2 1(x) := po(oiz) = w(—2P + 1).
Therefore we set

p22(2) = 0§ (12 +1)

= (_Cslﬂ'aab —1- 71)(04137 4 1);0 + CS27TaOéb(Oélx + 1)b +1 + .

Let 2 < u < pe/(p—1). Let 3; € R be a root of cp#z(a:) Assume that

#o_
5w = 0 for some

2 < w < w and let m be minimal with m < u < pe/(p—1) and B, #
0 mod (). After u iterations of the root-finding algorithm, we have

the root-finding algorithm does not terminate with deg ¢

Pru1(2) = (¢l — 1= y1)(afe + Bu-1af ™ + - 4 Bl + 1)

+ ¢2trab (@ 4 Bu1ad T 4 - Bl + 1)+ 1+ o

Because u < e, vr,(p) = pe, and a < e, the minimal valuation of the
coefficients of s ,+1(z) is either vy, (—af™) = pu or v, (7%8) = pa +
b. Hence the root-finding algorithm terminates with ¢ 41(z) = ((*2 —
¢*1)ma? for some v in the range 2 < u < e.

(b) We show that ¢2(x) does not have any roots over Li. As pa(x) =
2P mod (7), we get a1(z) := @a(ax). Now go%%l(:c) = —2P 4+ 1 and we set
p22(x) == gofl(ozlx +1).

Denote by 3, a root of cp;;“(x). Let m be minimal with m < u <
pe/(p—1) and [, # 0 mod («). Assume that the root-finding algorithm
does not terminate earlier with deg 9072% w = 0 for some w < u. After u
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iterations, we have

b i 1
8027u+1(x) = (_CSIWaal —1- ZPCLTHWJ - p61,a+277a+ )
red

H(0F7+ Bur0l T+ Brad + 1)
+ ¢l (@te + By 10 4 4 Bt + 1) 41
+ ch2,7‘+lﬂ-r + pCZ,a+17Ta+1

reJ
= —a”aP — pajw — phnal’ =Y per a7 (Bnad")? — (Bmal)?
reJ
+ ¢ntabbaliz + ¢ r%albf,a™ + Z Peyrir = Pet )T

reJ

with 8, # 0 mod (ay).
The minimal valuation of the terms of g ,41(x) is

v, (C1n%albBnal) = pa+b+m

or v, (") = pr. By the choice of .J we have p { (pa+b+m) Therefore, the
root-finding algorithm terminates with ¢, (x) = (*7® abbBa™ for some
u € N.

(c) We show that ¢1(x) splits completely over L; if and only if the con-
ditions above are fulfilled. We set ¢11(x) = ¢i(az) and ¢2(z) =
@ﬁl(aw +1). Thus

p12(z) = (=C'7%d — 1= X ey per, ™) a1z + 1)P
+ Cslﬂaab(alx + l)b + 142> ey Py, T

= z(—afaP™ 4 ¢1raltp).
After u + 1 iterations we get

—ozlpxp if up < pa+0b+u,

w(—aiPrP~! 4 ¢l tUh)  if up = pa + b+ u,
s1.-a b+l . up > pa+ b+ u and
ey 1f{<p—1>+<a+b>.

Prut1(T) =

In the third case, goffu +1() is linear and therefore ¢1(x) has only one root

over Li. In the second case,

pur1(z) = —aiPa? + vl e = —afPa? + ¢ (—ar) P T
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and so gpﬁuﬂ(:p) = —zP 4 (—1)P¢* bx mod (aq). If goil(ar) has p roots

over K for every root 3 of <p51%u 41(x), we get
V1ut2(2) = @1 ut1 (1 + B)

= _ag“"‘l)P:L,p + (_1)apa’1u+lﬁcs1ﬂ_aali 4 (_1)apa71¢+1bﬁb<slﬂ_aabx
But up+p > u+ 1+ pa+b; thus 4,031%“”(3;) is linear and ¢;(x) has as many

distinct roots as gp’fuﬂ(:ﬂ).

(d) We set pa1(x) = p(ax) and paa(z) = go?fl(ax + 1). We obtain

902,1)—&-1(x) = —Oéll)p.%’p + Cslﬂ.aal{-i-va + (kl - kjg)(;ﬂ'v, hence gpz’:_l(x) =P +
(—1)®+L¢51by + (kg — k2)d. By lemma 4.3, there exists § € O such that
cpi) 41(z) is irreducible. 0

Proof of theorem 4.5. If (p — 1)t (a + b), then

#7=at[35] -[50 + 562 - [5)

—a {a+b 1J _ {a(p—l);(c;tbl()p—l)erJ -

If (p—1) ]| (a+b), then

#J=a+ o1 | ey oeth | |b) —gqatbilfetb| g

Using lemma 4.6 (a), we get p/ —1 sets of generating polynomials. By lemma
4.6 (b), each of these sets contains p/® polynomials that generate non-
isomorphic fields. Now either the roots of one of the polynomials generate
p distinct extensions or the extension generated by any root is cyclic. In the
latter case, we have p — 1 additional polynomials generating one extension
each by lemma 4.6 (d). Thus we obtain (pf —1)p®/+1 distinct extensions. [

Number of Galois Extensions. The following result can also easily be
deduced from class field theory.

Corollary 4.7. Let K be an extension of Q, of degree n. If K does not
contain the p-th roots of unity, then the number of ramified Galois exten-
sions of K of degree p is p- IfK contains the p-th roots of unity then

n+1_ 1
p—1

p

the number of ramified Galozs extensions of K of degree p is p -

Proof. Let ¢(x) be as in theorem 4.5. We denote the inertia degree and the
ramification index of K by f and e, respectively. The number of values of
s for which zP~1 — ¢* is reducible is (p/ — 1)/(p — 1). By Ore’s conditions,
0 < a < e. For every a < e, there is exactly one b with 1 < b < p such
that (p—1) | (a+b). For every a, the set J contains a elements. This gives
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pf® combinations of values of ¢;, i € .J. We have p choices for k. Thus the
number of polynomials ¢(x) generating Galois extensions is

1
pf—l ezpfa_p pl -1 pf;e—lip_p”—l.
p—1 1 p—1

If K contains the p-the roots of unity, a = e also yields Galois extensions.
By theorem 4.2, we obtain additional p(pf)¢ = p"*! extensions. O

5. Ramified Abelian Extensions of Degree p

Let L/K be an abelian ramified extension of degree p. The ramification
number ( Verzweigungszahl) of L/K is defined as v = vy, /i = vr (9t —1),
where o € Gal(L/K) \ {id}. The ramification number v is independent of
the choice of 0. If ¢ is the minimal polynomial of 7y, then

ZVL (7mp, —O'J(ﬂ'L))
i#]
p(p—1)
= Z vi(o(rr) —7r) = p(p—1)(v+1).
i=1
Hence, vk (dp k) = (p—1)(v+1) for the discriminant of L/K and Dy, /i =

p%g DD o1 the different of the extension. It follows from Ore’s conditions

(see Theorem 4.1) that either v = p*&5 or v = ap+b € Fix where j = ap+b
satisfies Ore’s conditions.

Lemma 5.1. Let L/K be a ramified extension of degree p. If d := vi,(Dr k)
=(p—1)(v+1), then
m+dJ

eL/K

TL/K(pL) =Pr

See [FV93, section 1.4] for a proof. We use Newton’s relations to inves-
tigate the norm group of abelian extensions of degree p.

Proposition 5.2 (Newton’s relations). Let 9 = 91 ... 9™ be the roots

of a monic polynomial ¢ = 3 <icp, viz'. Thenv; = (=1) DR, _;(9) where

Rn_i(9) is the (n — i)-th symmetric function in 9, ... 9" Set Sp.(9) =
;’:l(ﬁ(i))k for each integer k > 1. Then

S(9) { —kyn—k — ZZ 1 Mn-iSk—i(¥)  for 1 <k <n, and
k =
— > n—iSk—i (V) for k >n.

The following describes explicitly where and how the jump in the norm
group takes place (c.f. [FV93, section 1.5]).
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Lemma 5.3. Let L/K be ramified abelian of degree p and let v denote the
ramification number of L/ K. Let (o) = Gal(L/K). Assume that Ny /(1)

k. Let € € K be chosen such that n7 =14 eny mod p*TL. Then

Np/r(1+ art) =1+ ofrl; mod pZJrl ifi <w,
Np/k(l+arp) =1+ (o - eP~La)ry mod p”“ and
Nz r(1+ Oz7rv+p(l U)) =1-¢eltant mod p”l if i > wv.

The kernel of the endomorphism K+ — K™ given by a — af — eP~ 1o has
order p.

Proof. We have
Np/k(l+wrp) =1+ wRi(np) +w?Ra(wy) + - - + WP Ry(m),

where Ry (m%) denotes the k-th symmetric polynomial in 7%, 7%, ... 7"

In particular Ry(n}) = Ty k() and Ry(n}) = Ny /i (mz)". By lemma 5.1
and v,(Dr k) = (v+1)(p — 1), we obtain

Si(mh) = Trre(rl) € Tpyre(ph') € pp¥
where
Api = L(P—l)(ié—i-l)—i—kiJ —v+14+ L_U_;;1+kiJ = v+ [kz kizv) — g Lv—ijJ

(i) If i < v, then i < \; = v — L%J and vi(Sk(m4)) = A = A1 > i
With Newton’s relations we get v (Ri(mt)) >ifor 1 <k <p-—1and as
Ry(7}) = Np/k(mL)" = 7, we obtain

Np/x(1+ any) =1+ aPrl mod pitt.

(ii) Assume i = v. By lemma 5.1 Ty /x(p}) = p;‘( ,and so T g (77) = By
mod p“Jr1 for some B € Og*. We have A\, = v+ [( Lo 2] > v. If k > 2 then
v (Sk(mh)) > Ap = v + 1. Hence with Newton’s relatlons v (Rp(mt)) >
min(kv,v+1) > v+1for2 <k <p—1. Thus Ny g (1+an}) = 1+abny +
aPr%. mod put! and Np/k(1+77) C (1+pk)°. By the definition of € and
as Np g (77~ 1Y = 1 we have Np/k(1 +enf) = 1 mod prt. Therefore
B = —eP~! mod px and we conclude that
Npk(l+arp) =1+ (a - L)y mod pytl.

(iil) Let ¢ > v. We have A\, p(i—v) = 7 and Ag(yip(i—v)) > i- By the consid-

erations in (ii), we obtain

Nz r(1+ omv+p(z v)) =1-etark mod piit.
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Next we investigate the relationship between the minimal polynomial of
71, a uniformizer of the field L, and the norm group Ny /i (L*). We start
by choosing a suitable representation for subgroups of K* of index p. We
begin with extensions of discriminant pP+¢2/5~1 which are Galois if and
only if K contains the p-the roots of unity.

If K contains the p-th roots of unity then

K* = (Cr) x () x (mi | A€ Fr, 1 <@ < frym)

Let G be a subgroup of K* of index p with n. ¢ G. Let (g1, ..., Gey f5+3) be
generators of G. Let n = ex fx and B € Z"3*"+3 guch that

(gla"'7gerK+3)T = B(CKvﬂ-Ku 77>\,i | A S FK71 < 1 < fKﬂ?*)T

be a representation matrix of G. Let A be the row Hermite normal form of
B. Then

1 0 v «ov oo 0 ar
0 1 0 0 0
0 1 0O -+ 0 ain
. . .
0
: ol apy
[ T (| P

Thus
G = (mrni™; Crs muns™ | N € Fie, 1 <i < fx; ) (t € {1,2}).

Theorem 5.4. Assume that K contains the p-th roots of unity. Let

i) = a? £ 7+ 3 pe, 4 kb € Oxcla] (¢ € {1,2))

red
be polynomials as in theorem 4.2. If L1 := K|x]|/(v1) and Ly := K[z]/(p2),
then v = v, /xk = v,k = pex/(p —1). Hence
N(Ly) = (mrens®™s Cres maane™ | A € Fie, 1 < < fis ) (¢ € {1,2}).

(@) Letwe J={1<r <pe/(p—1) | ptr}. We have c1, = ca, for
1<r<w,redifand only if a1 9—ri = a29—r; for alll1 <r <w,r e J
and all 1 <1 < fk.

(b) If c1, = oy for all v € J, then ki = ko if and only if a1 » = ag x.

Proof. (a) We show one implication directly. The other implication follows
by a counting argument.

(i) Asp | (v—2A) if and only if p | A we have v —r € Fi if and only if r € J.
(ii) Let m; be a root of ;. We write ¢y = aP — ;. The minimal poly-
nomial of 7} over K is P — ~)'. The characteristic polynomial of wm} is
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2P +wPy. The characteristic polynomial of 1+wm) is (JJ 1)? —aPw?. Thus
N,/ k(1 + wr) = (—1)P — WP If v = 7o + amie™ for some o € Ok*

then for r < w we obtain

w—+1 v+1

WH Q)T = 487 4 (v — )y 1a7TK mod p7".

WU = (72 + Ty

(iii) Assume that ¢1, = ¢, for all 1 <r < w. For all » < w — 1 we obtain
Nz x(l+wr),") = (1P + WPy ™" = N, k(1 +wrp,") mod pi!

which implies a1 y—r; = a24—p; forall 1 <r <wand 1 <7 < fxk.
(iv) If €1, # 2.4 for 7 = w we have

Np,/k(1 +w7rzgw) = (—1)P +wPys™"
and
NLl/K(l—i—wW” V)= (-1)P4+P (v Y+ (v—w)yy YT 171'}”{“0[) mod p”“.

By (i), p{ (v —w) and as vi(y2) = 1, it follows that a1, # a2,w,-
(v) There are p/ choices for each Peq,..- On the corresponding level A = v —r

there are f generating principal units 7y 1,...,nx1 with in total p! choices

for the exponents a; ) 1,...,a ., r. This shows the equivalence.

(b) We have

Nix(TL,) = Tk +Y | pe,, T +hdnpt = <H VAR i”’”) mod p3F?.
reJ

Since c1, = cg, for all » € J, we have ay); = ag; for all A\ € Fp,,
1 <4< f. Thus ki = ko is equivalent to a1 = az x. O

If K does not contain the p-th roots of unity then

K*=(m) x ey x [I T (ma)-

AEFK 1<i< fr

Let G be a subgroup of K* of index p and let A be the row Hermite
normal form of the representation matrix of GG. There are values \g € F,
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1< < fK’ ar € {O’vp_l}v AN € {Ovap_l} for ()‘71) € FK X
{1,..., fe} \ {(Xo,%0) } with XA < Xg, @ < idp and ay, i, = p, such that

1 0 - e .. 0 Gr O --- 0
0 1 0 0 0 0 :
0 1 0 -+ 0 a1 O
A 0
1
0 axi, O
0 1
: .. .0

Thus G can be generated as follows
G = (im0 Cic iy | A€ Fie, A < X0, 1 < i < fis

. ako,i
77)\07177)\071'0

L<d <io; 15,405 Mhosi | 90 <1< fr;
M| A€ Fr, Ao <A\ 1 <4< fi).
By lemma 5.3, we have \o = vy, /g if G = Ny /i (L*).
Theorem 5.5. Let
pi(z) = aP + Gttt + 1+ pe, T+ kdm T € Ok[a] (t € {1,2})
reJ

be polynomials as in theorem 4.5 such that Ly := K[z]/(¢1) and Ly =
K[z]/(w2) are Galois. Then v = vy, /g = vr,/k = (ap+b)/(p—1). If K
does not contain the p-th roots of unity,

At X\,i

N(L}) = (mrenyTs Cics Mnitls,

A€ F,\<v,1<i< fi;

at v,

Mol | 1< < My 5,5 Mo | 1 <1< frs

M| A€ Fr,o <A\ 1<i< fi).

If K contains the p-th roots of unity then n,. is an additional generator of
N(L).

(a) s1 # s2 if and only if there exists 1 <1 < iy with a1,; # 2,4,-

(b) Letwe J={reZ|1<r<(ap+b)/(p—1),pt (b+r)}. We
have c1, = cop for 1 <r < w, r € J if and only if a1 y—ri = a2.9—r; for
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1<r<w,reJandalll <1< fk.
(c) If c1p = cop forallr e J, then k1 = ko if and only if a1 = azx.

Proof. We have seen that there exists v in Fi and 1 < i; < fx such that
Qi =p fort =1,2.

(a) (1) If g € 071, is chosen such that Wzt_l =1+ gn? mod PELI then
nf =mL, + 8t7rv+1 mod p”+2 By lemma 5.3,

t
Np k(1 +ar,) =14+ (of - 271 aP 1% mod pg.

It follows from the proof of lemma 4.6(c) that modulo px the unit ¢; is
congruent to one of the roots of @#H = —aP 4+ (—1)®(Glbr mod pg. Thus,
el = ( 1)2PT1¢2%h mod pr. As the kernel of Y, K7 — K, a —
a” — o has order p, the intersection of the kernels of ¥, and v, is {0}.
Therefore there exists 1 < ¢ < fx such that aj,; # a2,4,-

(ii) By corollary 4.7, there are ;;:%11 possible values for s;. For any given
1 <4 < fg there are pr*“ combinations of 0 < a4 ; < p where 1 <7 < 4.

L s
In total this gives Zi -1 plE—it =B pK T L combinations, the same number of

choices as for the exponent s;.

(b) (i) As p divides ((ap+b)/(p—1)+b—A) = ((ap+bp)/(p — 1) — A) if
and only if p | A\, we have v — r € Fi if and only if r € J.

(ii) Assume that o, = 2P + Bz + v, with v = 42 + 7% for some o € O}
with vz (R) = 0. We have

NLt/K(l +w7rﬁt) -1 —l—le(W}}t) +w2R2(772t) 4+ +WPR (7rLt)

where R; (7TL) denotes the i-th symmetric polynomial in W%t’ﬂL? ,

w7 “'A_ In particular, Ri(m},) = TLt/K(Wﬁt) and R (7TLt) = 7. We have
seen in the proof of theorem 5.4 (a)(ii) that 7{™" = 75" mod p} for
r < w — 1. By Newton’s relations (proposition 5.2) we see that
(p—b)B for i =p—b,
(p—b)BF for i = k(p — b) <p,
Si(rr,) =q pn for i = p,
—5t ~v)(7L,) = VeSip(mr,)  fori>p,
otherwise.

We have VK(Sp(th)) = vg(py) = e+ 1 > v. By Newton’s relations,
Ri(ﬂ'ét) is a sum of the S;(mz,), hence I/K(Ri(ﬂ'ét)) > min(a+ l,e+1) =
a+1>wvfori<p Thusforallr <w-—1

Ng,/k(1+ umz;T) =Np,/x(1+ wwzgr) mod p.

(iii) See the proof of theorem 5.4 (a) (iv).
(c) See the proof of theorem 5.4 (b). O
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Theorems 5.4 and 5.5 yield an algorithm for computing the class field L
over an extension K of Q, corresponding to a subgroup G of K™ of index p.
The discriminant pP+toP+t0=1 of the extension can be directly read off from
the Hermite normal form of the transformation matrix from the generators
of K* to the generators of G. After determining the exponent for ¢ one has
a first approximation of a generating polynomial of L:

aP + Cr b 47
Now the constant term can be determined by computing the coefficients

of m, 7% ... in its m-adic expansion step by step up to the coefficient of

v+l — r(ap+b)/(p—1)+1

The existence theorem for ramified extensions of degree p follows from
the two theorems above by a counting argument. A change in a coefficient
of the polynomial results in a change of an entry of the matrix. There are
exactly p choices for the indeces ¢, of the coefficients of 7, 72,... and for
the entries a) ; of the matrix. Likewise there are p choices for the coefficient
k of the polynomials and the entry a, of the matrix. We obtain a one-
to-one correspondence between generating polynomials of ramified normal
extensions of degree p and the matrices representing their norm groups.

The existence theorem for unramified extensions of degree p is a special
case of the existence theorem for tamely ramified extensions.

Corollary 5.6. Let G be a subgroup of K* of index p. Then there exists a
unique abelian extension L/K with Ny /i (L*) = G.

6. Cyclic Totally Ramified Extensions of Degree p™

We construct the class field corresponding to a subgroup G C K* with
K*/G cyclic of order p™ as a tower of extensions of degree p. In each step
we determine a class field L of degree p and then find the class field over L
corresponding to the preimage of G under the norm map.

Norm Equations. Let L/K be a finite extension and let « € K. We are
looking for a solution # € L* of the norm equation

Np/k(B)=a€eK
provided it exists. Let L* = (7r) X (Cz) X (nL.1,--.,NL,r) be the unit group
of L. Obviously Ny, /x(8) = a has a solution if « is in the subgroup
U= (Np/k(m0),Np/x(C),Npxk(ne,1)s - s Noyg (L))
of K*. We determine a solution 8 N, /K(ﬁ) = « by representing a by

the generators of U given above. The set of all solutions is {3 -~ | v €

ker(NL/K)}.
We find the preimage of a subgroup A of Ny i (L*) C K* in a similar
way. We need to determine a subgroup B of L* such that Ny /x(B) = A.
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As A C Ny g(L*) there exist ary,ac, ;a8 EN (1 <k <, 1<I<r+2)
such that

A= (Npp(mp)*'Np g (CL) ! TThet Nojg ()™ | 1 < TS r+2).

Thus a solution of our problem is given by
B = (r; G o m™ | 1< 1< r+2).

Constructing Class Fields. Let G be a subgroup of K* with K*/G =
(14+px)/(GN(1+pK)) cyclic and [K* : G| = p™. We describe an algorithm
for constructing the class field over K corresponding to G.

Let 1 € K* be such that (mG) = K*/G. If H; = (n,G), then Hj is the
unique subgroup of K* of index p with H; D G. We determine the class
field Ly /K corresponding to H; using the results of the previous section. Let
G1 =N} x(G) C L. Since Hy = Ny, /i (L}), we have [L} : G1] = p™ .
Now we determine the subgroup Hy D G with [L} : Ha] = p and compute
the class field Ly/L; corresponding to Ho.

Next we show that Ly/K is normal. If Ly/K was not normal then we
would have 5(L2) # Lo for an extension of an automorphism o € Galy, /x,

and Ng(r,)/k(0(L3)) = Npy/k(L3) = <771f2,G>. But by its construction,

Lz/Ly is the unique abelian extension with Ny, r(L3) = (an,G). Thus
Ls/K is normal.

The Galois group of Ly/K is either isomorphic to C, x C) or to Cpe.
Assume Galp, g = Cp x Cp. Then Ly/K has at least two distinct sub-
fields Ly and Lj of degree p with Nz, x(L}) D G and Ny g (LY) D G
and Ny, /i (L7) # Ny i (LY) (otherwise Ly = Lj). But H is the unique
subgroup of G of index p, therefore Galy, /i = C)p2.

So La/K is the class field corresponding to Ny, /x(L3) = <77’1)2, G). Next
we set Go = NZ;/Ll(Gl) = NZJ/K(G) C L7 and continue as above until we
obtain L,,/K, the class field corresponding to G.

As the Galois group of all subextensions of L,,/K of degree p? is isomor-
phic to C)2, we obtain Galy, i = Cpm. This yields the existence theorem
for cyclic class fields of degree p™.

Algorithm 6.1 (Cyclic Class Fields of Degree p™).
Input: K/Q,, G a subgroup of K* such that
K*/G = (1+pk)/(GN(1+pg)) cyclic with [K* : G] = p™.
Output: L, /K cyclic of degree p™ with Ny /x(Lm) = G.
e Set G1 := G and Ly := K.
e For ¢ from 1 to m:
a. Let n; € L} . Set Hy = (0!, G;), then [K* : H;] = p.
b. Determine L;/K class field corresponding to H;.
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c. Set Gip1 =N}, (Gi) C L, then [Lf : Gia] = p™ "

Corollary 6.2. For every subgroup G of K* with K*/G = (14 pg)/(GN
(14+px)) cyclic of degree p™ there exists an abelian extension L/ K of degree
p™ with Np (L) = G.

The existence theorem of local class field theory for finite extensions
(theorem 3.3) follows.

Example 6.3. Let G; = (3) x (—1) x ((1+3)?) C Q4. We compute the
class field corresponding to Gy as follows (from bottom to top):
b. Q3(m)with 73 + (—127% — 6)73 — 3727 + 31m; — 183=0
a. Hy = Gg,las [Qs(m1)* : Go] =3
C. G2 = N@s(ﬂ'l)/QS (Gl)
= (m, =1, (L+ m) (1 + 1), (1 +af) (1 + ), (1 +71)%)

b. Q3(m)with 73 + 672 +3 =0

a. Hy = (3) x (—=1) x {(1 +3)3), such that [Q} : H] = 3
Gi=(3) x (=1) x (1 +3)")
Q3 = (3) x (=1) x (1 +3)

Qs

7. Examples

The methods presented above have been implemented in the computer
algebra system Magma [BC95] and released with Magma 2.12. In the tables
below we give cyclic class fields over Q, and some of their extensions for
p € 2,3,5,7,11,13 of degree up to 343.

Let K be a finite extension of Q, with unit group

K* = (m) x ({) x (mni | A € Fr,1 <i < f).
A cyclic class field L of degree d over a field K is denoted by

(am;ac;a1,1-,ay—1,f)
Loy’ 1K

where ar,ac,a1,1...,a,—1,5 are the entries in the relevant column of the
Hermite normal form of the transformation matrix mapping the basis of
K* to generators of the norm group Ny k(L") (compare the exposition
before theorem 5.5). It is obvious that 0 < ar < d, 0 < a¢ < d, and
0<ay;<dfor\€ Fgand 1 <i< fK/Qp. If d is a multiple of p we leave
out a¢ = 0.



648 Sebastian PAULI

In some tables the class fields are parameterized by the a; ;. The a;; in
the naming scheme are always to be considered modulo d. Throughout this
section we use {0,...,p — 1} as a set of representatives of Z,/(p). As we
compute class fields as towers of extensions and in order to facilitate repre-
sentation we give their generating polynomials over a suitable subfield that
can be found in one of the other tables. We use 7 to denote a uniformizer
of that ground field.

If K contains the p-th roots of unity we have the additional generator 7,
for K* and an additional entry a. in the transformation matrix.

Class Fields over Qa. There are six totally ramified class fields of degree
2 over Qa. The parameter k is equal to 0 or 1.

L/K ‘ Np g (L¥) over generated by
KY3/Q  [(2:3%325) @ 2’ +2u+2+k-4
KET/Qe [(2553,5) Q@ aP+2+ks
KT/, [ (2-581,3.5,52) Qo a2 +2+4+k-8

The following table contains 2 of the class fields of degree 64 over Q2 and
its abelian subfields. The parameter k is equal to 0 or 1.

L/K | Nk (L) over  generated by
K4 C1/Qa (2:5,3-5,5%) Kélal) o +mt 7+t
K0, (2-5%3-5% 58) K7 2 n+at

KO0, | (@5935559) K& Ptata+al
Koior/Qe | (2:53-5%5%)  K{gy”

o+ 04 24 w264 733
Kty ) Qz | (2:507923.5% 5%)  Keinio)
w32 A0 424 0y B2y 96y 58y 62 forr65

Ramified Class Fields of Degree p over Q, for p odd. If p is an odd
prime then Q; = (p, ¢, (1+p)) where ( is a (p—1)-th root of unity. Theorem
4.5 yields generating polynomials of totally ramified normal extensions of
degree p over Qy:

o=a + (p— V)pzP~! +p+ kp?,

where 0 < k < p. Let K be the extension defined by a root of ¢. The
exponents of the generators of the norm groups follow immediately from
the coefficients of the polynomial. We obtain

NK/QP(K*) = <p(1 +p)ka G (1 +p)p>_
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Class Fields over Q3. We start with the class fields of degree 2 and 3
over Q3. The parameter k runs from 0 to 2.

L/K | Nk (L) over generated by
Ko0/Q3 [ (3%, —1,4) Q3 2*+1

K /Qs | (3,1,4) Qs 2243

KN/Qs | (-3,1,4) Qs a?-3

K30/Qs | (33,-1,4) Q3 2>+2x+1
K:»(,f?/@:) (3-4F,—1,4%) Q3 2% +2-322 + 3+ k-3?

There are 12 ramified class fields of degree 3 over Kél) The fields Lg ()5,

ngs, and Lg’% are normal over Q3. In addition to their norm groups in K;l),

we give their norm groups in Q3. The parameter k takes on values from 0
to 2.

L/K ‘ L/K Kx(L*) over generated by
:gkzi/K 11) ‘ (m(1+m)F, =1, (1 +m)3,4) Ké}l) 2342’4+ ke
6/K ) (- 4k, 1, (1+m),4% Kg(ll) r342mr 4w + ks
3*’“)/1((1) (m-dk, —1, (1 + )4, 43) KS) abronatm+2ntkn
6+k)/K(1) ( 4k 2 43
o1 | (4%, —1,(1+m)4%,4%) (1)
K w342 e+ 4kl
/Qs | (=3 4(3 ",1,4%) >

Over K. é?i there are 39 ramified cyclic extensions of degree 3 with 3 different
discriminant. Both parameters [ and k run from 0 to 2.

L/K ‘ Ny g (L¥) over generated by
)
4/K304 (30t nd, m2,m3) Kg(,04) 34 2 w4 kn?
L(kl /K3 <3177§777%7 nga 773> K;g?zz $3+ZW2Q}+7T+]€7T3
kH11251,0 0 )
Lé,m VES) | 30kt 72.75) K§)

23+ 2130 £+ 4 It 4 k®

k142:0,1) 70
LEETED O | (3nh 2 s 773> Kéi

3 + 21322 + w4+ w3 + Int + kn®
k+151,2) 0 k+1 0

LZ(310 /K:)(,AL) <377+ 77177§a7727737773> K§4)

22 + 27322 + 1 + Int + kn®

The three fields Lg’f;gl’Q’O) for k = 0, 1, and 2 are cyclic over Q3. They appear
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in the following table of all cyclic extensions of Q3 of degree

9. Let p be denote a root of 3 + 2z + 1 and recall that K39 = Q3(p).

L/K

| Nk (L) over generated by

Ky,0/Q3

(39,-1,4) K0
3+ (20 +2)x2 + (202 +2p + 2)x + 2p

30-F
ng,2(2 ))/Q:s

(3-4320) 1,49 K
3423 22 T34 2 ke

Kg()?z(g_l)—i_l)/(@?) <3'43(k—1)+1’ —1, 49) K?()li

9703+ 2w+ w3+t 4 kd

Kgg?z(gq)u)/(@g <3.43(k—1)+2’ 1,49 K:EZZ 234271302 73+ krd

Ké,lis/ Qs
2
ng,is/ Qs

(334, —1,43) Kso % +2-32% + 3 +2p%32
(3342, —1,43) Kso 23 +2-32% + 3+ p?3?

The following table contains all cyclic extensions of Q3 of degree 27 contain-

(0)

ing KQ?QQ, all cyclic extensions of Q3 of degree 81 containing Kgg?% /, and

all cyclic extensions of Qg of degree 243 containing K, §(1)3364. The parameter
k runs from 0 to 2.

L/K | Npyk (L) over generated by
9(k+1 0
K2(7,(94 ))/@3 (3-490+2) 1 427) ng,2)2
2210 T+ 4 w4 104 2 12 13 o 14
7(k+2 0
Kégl,?)(64 /Qs | (3-427k+2) ¢ 481y K§7?94
+ 2733 2734 4 2736 4 2737 4 fpdl
Si(k 0
K2(43,(23)728/Q3 (3-481(k) ¢ 4243 K§1?364

3428l x4 w004 8l 824 27844 27854 27 8T 788
+2ﬂ_112 +7T114—|-27T115+27T120+7T121+k7T122

Class Fields over Q5. There are 5 cyclic extensions of degree 25 over Qs

containing K éf)g)

and 5 cyclic extensions of degree 125 over Q5 containing

Kég?(jg. The parameter k takes values from 0 to 4.

L/K | Nk (L) over generated by

KJ/Qs [ (5:6%,¢,6%) Q P 14500 451 k5
Kéif;g’“”/% <5.65(1—k)’ ¢,625) Kéog) PO A S S Py
Kggfﬁ%@)ﬂ% (5-625(k+4) ¢ 6125 Kég?%

o4+ 4n2 x4 2y 254 726
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Class Fields over Q7. Over Q7 there are 7 cyclic extensions of degree 49
(0)

containing K7 {5 and 7 cyclic extensions of degree 343 containing K 483138.
The parameter k runs from 0 to 6.

L/K | Npyk (L) over generated by
K8, 0 | (7:8%,¢,87) Q7 25+ 6-72% + 7 + k- 72
KRN, | (78700 ¢ 89) K, ol 6n7a% mta’t6mt kn
40K) ,
3€43 dss/ Q7 | (7-849%,(, 8%43) Ki9)138
2T 64961 4 431 £49) 1504 6524 653
+67754+ 57T55+67T56+37T57—|— k7T58

Class Fields over Qq1. There are 11 cyclic extensions of degree 121 over
Q11 containing K Yll?m- The parameter £ runs from 0 to 11.

L/K ‘ Ny (L") over generated by
Kp/Qu | (11-12%,¢,12') Qu

o +10-11210 + 11 + k112
TI(1=F)) - 1

521(350 /Qui| (111211070 ¢ 12121) K£1)20

o+ 10720 + 7 7t 10712 + k- 13

Class Fields over Qq3. There are 13 cyclic extensions of degree 169 over
Q13 containing K{g?ﬂ. The parameter £ runs from 0 to 12.

L/K ‘ Ny (L¥) over generated by
K5y /Qus | (13-14%,¢,1413) Qus

23 +12-132'2 + 13 4 k- 132
Koo /Qus| (13-14713609 ¢ 1416%) k(D)

213 4 19713512 +7T_|_7T13 4 3714 4 5
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