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On the use of explicit bounds on residues of
Dedekind zeta functions taking into account

the behavior of small primes

par STÉPHANE R. LOUBOUTIN

RÉSUMÉ. Nous donnons des majorants explicites des résidus au
point s =1 des fonctions zêta ~K (s) des corps de nombres tenant
compte du comportement des petits nombres premiers dans K.
Dans le cas où K est abélien, de telles majorations sont déduites
de majorations de IL (1, x) tenant compte du comportement de X
sur les petits nombres premiers, pour X un caractère de Dirichlet
primitif. De nombreuses applications sont données pour illustrer
l’utilité de tels majorants.

ABSTRACT. Lately, explicit upper bounds on x)1 1 (for prim-
itive Dirichlet characters x) taking into account the behaviors
of x on a given finite set of primes have been obtained. This

yields explicit upper bounds on residues of Dedekind zeta func-
tions of abelian number fields taking into account the behavior of
small primes, and it as been explained how such bounds yield im-
provements on lower bounds of relative class numbers of CM-fields
whose maximal totally real subfields are abelian. We present here
some other applications of such bounds together with new bounds
for non-abelian number fields.

1. Introduction

Let K be a number field of degree n = ri + 2r2 &#x3E; 1. Let dK, wK, 
hK and be the absolute value of its discriminant, the number
of complex roots of unity in K, the regulator, class number, and residue at
s = 1 of the Dedekind zeta function ~K(s) of K. Recall the class number
formula:
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In order to obtain bounds on hK we need bounds on The

best general upper bound is (see [Lou01, Theorem 1]):

If K is totally real cubic, then we have the better upper bound (see [Lou01,
Theorem 2]):

Finally, if K is abelian, then we have the even better general upper bound

where K = (5 - 2 log 6)/2 = 0.70824 ~ ~ ~ , by [Ram01, Corollary 1].
However, from the Euler product of (K (s) we expect to have better upper

bounds for provided that the small primes do not split in
K. For any prime p &#x3E; 1, we set

where ’P runs over all the primes ideals of K above p. A careful analysis of
the proofs of all the previous bounds suggests that we should expect that
there exists some r,’ &#x3E; 0 such that

Notice that the factor IIK (2)/IIQ (2) is always less than or equal to 1, but is
equal to 1 / (2n -1 ), hence small, if the prime p = 2 is inert in K. Combined
with lower bounds for Ress==l ((K (s) ) depending on the behavior of the small
primes in K (see [Lou03, Theorem 1]), we would as a consequence obtain
better lower bounds for relative class number of CM-fields. The aim of this

paper is to illustrate on various examples the use of such better bounds on
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To begin with, we recall:

Theorem 1. (See [Ram04] 1; see also [Lou04a] and [Lou04d]). Let S be a
given finite set of pairwise distinct rational primes. Set ~s := #S ~ log 4 +
2 Then, for any primitive Dirichlet character X of conductor

qx &#x3E; 1 such that p E S implies that p does not divide qx, we have

if x is odd, and

if X is even and qx &#x3E; 6.2 . 4#s.

We refer the reader to [BHM], [Le], [MP], [Mos], [MR], [SSW] and [Ste]
for various applications of such explicit bounds on L-functions. They are
not the best possible theoretically. However, if such better bounds are

made explicit, we end up with useless ones in a reasonable range for q.
(see [Lou04a] and [Boo]). Therefore, applications of these better bounds to
practical problems are not yet possible.

2. Upper bounds for relative class numbers

Corollary 2. Let q - 5 (mod 8), q =1- 5, be a prime, let Xq denote any-
one of the two conjugate odd quartic characters of conductor q and let hq
denote the relative class nurraber of the imaginary cyclic quartic field Nq of
conductor q. Then,

which implies hq  q for q  C., where Ax, Bx and Cx are as follows:

’Note however the misprint in [Ram04, Top of page 143] where the term

should be
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Proof. Since q - 5 (mod 8), we have Yq(2)2 = (~) = -1 and Xq(2) = +1.
Set S = {p E {2,3,5}; x(p) -E-l. Then 2 E S and according to Theo-
rem 1 we may choose

and

Remarks 3. Using Corollary 2 to alleviate the amount o f required rela-
tive class numbers computation, several authors have been trying to solve in
[JWW] the open problem hinted at in [Lou98]: determine the least (or at
least one) prime q - 5 (mod 8) for which hq &#x3E; q. Indeed, according to
Corollary 2, for finding such a q in the range q  5 . 1010, we may assume
that xq(3) _ +1, which amounts to eliminating three quarters of the primes
q in this range. In the same wag, in the range q  3 - lOl3 we may assume
that xq(3) _ +1 or Xq(5) = +1, which amounts to eliminating 9/16 of the
primes q in this range.

3. Real cyclotomic fields of large class numbers

In [CW], G. Cornell and L. C. Washington explained how to use simplest
cubic and quartic fields to produce real cyclotomic fields (~+(~p) of prime
conductor p and class number hp &#x3E; p. They could find only one such real
cyclotomic field. We explain how to use our bounds on L-functions to find
more examples of such real cyclotomic fields. However, it is much more
efficient to use simplest quintic and sextic fields to produce real cyclotomic
fields of prime conductors and class numbers greater than their conductors
(see [Lou02a] and [Lou04c]).
3.1. Using simplest cubic fields. The simplest cubic fields are the
real cyclic cubic number fields associated with the Q-irreducible cubic poly-
nomials

m n . ,

of discriminants dm where Am := m~+3m+9. Since 
P-m-3 (x), we may assume that m &#x3E; -1. We let

denote the only positive root of Moreover, we will assume that
the conductor of Km is equal to Am, which amounts to asking that (i)
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m 0 0 (mod 3) and ~m is squarefree, or (ii) m - 0, 6 (mod 9) and
~m/9 is squarefree (see [Wa, Prop. 1 and Corollary]). In that situation,
{20131, pm, - 1 / (pm + 1) 1 generate the full group of algebraic units of Km and
the regulator of Km is

which in using (1) yields

Lemma 4. The polynomials Pm(x) has no root mod 2, has at least one root
mod 3 if and only if m - 0 (mod 3), and has at least one root mod 5 if and
only i f m -1 (mod 5) . Hence, if ~m is square-free, then 2 and 3 are inert
in Km, and if m t 1 (mod 5) then 5 is also inert in Km .
As in [Lou02a, Section 5.1], we let xKm be the primitive, even, cubic

Dirichlet characters modulo A, associated with Km satisfying

Since the regulators of these Km’s are small, they should have large class
numbers. In fact, we proved (see [Lou02c, (12)]):

Corollary 5. Assume that m &#x3E; -1 is such that ~m = m2 + 3m + 9 is

squarefree. Then,

Proof. If a prime 1 &#x3E; 2 is inert in K7" then XKm(l) E 

exp(4i7r/3)1. According to Lemma 4 and to Theorem 1 (with S = {2,3}
and S = {2,3, 5}), we have

Now, according (4) and (3), the desired results follow for m ~ 95000. The
numerical computation of the class numbers of the remaining K~, provides
us with the desired bounds (see [Lou02a]). D

From now on, we assume (i) that p = Am = m 2 + 3m + 9 is prime
(hence m ~ 0 (mod 3)) and (ii) that p - 1 (mod 12), which amounts to
asking that m - 0, 1 (mod 4). In that case, both Km and := 

are subfields of the real cyclotomic field Q+((p) and the product h2h3 of
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the class numbers h2 := and h3 := of and divides the

class number hp of Q+(~p). Now, h3  An/60 and h2h3 &#x3E; An imply
h2 &#x3E; 60, hence h2 &#x3E; 61 (for h2 is odd), and Cohen-Lenstra heuristics
predict that real quadratic number fields of prime conductors with class
numbers greater than or equal to 61 are few and far between. Hence, such
simplest cubic fields Km of prime conductors An = m2 + 3m + 9 == 1
(mod 4) with h2h3 &#x3E; àn are few and far between. As we have at hand a
very efficient method for computing class numbers of real quadratic fields
(see [Lou02b] and [WB]), we used this explicit necessary condition h2 &#x3E;
61 to compute (using [Lou02a]) the class numbers of only 584 out of the
46825 simplest cubic fields I~m of prime conductors Am m 1 (mod 12)
with -1  m  1066285 to obtain the following Table. (Using the fact
that h2 &#x3E; 61, the class number formula for km and Theorem 1 for S = 0
imply Reg2  Am) /244, where Reg2 denotes the regulator of the
real quadratic field km = and taking into account the fact that
Reg2 is much faster to compute than h2, we could still improve the speed of
the required computations). Notice that the authors of [CW] and [SWW]
only came up with one such Km, the one for m = 106253.

Least values of m &#x3E; -1 for which àn = m2 + 3m + 9 is prime and h2h3 &#x3E; ~m

3.2. Using simplest quartic fields. The so called simplest quartic
fields (dealt with in [Lazl], [Laz2] and [Lou04b]) are the real cyclic quartic
number fields associated with the quartic polynomials

of discriminants dm = 4A3 where := (m2 + 16 3. Since Pm(-x) =
P-m (x), we may and we will assume that m &#x3E; 0. The reader will easily
check (i) that has no rational root, (ii) that Pm(x) is Q-irreducible,
except for m = 0 and m = 3, and (iii) that Pm(x) has a only one root



565

/3m = (m+B/A~)/2. In particular, km = Q( @) is the quadratic subfield
of the cyclic quartic field Km. It is known that hkm divides h Km’ and we
set hKm = Since pm &#x3E; 1 and pm - 0, we obtain

and

Proposition 6. Assurrze that m &#x3E; 1 is odd and that Llm = m 2+16 is prime.
Then, the discriminant of the real quadratic sub fceld km = of Km
is equal to Om, the discriminant of Km is equal to à3 @ its conductor is

equal to Llm, the class numbers of Kn and km are odd, RegKm/Regkm =
Reg* and (see [Lou04b, Theorem 9])

where xKm is angone of the two conjugate primitive, even, quartic Dirichlet
characters modulo Om associated with Km. Moreover, XKm (2) = -l, and
m &#x3E; 5 implies 

"~

Proof. According (6), to Theorem 1 (with S = {2}) which yields

and to (5), we have ~m/(36+0(1)) and hKm  A,/26 for 3000.

The numerical computation of the class numbers of the remaining Km
provides us with the desired bound (see [Lou02a]). D

is odd), and Cohen-Lenstra heuristics predict that real quadratic number
fields of prime discriminants with class numbers greater than or equal to 27
are few and far between. Hence such simplest quartic fields Km of prime
conductors Am = m 2 + 16 with &#x3E; Am are few and far between. As
we have at hand a very efficient method for computing rigorously class
numbers of real quadratic fields (see [Lou02b] and [WB]), we used this
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explicit necessary condition 27 to compute only 1687 of the class
numbers of the 86964 simplest quartic fields Km of prime conductors Om =
m2 + 16 =1 (mod 4) with 1  m  1680401 to obtain the following Table.
Notice that G. Cornell and L. C. Washington did not find any such Km
(see [CW, bottom of page 268] ).

Least values of m &#x3E; 1 for which Am = m2 + 16 is prime and hKm &#x3E; ~m

4. The imaginary cyclic quartic fields with ideal class groups of
exponent  2

We explain how one could alleviate the determination in [Lou95] of all
the non-quadratic imaginary cyclic fields of 2-power degrees 2n = 2r &#x3E; 4

with ideal class groups of exponents  2 (the time consuming part bieng the
computation of the relative class numbers of the fields sieved by Proposition
8 or Remark 9 below). To simplify, we will now only deal with imaginary
cyclic quartic fields of odd conductors.

..’ .....

Theorem 7. Let K be an imaginary cyclic quartic field of odd conductor
fK; Let and xK denote the real quadratic subfield of K, the conductor
of k, and anyone of the two conjugate primit2ve quartic Dirichlet characters
modulo f K associated with K. Then,

where 

and

Proof. Use [Lou03, (34)], [Lou03, (31)] with [Ram01, Corollary 1] and
[Ram01, Corollary 2]’s values for Kk = KX’ where X is the primitive even
Dirichlet character of conductor dk associated with k, and 

4/12 - xK(2) ~2. D

Proposition 8. Assume that the exponent of the ideal class group of an
imaginary cyclic quartic field K of odd conductor fK is less than or equal
to 2. Then, fk  1889 and fK  107 (where k is the real quadratic subfield
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of K). Moreover, whereas there are 1 377 361 imaginary cyclic fields K of
odd conductors fK  107 and such that fk  1889, only 400 out of them
may have their ideal class groups of eiponents  2, the largest possible
conductor being fK = 5619 (for fk = 1873 and fKIk := fK/.fk = 3).

Proof. It is known that if the exponent of the ideal class group of K of odd
conductor fK is  2, then fk =- 1 (mod 4) is prime and

where denotes the number of prime ideals of k which are ramified
in Klk (see [Lou95, Theorems 1 and 2]). Conversely, for a given real
quadratic field k of prime conductor fk == 1 (mod 4), the conductors fK of
the imaginary cyclic quartic fields K of odd conductors and containing k
are of the form ,fk = fkfK/k for some positive square-free integer fKIk &#x3E; 1

relatively prime with fk and such that

(in order to have xK (-1 ) - -1, i.e. in order to guarantee that K is

imaginary). Moreover, for such a given and such a given there exists

only one imaginary cyclic quartic field K containing and of conductor
f K = and for this K we have

where ( fk ) denote the Legendre’s symbol. Finally, if we let Çk denote any-
one of the two conjugate quartic characters modulo a prime fk -1 (mod 4),
then where (-.-2013) denote the Jacobi’s symbol, and

- , 

K/k K/k

Hence, we may easily compute Kk, cK and from fk and In

particular, we easily obtain that there are 1 377 361 imaginary cyclic fields
.K of odd conductors f K  107 and such that fk  1889, and that cK = 32
for 149 187 out of them, CK = 32/5 for 938 253 out of them, and cK = 32/9
for 289 921 out of them. Now, let Pn denote the product of the first n odd
primes 3 = pi  5 = p2  ...  Pn  ... (hence, Po = 1, Pi = 3, P2 = 15,
... ). There are two cases to consider:

(1) If Xk(2) = +1. 1 (mod 8) is prime, Kk = 0, 32/9,
f K = where is a product of n &#x3E; 0 distinct odd primes.
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Hence, Pn, 1 + 2n, hK = 2~/~’~ ~ 4n and using (7)
we obtain

Assume that 36. Then 3/~~ ~ 5~ and for n &#x3E; 1 we have

P2 = 5, Pn 2: Pi = 3 and

Since we clearly have F~(1)  Fk(0), we obtain minn&#x3E;o Fk(n) = Fk(1)
and 

-

which implies fk  1899, hence fk  1889 (for fk - 1 (mod 8) must
be prime). Hence, using (7), we obtain

Let now n denote the number of distinct prime divisors of f K. Then
f K &#x3E; Pn, 2(n -1) + 1 and hK = 4n-l. Hence, using
(7), we obtain

which imPlies n  7, 4,

and yields fK  107.
(2) If Xk (2) = - 1. 5 (mod 8) is prime, 2.78, cK &#x3E;

32/5 and we follow the previous case. We obtain fk  1329, hence
1301 (for fk m 5 (mod 8) must be prime), n  7, 46 and
7. 106.

Hence, the first assertion Proposition 8 is proved. Now, for a given odd
prime fk  1889 equal to 1 modulo 4, and for a given odd square-free
integer 107/ f~. relatively prime with fk, we compute (using
(10)), cK (using (11)) and use (7) and (8) to deduce that if the exponent
of the ideal class group of K is less than or equal to 2, then
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Now, an easy calculation yields that only 400 out of 1 377 361 imaginary
cyclic fields K of odd conductors and such that fk  1889 and f K  107
satisfy (12), and the second assertion of the Proposition is proved. D

Remarks 9. Our present lower bound (7) should be compared with the
bound

obtained in [Lou97]. If we used this worse lower bound for hh then we
would end up with the worse following result: If the exponent of the ideal
class group of an imaginary cyclic quartic field K of odd conductor fK is

less than or equal to 2, then fk  4053 and fK  2. 107. Moreover, whereas
there are 2 946 395 imaginary cyclic fields of odd conductors fK  2 . 107
and such that fk  4053, only 1175 out of therra may have their ideal class
groups of exponents  2, the largest possible conductor being fK = 11667
(for fk = 3889 and fKIk = 3).

5. The non-abelian case

We showed in [Lou03] how taking into account the behavior of the prime
2 in CM-fields can greatly improve upon the upper bounds on the root num-
bers of the normal CM-fields with abelian maximal totally real subfields of
a given (relative) class number. We now explain how we can improve upon
previously known upper bounds for residues of Dedekind zeta functions of
non-necessarily abelian number fields by taking into accound the behavior
of the prime 2:

Theorem 10. Let K be a number field of degree 3 and root d,iscrim-

Proof. We only prove (13), the proof of (14) being similar. We set
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(which is &#x3E; 1 for s &#x3E; 0). According to [Lou01, Section 6.1] but using the
bound

instead of the bound ~K(s)  1er’~~(s) , we have

where sK = 1 + E ~1, 6~ and

and (13) follows. D

Corollary 11. (Compare with [Lou01, Theorems 12 and 14] and [Lou03,
Theorems 9 and 22]). Set c = 2(J$ - 1)2 = 1.07 ... and Vm :=

(m/(m - 1 ))"L-1 E [2, e). Let N be a normal CM-field of degree 2m &#x3E; 2,
relative class number h- and root discriminant pnr = dN2"’ &#x3E; 650. Assume
that N contains no irraaginary quadratic subfield (or that the Dedekind zeta
functions of the imaginary quadratic subfields of N have no real zero in the
range 1 - (c/ log dN)  s  1). Then,

Hence, hN &#x3E; 1 for m &#x3E; 5 and 14610, and for m &#x3E; 10 and PN 2 9150.
Moreover, oo as [N : Q] = oc for such normal CM-fields N
of root discriminants PN &#x3E; 3928.

Proof. To prove (15), follow the proof of [Lou01, Theorems 12 and 14] and
[Lou03, Theorems 9 and 22], but now make use of Theorem 10 instead of
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[Lou01, Theorem 1] and finally notice that

(x is the quadratic character associated with the quadratic extension N/K,
and ’P ranges over all the primes ideals of K lying above the rational prime
2). 0

We also refer the reader to [LK] for a recent paper dealing with upper
bounds on the degrees and absolute values of the discriminants of the CM-
fields of class number one, under the assumption of the generalized Riemann
hypothesis. The proof relies on a generalization of Odlyzko ([Odl]), Stark
([Sta]) and Bessassi’s ([Bes]) upper bounds for residues of Dedekind zeta
functions of totally real number fields of large degrees, this generalization
taking into account the behavior of small primes. All these bounds are
better than ours, but only for numbers fields of large degrees and small
root discriminants, whereas ours are developped to deal with CM-fields of
small degrees.

6. An open problem

Let k be a non-normal totally real cubic field of positive discriminant â~.
It is known that (see [Lou01 , Theorem 2]):

This bound has been used in [BL02] to try to solve the class number one
problem for the non-normal sextic CM-fields K containing no quadratic
subfields. However, to date this problem is in fact not completely solved
for we had a much too large bound 2 - 1029 on the absolute values
dK of their discriminants (see [BL02, Theorem 12]). In order to greatly
improve upon this upper bound, we would like to prove that there exists
some explicit constant r, such that

holds true for any non-normal totally real cubic field I~. However, adapting
the proof of [Lou01, Theorem 2] is not that easy and we have not come up
yet with such a result, the hardest cases to handle being the cases (2) = ’P
or PiP2 in l~, where we would expect bounds of the type
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At the moment, we can only prove the following result which already yields
a 1000-fold improvement on our previous bound dK  2 ~ 1029:

Theorem 12. Let k be a totally reol cubic number field. Then,

where

As a consequence, if K is a non-normal sextic CM-field containing no qua-
dratic subfield and if the class number of K is equal to one, then dK 
2.1026.
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