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Counting cyclic quartic extensions
of a number field

par HENRI COHEN, FRANCISCO DIAZ Y DIAZ et MICHEL OLIVIER

RÉSUMÉ. Nous donnons des formules asymptotiques pour le
nombre d’extensions cycliques quartiques d’un corps de nombres
général.

ABSTRACT. In this paper, we give asymptotic formulas for the
number of cyclic quartic extensions of a number field.

1. Galois, Kummer, and Hecke Theory
1.1. Introduction. Let K be a number field, fixed once and for all, and
let G be a transitive subgroup of the symmetric group Sn on n letters. The
2reverse problem of Galois theory asks whether there exists an extension
L/K of degree n such that the Galois group of the Galois closure of L is
isomorphic to G. This problem is far from being solved, although great
progress has been made by Matzat and his school, and hopes have been
raised by Grothendieck’s theory of dessins d’enfants. For specific groups G
we can even ask for the numbers NK,n (G, X ) of such extensions L /K up to
K-isomorphism, such that the norm of the discriminant of L/K is at most
equal to X, at least in an asymptotic sense. A general conjecture due to
Malle (see [12] and [13]) states that there should exist constants aK(G),
bK(G), and cK(G) such that

and gives formulas for the constants aK(G) and (in [9], it is shown
that the formula for bK(G) cannot be correct, but the conjecture is still

believed to hold with corrected values). For a general base field K this
conjecture is known to be true in a number of cases, and in particular
thanks to the work of Wright ~14~, in the case of Abelian extensions, and
the constants aK (G) and bK (G) agree with the predictions. Unfortunately
it is very difficult to deduce from [14] the explicit value of the constant
cK(G) (which is not given by Malle’s conjecture), so all the subsequent
work on the subject has been done independently of Wright’s. When the
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base field is .K = Q, the result is known in general: after work of many
authors, Maki in [10] and [11] gives the value ofcQ(G) for all Abelian groups
G when the base field is Q. On the other hand, for a general base field K
and Abelian group G, the only known results are due to the authors, except
for G = C2 for which the result can be deduced from [8]: G = C~ for prime
Ê (see [4] and [5]), G = Y4 = C2 x C2 (see [6]), and G = C4, which is
the object of the present paper. Note that groups such as G = Cn with
squarefree n can be treated quite easily using the methods of [4] and [5], but
the formulas are so complicated that there is not much point in doing so.
Thus the main difficulty in the C4 case is the fact that 4 is not squarefree.
As in the C~ case, the main tool that we need is simple Galois and Kummer
theory, but we will also need a little local class field theory.

1.2. Galois and Kummer Theory. We first consider the Galois situa-
tion. Let L/K be a C4-extension. Then there exists a unique quadratic
subextension We will write = K( VD) where for the moment D
is an arbitrary element of K* generating Then L = k(JZ) for some
a e 1~*, and it is well known and easy to see that a necessary and sufficient
condition for L/K to be a C4-extension is that Dz2 for some
z E .K. Writing a = x + yVD, it is clear that this immediately implies
that D is a sum of two squares in K. Conversely, if D = m2 + n2 in K,

VD(m + is such that c~ E k* and = Dn2, hence
L = defines a C4-extension of K. In other words, we have shown
the well known result that a quadratic extension k / K can be embedded in
a C4-extension if and only if its discriminant is a sum of two squares.

In a large part of this paper, we fix the intermediate quadratic extension
kl K with k = We denote by T the generator of the Galois group
of by d = D(klK) the relative ideal discriminant, 
the different of and by T the set of prime ideals of K dividing d (i.e.,
which ramify in Finally we fix once and for all an élément 
such that = Dn2 for some n E K (not necessarily the one given
above) .
We will constantly use the following lemma whose trivial proof (for ex-

ample using Hilbert 90) is left to the reader.

Lemma 1.1. Let a E k*.

( 1 ) is a square irc K if and only if there exists z E K E k

such that a = z-y 2
(2) is equal to D times a square in K if and only if there exists

t E K and q OE k such that a = wt-y 2
Thus a defines a C4-extension if and only if a = wt-y 2 for some

t E K*; since a is only defined up to squares, we may in fact assume that
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cx = Wt. Furthermore c~t and wt’ define K-isomorphic C4-extensions if and
only if they define k-isomorphic quadratic extensions, hence if and only if

E k* 2. Since E K*, this means that E K*2 U DK*2.
Thus, if we consider extensions L = k( VWt) for t E K* 1 K*2 (note

that the unit class must not be excluded), we will obtain exactly twice all
C4-extensions of K up to isomorphism. We have thus shown:

Proposition 1.2. Let k = be a quadratic extension of K which is
embeddable in a in other words such that there exists w E k*
such = Dn2 for some n E K* . Then the set of isomorphism
classes of C4-extensions L/K containing kl K is in a noncanonical one-

to-two correspondence with the group K*IK * 2. The isomorphism class of
C4-extensions corresponding to t E K* 1 K*2 is k( VWt), and this is the same
extension as the one corresponding to tD.

Definition. Recall that T is the set of prime ideals of K ramified in kl K.
We denote by  T &#x3E; the subgroup of the group of fractional ideals of K
generated by the elements of T.

(1) The T-class group ClT(K) is the quotient group of the group of frac-
tional ideals by the subgroup of ideals of the form Ob, where j3 E K*
and b E T &#x3E;. In other words CLT(K) = Cl(K)1  T &#x3E;, the quo-
tient of the ordinary class group by the subgroup generated by the
ideal classes of elements of T.

(2) The T-Selmer group ST(K) of K is the set of classes of elements
u E K* such that = q2b for some ideal q of K and some ideal
b E  T &#x3E;, modulo squares of elements of K*

We will also use this definition either for T = 0, in which case we re-
cover the notions of ordinary class and Selmer groups, which we will denote
respectively by Cl(K) and S(K).
We will need the following lemma, whose easy proof is left to the reader:

Lemma 1.3. The natural map f rom S(K) to S(k) induces an isomorphism
from ST(K) to where as usual is the subgroup of elements of
S(k) stable by T.
The following lemma is well known in the case T = ~l (see for example

[2]), and its proof is the same.
Lemma 1.4. There exists a noncanonical one-to-one correspondence be-
tween K* /K*2 and pairs (a, u), where a is a square f reel ideal of K co-
prime to () whose ideal class is a square in the T -class group ClT(K), and
~c E ST(K). = some b OE T &#x3E; and to E K*, the element
of K* 1 K*2 corresponding to (a, ù) is the class modulo squares of tou.

lWe will only use the term "squarefree" to mean integral and squarefree
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Note for future reference that by the approximation theorem qo and u
(but of course not to in general) can be chosen coprime to 

1.3. Kummer and Hecke Theory. Important notation. In this pa-
per, the notation will be used to denote a generic fractional ideal of k
which need not be the same from one line to another. In addition, we recall
the following notation introduced above:

~ K is a number field, the base field fixed in the whole paper.
~ l~ is a quadratic extension of K, which will be fixed in the first three

sections of the paper, D E K is an element such that k = d and

D are the relative discriminant and different of T is the generator of
and w is an element of 1~~ such that = Dn2 for some

nEK.
~ T is the set of prime ideals of K which ramify in k/K, in other words

dividing d.
~ L is a quartic C4-extension of K containing k.

Definition. If VJ1 is any fractional ideal of l~, we denote by s(~) the square-
free part of 9Jt, i.e., the unique squarefree ideal such that 9M = for

some (fractional) ideal fl. If 9Jt = aZk for some element a, we write s(a)
instead of s(aZk) .

Note the following trivial but important lemma:

Lemma 1.5. For two squarefree ideals ai and a2 define

the "syrnrraetric difference" of al and a2. Then for any two ideals VJtI and
9X2 we have S(VJtIVJt2) = S(VR2).
Lemma 1.6. be an ideal of k and let 9X be a fractionad ideal of k.
The following two conditions are equivalent:

(1) There exists an of k such that (VRÙ2,e:) = 1.
(2) We have = 1.

If, in addition, 9K comes from K (i.e., 9R = MZk for some ideal m of K),
then in (1) we may choose Ù2 of the form bqZk for q an ideal of K and
b E T &#x3E;.

Proof. Since 9N = ~(9~)Û~, we have (2) ~ (1). Conversely, assume
(1). If ~3 is a prime ideal dividing C then = 0 hence = 0

(mod 2), so = 0, proving (2).
Finally, assume that 9K = and write m = aq26 where a is squarefree

coprime to c1 and b E T &#x3E;. It is clear that s(fl) = aZk , so a is coprime
to C by (2), hence if we take £"2 = where ~2 = bZk, we have
VRi12 = aZk, so i1 is suitable. D
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Definition. Let C be an ideal of A’ dividing 2Zk .
(1) We will denote by Q(e:2) the group of elements a E k* satisfying the

following two conditions:
~ (s(a), G) = 1 or equivalently, by the above lemma, there exists
an idéal of k such that G) = 1.

~ The multiplicative congruence = 1 (mod * (t2 ) has a solu-
tion in k.

(2) We will denote by the group of elements z E K* satisfying
the following two conditions:

~ There exists an ideal b E T &#x3E; such that (zb, C) = 1.
~ The multiplicative congruence zlx 2 = 1 (mod *e:2) has a solu-

tion in k (not necessarily in K).
Remarks.

(1) When a (or z) is already coprime to e: this means that a - x 2
(mod *e:2) has a solution. We will see that it is essential to have also
the coprimeness condition.

(2) We clearly have C K, but we do not have equality
in general, since by Lemma 1.6 if z E K there exists q and
b E T &#x3E; such that C) = 1, not necessarily with q = 1. What
is true by the approximation theorem is that if z E Q(e:2) n K, there
exists n E K* such that zn2 E QK((!2).

Since Gi 1 1 2Zk implies trivially that Q(~2) C the following
definition is reasonable:

Definition. With the above notations, for a E ~* we denote by the

largest ideal (for divisibility) dividing 2Zk and such that a E Q(e:2).
With these notations, we recall the following important special case of a

theorem of Hecke (see for example [2], Chapter 10) :
Theorem 1.7. Let k be a number , field. Then for 0: E 1~* (including
ce E l~*2~ the relative ideal discriminant. given by

Thanks to Proposition 1.2 and Lemma 1.4, we see that we must apply
this theorem to a = hence must first compute s(a). Note that 
will usually denote the squarefree part of the ideal 9R in k, even if 9R comes
from an ideal of K. It will be clear from the context when the notation is
used to denote the squarefree part in K.
By definition touZK = aq 2b for some squarefree ideal a coprime to d and

some b E T &#x3E;. Since the elements of T ramify in and a is coprime
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to D, it follows that s(tou) = a (this is of course the whole point of using
ideals coprime to c~).

Let us now compute 

Lemma 1.8. Keep the above notation. There exists a squarefree ideal a,
of K such that = as(Z), where 0 = the

different of 
Furthermore, the class of a~, in ClT(K)lClT(K)2 is independent of w,

i. e., depends only on the extension 

Notation. If j3 is any element such that = Dz2 with z E K*,
we will write aj3 for the squarefree ideal of K coprime to D such that

= aj3s(1’). Moreover, ideals of k will be denoted by capital gothic
letters and those of K by lowercase gothic letters.

Proof. Writing = and taking norms from to K, we see that
Dq2 for some ideal q of K. Since the different satisfies

= e~ and since = ()m2 for some ideal m, it follows that

Nk/K(s(w)I1’) = qi for some ideal ql of K. By Hilbert 90 for ideals, or
trivially directly, this is equivalent to

for some ideal q2 of K (and as usual Û an ideal of l~). Without loss of

generality we may assume that q2 is squarefree in K (include all squares in
Û) and is coprime to 0 (include all ramified primes in Û). The first part of
the lemma follows from the fact that is a squarefree ideal of k.

Furthermore, since the general solution to = Dz2 is 0152 = 

we have aa = s ( a~, t) . If tZK = atqb for b E  T &#x3E;, by Lemma 1.5 this is
therefore equal to aw6.at = Since the class of at is clearly a
square in ClT(K), the second part of the lemma follows. D

Since s(tou) = a, Lemma 1.5 gives the following:

Corollary 1.9. With the above notation, we have 

Corollary 1.10. Keep the above notation and let L = The
relative ideal discrim2nant of by

2. The Dirichlet Series

As usual in this kind of investigation, we set
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where the symbol J1r without a subscript will always indicates the abso-
lute norm from K to Q, and ranges over K-isomorphism classes of
C4-extensions. When using the relative norm from to K, we will always
write (as above) and when using the absolute norm from to Q, we
will always write 
By the Galois description of C4-extensions and the discriminant-conduc-

tor formula 7J(LIK) = we can write

where the sum is over isomorphism classes of quadratic extensions 
which are embeddable in a C4-extension, and

In the above, the quadratic extensions L /k are of course only taken up to
k-isomorphism, and the factor 1/2 in front comes from the fact that we
have a one-to-two correspondence in Proposition 1.2.
The goal of the following sections is to study the inner Dirichlet series

We will come back to the global series ~K,4(C4, s) only in Section
4.

Thus in this section and the following, we fix a quadratic extension k
of K, an element D E K* such that 1~ = which is a sum of two

squares in K, an element VJ E 1~* of relative norm D times a square, and
more generally we keep the notations of the preceding section.
To simplify notations, denote by 1 the set of squarefree ideals of K

which are coprime to c~ and whose ideal class in is a square. Let
n = [K : Q] be the absolute degree of the base field K, so that [k : Q] = 2n.
It follows from Proposition 1.2, Lemma 1.4 and Corollary 1.10 that we
have:

where
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(We have used the trivial fact that JVkIK(8(0» = s(D), where here of

course denotes the squarefree part of D in K).
For C coprime to s (1)) and to aAa~ (in other words to s(wtou)), set

In the above notations gto and f to, we do not write the explicit dependence
on a.

We clearly have

where we take only the D coprime to s(D) and to Thus, by a form
of the Mbbius inversion formula we deduce that

(same restrictions on D), where ILK is the Môbius function on ideals of K.
It follows that

To compute we first need the following definitions and notations.

Definition. Let C be an ideal of k dividing 2Zk, and set c = ~2 n K.

(1) We define as the quotient group of the group of fractional
ideals of K coprime to c by the subgroup of ideals of the form z6 which
are coprime to c, where b E T &#x3E; and z E (see Definition
1.3).

(2) We define as the set of elements u E ST (K) such that
u E Q~(~2) for some lift u (hence for all lifts u such that there exists

with (ub, G) =1 ) .

Note the important fact that although the elements z and u are in the
base field K, the congruences defining are still in k and not in K.
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Definition. Let G be an ideal dividing 2Zk and coprime to 

(1) We will say that C satisfies condition (*) if there exists /3 - 1

(mod *~2) such that Nk/K(/3) is equal to D times a square in K.
(2) Let a be an ideal of K. We will say that a satisfies condition (**) Q:2 if

a is squarefree and coprime to "0, and if there exists ,~ == 1

(mod *~2) with Nk/K(/3) equal to D times a square such that

(or, equivalently, s(/3) = s (w a»
Lemma 2.1. (1) If a satis,fies condition (**)e2, then a A aw is coprime

to c (or, equivalently, to (t).
(2) If a and ao satisfy condition (**)Q:2, then alao is coprime to c.

Proof. (1). Let fl3 be a prime ideal of k dividing G. Then by assumption
= 0 and = 0 for /3 - 1 (mod *lî2) . Thus condition (**),r2

implies that - 0 (mod 2). Since a A a, is squarefree and coprime
to D, its extension to k is also squarefree so that in fact aw) = 0,
proving ( 1 ) .

(2). Assume that = and s(cva) = with /3o and /3 as
above. Including the implicit ideals û2 of k and dividing, this implies that

(,3/~0),~2. As in (1), if S1J is an ideal dividing C, we have
= 0 (mod 2). Since a and ao are squarefree and coprime to c~, we

have E {20131,0,1}, hence = 0 as claimed. D

Proposition 2.2. Fix an ideal (t dividing 2Zk, let a be an ideal of K and
let to be as above.

(1) We have 0 if and only if a satisfies (**)~z.
(2) There exists an ideal ao satisfying (**)~z if and only if Le satisfies

condition (*). - 1 (mod *~2) is such that is equal to
D times a square in K, we may choose ao = ap 0 aw.

(3) Let ao be some ideal satisfying (** )Q:2. Then a satisfies (**)~Z if and
only if the class of a/ao is a square in ClT,Q:2 (K) or, equivalently, if
the class is a square in 

(4) The ideal a satisfies (**)~~ if and only if the class of a is a square in
ClT(K). In particular this is the case when a satisfies the stronger
condition (**) Q:2.

(5) When 0 (hence by (1) when a satisfies (**) Q:2 ), we have

and in particular this is independent of a satisfying (**) Q)2 .
Proof. (1). Assume that wtou e Q( cr2) or, equivalently, that 2 = WtOU0
for some /3 =1 (mod *cr2). By definition of a and u, there exists b OE  T &#x3E;

and q such that TOUZK = so that = aü2, hence by Corollary
1.9
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In addition, taking norms from to K of the equality x 2 = it is

clear that Nk/K((3) is equal to D times a square of K, so that a satisfies
(~~)(~2.

Conversely, assume that a satisfies (**) (t2, so that /3Û~. If we
set a = wtol(3, this means that a E S(k), the ordinary Selmer group of
k. On the other hand, taking relative norms we obtain Nk/K(a) = y2 for
some y E K, so that by Lemma 1.1 we obtain as usual a = n,2 for some
q E k and n E K. Thus in S(k) we have a = n, hence n E and by
Lemma 1.3 this means that n E ST(K) . Finally, setting u = 1/n, we see
that u is an element of ST(K) such that wtou E Q(e:2), proving (1).

(2). It follows from (1) that the existence of an ideal a satisfying (**)(t2
implies the existence of (3 -1 (mod *e:2) such that is equal to D
times a square. Conversely, if such a (3 exists, by Lemma 1.8 we can write
s((3) = for a squarefree ideal a~ prime to D, and it is clear that

satisfies (**) (t2.

(3). Assume that ao satisfies (**)e2 for some l~. By construction,
we know that (a A = waû2, hence by dividing, it is clear that a
satisfies (**)e2 if and only if = for some a - 1 (mod *e:2)
of square norm. Thus by Lemma 1.1 we can write a = z-y 2 for some
z E K and q and in particular, Z E QK(~2). On the other hand the
fractional ideal (a/ao)/z of K extends to the square of the ideal flq in k,
hence is of the form q2 b for some b E T &#x3E;, so that a/ao = By
the approximation theorem, by multiplying q with a suitable n E K* and
changing z into z/n2, we may assume that q is coprime to c, hence that

z E Q~(~2), and since by Lemma 2.1 (2) alao is coprime to c, this exactly
means that the class of a/ao is a square in Furthermore, since
(a A a,)/(ao A a) is equal to the square of an ideal times alao which is
coprime to c by Lemma 2.1 (1), the second statement of (3) follows.

(4). If we take G = it is clear that ao = Zk satisfies (**)Zk with
,Q = w (since = Thus by (3) a satisfies (**)Zk if and only if
the class of a is a square in ClT (K) = ClT,Zk (K) . In particular, this is true
if a satisfies (**) (t2.

(5). Assume that a satisfies condition (** )(t2, so that there exists
v E ST(K) such that Q(e:2). Thus wtou E Q(e:2) if and only if
u/v E Q(e:2), hence if and only if u/v E ST,(t2. Thus the set of suitable
is equal to VST,(t2, whose cardinality is of course equal to . D

Thanks to this proposition, we can now easily prove an important pre-
liminary formula for the Dirichlet series ’I)k(8)-
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Theorem 2.3. To simplify notations, set
Then

where

and {3(~2) is an element of k such that ~ -1 with 

equal to D times a square of K.

Proof. We replace by its value given by Proposition 2.2 in the last
formula for ~bk (8) given just before Definition 2 above. In particular, we can
restrict the summation to ideals C satisfying (), and to ideals a satisfying
( ** ) e:2. However, by the same proposition if a satisfies (**) e2 then the class
of a is automatically a square in It follows that we can remove
the restriction a E Z and replace it by the weaker condition that a E J,
where by definition J is simply the set of squarefree ideals of K coprime
to d. Thus

where

Note that the condition a E ,% is equivalent to a ~ aw E J, and that the
map a H a ~ aw is an involution of ~%. Furthermore, a / aw is squarefree and
coprime to C and d, and by Proposition 2.2 (2) and (3), a satisfies (**)~2
if and only if the class of (a ~ a,) is a square in ClT,~2(K),
with = ~(~2) Aa~, hence if and only if the class of (a A is
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a square in Thus, changing a into a ~ aw, we obtain

where ,Q(~2) _ 1 (mod * e~2) is of relative norm D times a square. Note that
since (~, s(O» = l, a,~e2&#x3E; is coprime to (t.

Since the class of an ideal m is a square in if and only if for
-----

each x E the group of characters of 2 (K), we have x(m) = l, we
obtain

, l ,

since X is of order 2, proving the theorem. As in Lemma 1.8, it is easily
shown that the class of a~(~2) in is independent of the choice of

~(~2), so that is independent of 0(e~2). D

It remains to compute ~ST~~ (K) ~ 1 and to study condition (*).

3. Computation of ] and study of condition (*)
We keep all the above notation. and in particular C will always be an

ideal dividing 2Zk, coprime to s(D) and satisfying condition (*).

3.1. Reduction of the problem.

Definition. As in Definition 2, set c = K.

(1) We will say that an element z E K* is T-coprime to c if there exists
b E  T &#x3E; such that the ideal zb is coprime to c.

(2) We will denote by Ze2 the quotient by of the group of

elements of K* which are T-coprime to c, i.e., the subgroup of such
elements z for which the congruence zlx 2 = 1 (mod *~2) is soluble
in k.

Remarks.

(1) It is clear that if z is T-coprime to c, then z2 E QK(~2), hence is

an abelian group killed by 2, like all the other groups that we consider
in this section. We will compute its cardinality explicitly later (see
Corollaries 3.7 and 3.13).
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(2) If we write c = crcu where cr = (c, D’) and (cu, d) = l, it is clear that
z is T-coprime to c if and only if (z, cu) =1.

The basic tool which will enable us to compute ST,ct2 is the following
result. Recall that for any idéal C dividing we have set

In particular, gz,(K) = ClT(K)lClT(K)2.
Proposition 3.1. Let c == (t2 There exists a natural long exact
sequence

where the maps will be describeâ in the proof.

Proo f . Exactness at is trivial. If u E ST(K), then UZK = q 2b with
b OE T &#x3E;, and by the approximation theorem, changing u into n2u if
necessary, we may assume that q is coprime to c, hence u is T-coprime to c.
We then send such a u to its class in Zr2. It is clear that it does not depend
on the representative of the class u chosen T-coprime to c. Furthermore, u
is sent to the unit element of Zr2 if and only if u E Q~(C~2), hence if and
only if u E proving exactness at ST(K).

Let z E Zt2. Since z is T-coprime to c, there exists a b OE T &#x3E; such
that (zb, c) = 1, hence also (zb, C~) = 1. We will send z to the class of
zb. By definition of this class is independent of the choice of b.
Furthermore, it is independent of the representative z of the class: indeed,
if z’ is another representative, then z’ = zn where n is such that there
exists b’ E T &#x3E; with c) = 1 and n/x2 =1 (mod ~2) soluble in 1~. It

follows that z’bb’ = and the class of nb’ is trivial since n/x2 = 1
(mod Le2) is soluble in l~. This shows that the map is well defined.
To show exactness at Zî2, let z be T-coprime to c, let b E T &#x3E; with

(z b, c) = l, and assume that the class of z~ is trivial in This
means that there exists an ideal q coprime to c, an ideal b’ OE  T &#x3E; and an
element n such that (nb’, c) = 1 and nlx 2 -1 (mod Q:2) soluble in k, with
zb = in other words (z/n)ZK = Since n E @ the
class of z/n in Zî2 is equal to the class of z. Thus choosing z/n instead
of z as representative of its class, and noting that z/n E ST(K), we have
shown exactness at Zî2.

Let a be an ideal coprime to c, and assume that its class as an element
of QZk (K) is trivial. This means that a = zq 2 b for some z E K*, some
ideal q and some b E T &#x3E;. Using as usual the approximation theorem, we
may assume that we have chosen q coprime to c, so that (zb, c) =1. Since
(q, c) =1, the class of a in Çe2 (K) is equal to that of a/q2 = zb, and since
z is T-coprime to c, this proves exactness at (K) . Note that ~~ (~2) is
of course sent to the unit element of ~~2 (K) .
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Finally, if a is an ideal of K, by the approximation theorem we can
find {3 such that (0a, c) = 1, and the class of ,Qa in QZk (K) is equal to
that of a, proving exactness at that group and finishing the proof of the
proposition. D

The second much simpler exact sequence that we need is the following.

Proposition 3.2. There ex2sts a natural short exact sequence

where UT(K) denotes the group of T-units of K (i.e., elements E E K*
such that vp(E) = 0 for all prime ideals p e T), and for any group G, G[2]
denotes the subgroup of elements of G whose square is the unit element of
G.

Proof. Let u E ST(K), so that UZK = q26 for some b E T &#x3E;. We send

u to the class of q in ClT (K). By definition, this class indeed belongs to
ClT(K)~2~. Conversely, if q E ClT(K)(2~ then q2 = zb for some b E T &#x3E;,
so clearly z E ST(K) proving exactness at Finally, if u E ST(K)
is sent to the unit element of ClT(K), this means that u7GK = q 2b and
that q = zb’ for some b’ E T &#x3E;. Hence UZK = z26" for still another
b" E T &#x3E;, so u/z2 (whose class in ST(K) is the same as that of u) is an
T-unit, proving the proposition. D

Corollary 3.3. Let (ri, r2) be the signature of K. We have

Proof. By Proposition 3.1, we have

and by Proposition 3.2 we have

It is well known that UT(K) is isomorphic to the group of roots of unity
of K times a free abelian group of rank ri + r2 - 1 + ITI. Since the group
of roots of unity is cyclic of even order, it follows that IUT(K)IUT(K)21 =

On the other hand, for any finite abelian group G we have

~G~2~) ] (look at the kernel and cokernel of squaring), so that
1 ClT (K) ~2~ ~ 1 = . Putting everything together, we obtain the given
formula. D
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By Theorem 2.3, the term will cancel. It thus remains to com-

pute By the Chinese remainder theorem, it is immediately checked
on the definition that this is multiplicative in the following sense. Let Ci
and ~2 be two ideals of Zk, and set ci = ~2 f1 K for i = 1, 2. Then if

(ci, c2) = 1, we have IZ((!l(!2)21 = Note that this coprimeness
condition is stronger than the simple coprimeness condition G2) = 1,
but is necessary since we work in K.
A similar result is also true for condition (*): if (Ci, ~2) = l, then (*) is

true for if and only if it is true for Ci and ~2.
Thus we can work individually for each prime ideal p of K dividing 2ZK.

We will denote by e = e(p) the absolute ramification index of p over 2.
Recall that the ideals Q: which occur are coprime to s(). In other

words, the ideals p of K which we consider are the ideals above 2 such that
= 0 (mod 2).

Lemma 3.4. (1) We can choose D defining klK such that for all p 2
we have vp(D) = vp(D).

(2) For such a choice of D, there exist a and b such that D = a2 + 4b,
where vp(a) = and vp(b) = 1 for every prime ideal p ~ 2 such
that vp(-O) &#x3E; 0, and vp(a) = 0, vp(b) &#x3E; 0 for every prime ideal p 2
such that vp(o) = 0.

(3) We may choose w coprime to all ideals Le dividing 2 which are coprime
to s(O) (which are the only that we use), and such that

= Dz2 for some z E K*.

Proof. (1). We know that DZK = DM 2 for some ideal m of K. By the
approximation theorem, multiplying if necessary m by a suitable z E K to
make it coprime to 2 (which changes D into Dz 2, hence does not change
k = K( VD)), we may assume that m is coprime to 2, proving (1).

(2). Let p be a prime ideal above 2 such that 0 (mod 2),
hence vp(D) - 0 (mod 2). By Hecke’s theorem, there exists ~p such that
x 2ID =- 1 (mod *pk) for k = 2e(p) + 1 - vp(o) and for no larger value of k
if &#x3E; 0, and for k = 2e(p) if = 0 (and possibly for larger values
of k). Since vp(D) = for &#x3E; 0 we have x 2 D (mod *p2e(p)+I),
and this congruence is not soluble modulo any higher power of p, while

x~ - D (mod *p2e(p)) for = 0. By the Chinese remainder theorem,
we can find a E K such that for each p 2 for which 0 (mod 2) we
have a - xp (mod *p2e(p)+I) or a &#x3E; xp (mod *p 2e(p) ) respectively, so that
vp((D - a2)/4) = 1 for all such p with &#x3E; 0, and vp((D - a2)/4) &#x3E; 0
otherwise, proving (2).

(3). Recall that by Lemma 1.8 we have = By the
approximation theorem, multiplying cv by a square in k, and also by an
element of K (which does not change the property that is equal
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to D times a square of K) we may assume that fl and aw are coprime to
2. Since the ideals G divide 2Zk and are coprime to s(~), it follows that w
is coprime to C. 0

In the sequel, we fix a and b satisfying the above lemma, and we always
assume that cv is chosen satisfying (3). We will set p = (a + ~)/2.

Before separating the unramified and ramified cases, note the following
lemma which is common to both.

Lemma 3.5. Assume D chosen as above. Let p be an ideal of K above
2 such that 0 (mod 2), and let ~3 be an ideal of k above p. Then
a = u + vp is a 13-integer in k if and only i f u and v are p-integers of K.

Proof. Note that the relative equation of p in kl K is x2 - b = 0, and
since a and b are p-integers, p is a 13-integer of k. The relative discriminant
of the order is equal to D, and we have vp(D) = hence

is p-maximal, proving the lemma. Of course, we could also check
this directly using trace and norm. 0

3.2. Computation of IZî2l ] in the Unramified Case. We assume in
this subsection that p is unramified, so that vp(D) = 0 and vp(a) = 0. We
let S1J be a prime ideal of k above p.

Proposition 3.6. Keep the above notations, and let t  e = e(p) . If
n E K*, the congruences x2 - n (mod has a solution in k if and
only if it has a solution in K.

Proof. One direction is trivial, so assume that the congruence has a solution
x = u + vp with u and v in K. We claim that u2 - n (mod *~2t), which
will prove the proposition. Indeed, we have

hence by Lemma 3.5 vp(v(2u + va)) &#x3E; 2t and vp(u2 + v2b - n) &#x3E; 2t. Since
t  e = e(p), vp(a) = 0, and vp(u) &#x3E; 0, it is clear that if vp(v)  t the
first inequality leads to a contradiction, so that vp(v) &#x3E; t, thus proving our
claim by replacing in the second inequality. D

Corollary 3.7. (1) If p is inert in k/K so that and 

with 1  t  e(p), then
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Proo f . Note that c = ~2 ~ K = ~2t with t as given in the inert case, and
with t = max(tl, t2) in the split case. Thus

where cpK is the Euler 0-function on ideals of K. Furthermore, when

(G, o) = 1, it is clear that Ze2 = where is the

group of classes of elements of modulo c. By the above proposition
is the group of squares in (7GK~c)*. Since c = (pt)2 and 1 2,

an elementary argument shows that the squaring map from (ZK/P,)* to
the squares in (ZK Ip2t)* is well defined and is an isomorphism, so that

cpK(pt) = Npt-I(Np - 1), proving the corollary. D

3.3. Study of Condition (*) in the Unramified Case. We first prove
the following proposition, which is a strengthening of Proposition 3.6.

Proposition 3.8. As above, let t  e = e(p), and denote by SQ the
subgroup of elements a E (Zklp2tzk)* such that is a square in

(this is of course independent of the choice of the representative
a). We have a short exact sequence

where the first nontrivial map sends m to (m, m2), and the second sends
(x, n) to nx-2.

Proo f . We have already mentioned that the squaring map gives an iso-
morphism from to (ZK/p2l)*2 , hence the first nontrivial map is
clearly well defined and injective. Exactness in the middle is a restatement
of Proposition 3.6. Finally, it is clear that the image of the second nontrivial
map lands in SQ. We must show that it is all of SQ.

For this, we use the following well known result from local class field
theory: since p is unramified in the abelian extension kl K, the norm map
from the units of to those of Kp is surjective. In particular, this is also
the case at the level of p2t, in other words for any m E (ZK /p2t)* there
exists $ E K such that = m (mod *p 2t) . The kernel of the norm
map from to (ZKlp2t)* has cardinality On
the other hand, SQ is the inverse image by the norm map of the squares
of (ZK Ip2t)*, whose cardinality is equal to cPK(pt) as we have seen. Since
the norm is surjective, it follows that
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On the other hand, the cardinality of the image of the second nontrivial
map in the above sequence is equal to

thus showing that this map is surjective. D

Corollary 3.9. Keep the above notations. There exists n E K coprirrze to
p such that the congruence W - nx2 (mod has a sohctiorc in k. In

other words, for p inert and pZk = or z/ C = S1Jtl S1Jt2 for p
split and pZk = (and o f 27~~ in both cases), then e: satis fies
condition (*).

Proof. We know that a2 = D (mod p2e) with vp(a) = 0. 
Dm2, where by assumption vp(m) = 0, it follows that

= (am)2 (mod ~2e) .
Thus, is a square modulo hence modulo p2t since t  e, so
that by definition w e 6’Q. The surjective property that we have shown is
thus equivalent to the first part of the corollary. For the second part, note
that by Lemma 1.1, JI~~~K (,~) is equal to D times a square if and only if
{3 = w/(nx2) for some n E K, and the condition {3 - 1 (mod *e:2) is thus
the same as c~ - rtx2 (mod *Q:2), so the corollary follows. D

3.4. Computation of ] in the Ramified Case. We now treat the
ramified case, which is more delicate, both because the group is a little
more complicated to compute, and because condition (*) is not always
satisfied, contrary to the unramified case.

Thus we assume here that p is ramified and divides c, so that pZk = S1J2,
and by Lemma 3.4 we have vp(D) = 0 (mod 2) (since (Q:, s(D)) =
1), D = a2 + 4b with vp(a) = &#x3E; 0, and =1.

In this case, we with 1 ::; t  = 2e(p) = 2e, so that
Q:2 = n K = p~, but t is not necessarily even. It is clear that

any element of K* is T-coprime to Q:: indeed, if z E K*, then is

coprime to Q:, and p OE  T &#x3E;. We begin by the following lemma.

Lemma 3.10. Let A and B be p-integral elements of K* such that
= 0, odd, and  2e. There exist u and v in K

such that Av2 - B) 2: 2e if and if there exists u such that
B) 2: In particular, if vp(A) = 1, this condition is always

satisfied,.

Proof. By induction on k 2: vp(A), we will show that there exist Uk and vk
such that + B) 2: k. By assumption, this is true for k = vp(A) .
Assume that it is true for sorne k such that p(4) 2e -1, and let us
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prove that it is also true for k + 1 . Write Uk+ 1 = Uk + Xk and Vk+ 1 = 
so that the inequality for k + 1 can be written

If k is even, we choose = 0 (in other words Vk). Since ’ZKlp is a
finite field, hence perfect, there exists such that

where 7r is some uniformizer of p in K. We choose ~~~2x~. Note

that e + l~/2 &#x3E; 1~ + 1, since this last inequality is equivalent to
k + 1  2e -1, which is true since k + 1 is odd and less than or equal to
2e. Thus is suitable.

If k is odd, we choose Xk = 0 (in other words Uk+l = Uk). As before,
there exists y’ k such that

Since k - is even, we can set Since

as above, it follows that Vk+l is suitable. This proves the first part of the
lemma by induction on k.

In the special case vp(A) = 1, the condition vp(u 2 - B) &#x3E; 1 can always
be satisfied since the field is perfect. D

Remark. The same question can be asked for vp(A) even. In that case
the answer seems to be much more complicated, but fortunately we will
not need it.

Proposition 3.11. Let p be ramified in so that p7Gk = S1J2, and let t
be such that 1  t  2e(p) - vp(D) 12. If n E K*, a necessary and sufficient
condition for the solubility in k of nlx2 == 1 (mod is the following:

(1) If vp(n) is odd, then t  vp(’O)/2 - 1.
(2) If vp(n) is even, then either t  vp(D)/2 or the congruence nlx 2 1

(mod *p2tl+l) is soluble in K for tl = ~(t - vp(c~)/2)~21.
Proof. (1). Choose a uniformizer 7r of p in K. Multiplying if necessary
n by a power of @ we may assume that vp(n) = 1, hence v~(x) = 1.

Write x = u + vp with u and v p-integral. Since = 1, we have

vp(u2 + uva - v2b) = 1. Since vp(a) = vp(i»/2 &#x3E; 0 and vp(b) = l, it follows
that we must have vp(u) &#x3E; 0, hence also that vp(v) = 0, and conversely
when these conditions are satisfied we clearly have v~(x,) = 1.
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Replacing x by u + vp in our congruence, and using Lemma 3.5, we
obtain the two inequalities vp(u2 + v2b - + 1 and vp(2uv + v2a) &#x3E;
t + 1. Since vp(v) = 0, 1, and vp(a) = vp(c~)/2  e, it follows
that vp(2uv + v2a) = for any choice of u and v satisfying the
valuation conditions, hence the second inequality can be satisfied if and

only if t  vp(c~)/2 - 1. Assume this is the case. The first equality is thus
satisfied if and only if vp(v2 + (7r2 lb) W2 _ (n/b)) &#x3E; t has a solution, and
since vp(7r2Ib) = 1 and vp((n/b)) = 0, Lemma 3.10 allows us to conclude
that this can be satisfied, proving (1).

(2). In this case, once again by multiplying n by a power of 7r 2 we may
assume that vp(n) = 0, hence v~(x) = 0, in other words vp(Nk/K(X)) = 0,
i.e., vp(u) = 0 if we replace x by u + vp.

Here we obtain the two inequalities vp(u2 + v2b - n) &#x3E; t and

vp(2uv + v2a) &#x3E; t. If t  = vp(a)  e, the second inequality is
automatically satisfied, and since vp(b) = 1 and vp(n) = 0, we deduce from
Lemma 3.10 that the first inequality can be satisfied for t  2e, which is
the case. Thus, assume from now on that t &#x3E; = vp(a).
Lemma vp(c1)/2  t  2e - vp(c~)/2. The inequality
vp(2uv + equivalent to vp(v) &#x3E; (t - vp(c~)/2)/2.
Proof. If vp(v) &#x3E; e - then vp(2uv + v2a) &#x3E; 2e - 
by assumption. On the other hand, if vp(v)  e - we have

vp(2uv + v2a) = 2vp(v) + and this is greater than or equal to t
if and only if vp(v) &#x3E; (t - ~p(~)/2)/2. D

We will see below that condition (*) implies in particular that t 
2e - 

Thus, set tl = [(t - vp(c~)/2)/21 and v = 7rt’vi, so that 0 by
this lemma. Our first inequality thus reads vp(u2 + n) &#x3E; t with
A = 7r2tlb. Since we clearly have t &#x3E; 2ti + 1 and that vp(A) is odd, Lemma
3.10 implies that this is soluble if and only if u2 - n (mod *p2tl+l) is soluble
in K, proving (2). Note for future reference that by Hecke’s theorem, the
solubility for 2t, + 1 is equivalent to that for 2ti . D

Corollary 3.13. Under the same assumptions, for 1  t 
2e(p) - vp(c~)/2. Then

Proof. We first note the following easy lemma.

Lemma 3.14. There exists a noncanonical surjective map h:
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Proof. Choose a uniformizer 7r of p in K, and define the map h by
h(n, j ) = n7rj, with evident meanings for the signs. This clearly does
not depend on the choice of representative of n (since n -1 (mod pl) im-
plies n E nor on the representative of j (since 7r2 E 
hence it is clearly a well defined group homomorphism. To show surjectiv-
ity, let n E ZptZk’ and let n E K* be a representative. If v = vp(n) is even,
then (ni 7r-V , 0) is a preimage of n, while if v is odd then (ni 7r-V , 1) is a

preimage of n. D

To prove the corollary, we must compute the cardinality of the kernel of h.
By definition (n, j ) E Ker h if and only if n7r3 E QK(ptZk), hence if and only
if there exists x E 1~ with n7rj Ix2 == 1 (mod By Proposition 3.11, if
t  v~(c~)/2-1 then the kernel of h is equal to all of x (Z/2Z), hence
is of cardinality so that =1 in that case. If t &#x3E; v~(d)/2, the
kernel of h is equal to the number of elements of (ZK/Pt)* x {Õ} which are
squares in hence is of cardinality equal to 

since tl &#x3E; 0 (note that this formula is also valid for t = vp(D)/2).
Thus

finishing the proof of the corollary. D

3.5. Study of Condition (*) in the Ramified Case. The result is as
follows.

Proposition 3.15. Let C~ = çl3t 2e. Then Le satisfies conditions (*)
if and only i f t  tmax? with

It is clear that, as claimed above, this implies that in all cases 
2e - 

Proo f . Recall that the idéal C = satisfies (*) if and only if there exists
/3 - 1 (mod such that is equal to D times a square of K

or, equivalently, if it is equal to D/7rVp(D) times a square of K which is a
p-unit.
We first show that the values given in the proposition are upper bounds.

Note first that if q is a i3-integer then î;p(0)/2. Indeed, if
we write q = u + vp with u and v E K p-integers, Trk/K(’) = 2u + va and
our claim follows since e &#x3E; 

Thus, if 0 = 1 + for, a 13-integer, we have
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with j = min(t + vl,(D)/2,2t). Our assumption on j3 implies that there
exists z E K such that

On the other hand, we know that the maximal exponent 1~ for which
is congruent to a square modulo pk is 2e + 1 - vp(D). We thus

obtain

which is easily seen to imply the upper bounds given for tmax in the propo-
sition.

Conversely, we must show that these bounds are attained. It is clear
that we may choose cv such that 0. Write 

and _ m2 (mod (in fact with

m2 - It follows that Nk/K(W) == m2 (mod 
some m E K such that = 0. We consider two cases.

The Case e + 1

In this case, we are going to show that {3 = satisfies the desired
conditions. It is clear that is equal to D times a square of K,
hence we must only show the congruence condition.

Set c = m + y, so that
-  . , 1_’

We claim that v~(7) &#x3E; 2e + 1 - vp(D). Indeed, assume that we have
shown that en, which is true with eo = 0. Thus, is a

13-integer, so that + vp(c)/2, hence &#x3E;

+ vp(D)/2, 2e + 1 - vp(o», and since = we

can thus take

Assume first that en  4e + 2 - 3vp (D), so that in particular en  vp (0) - 2,
and also en/2  2e + 1 - 3vp(c~)/2. Thus,

so as long as en  4e~2-3v~(d) the sequence en is strictly increasing. Thus,
for some no (possibly no = 0) we must have 4e + 2 - 3vp (D ). We then
have en = 2e + 1- for all n &#x3E; no + 1, so that v~(~y) &#x3E; 2e + 1- vp(z»,
proving our claim. It follows that /3 = 1 (mod so

condition (*) is satisfied for! = S1Jtmax with tmax = e - vp(-O)/2, proving the
proposition when vp(()) 2:: e + 1.
The Case e

We first prove the following lemma.
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Lemma 3.16. Recall that m E K* is such that

e, we may choose w = r + sp (still coprime to ~3 with Nk/ K(W) =
Dz2 with z E K*) so that vp(s) = vp(r - m) = vp(i»/2.

Proof. Using the same notations and reasoning as above, we obtain once
again the recursion

However, here the situation is différent, and we can only claim that v~(~y) &#x3E;
~p(D) 2013 1. Indeed, assume en  otherwise there is nothing to prove.
Then en+1-en = so that we can assert that en+1 &#x3E; en only
as long as en  2, so that for some no we will have 
proving our claim. This shows that if LA) = r + sp then vp(D)/2 - 1.
We first need to go one step further. It is easily seen that 1

if and only if v is a p integer and vp(u) &#x3E; 1. Since vp(0) - 1, we
can thus write q = + vp), where u and v are p-integers. The
condition

implies that vp(v(v - 1. Thus, either vp(v) &#x3E; 1, in
which case so that 1 (mod *pVp(D)/2). Or we have v -

(mod *p). In that case, , - map/b (mod 1

so that

Thus, changing if necessary w into wb/p2 (which clearly is still coprime to p
and has the same norm as c~); we may assume that ca/m - 1 (mod *pvp(i))/2).
Write = r + sp for some p-integral r and s. It follows from the above

that we always have vp(s~ &#x3E; vp(i1) 12 - 1, and that if necessary by changing
c~ we may assume that vp(s) &#x3E; and vp(r - m) &#x3E; vp(-O)/2.

Note that vp(r) = 0. If we had vp(s) &#x3E; vp(i1)/2, then it is easily checked
that if cv’ = w(1 + p)2 = r’ + s’p, then s’ - r(a + 2) (mod *pvp(i))/2+1),
and since  e, it follows that = ~p(~)/2. Thus, by
changing if necessary once again w into cv(1 + p)’ (which preserves all the
necessary properties of we may assume that vp(s) = vp(-O)/2. Finally,
note that

and since vp(bs’) = vp(o) + 1 and vp(ars) = vp(D), we must have
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We can now finish the proof of Proposition 3.15. If we set q = (r - m)/s
and n = (q2 + b)/r, a small computation gives

Thus, since by the above lemma vp(q) &#x3E; 0, vp(r) = 0, vp(s) = vp(-O)/2, and
since

it follows that vp(n) = 0 and that if we set

then is equal to D times a square of K, so condition (*) is satisfied
for t = tmax = 2e + 1 - 3vp(D)/2. This terminates the proof of Proposition
3.15. Il

4. Globalization

We first recall the following results which we have seen at the beginning
of this paper.

Lemma 4.1. Let K be a number field, and k = be a quadratic
extension of K. The following conditions are equivalent.

(1) There exists a quadratic extension such that the quartic eztension
L/K is abelian with Galois group isomorphic to C4 (in other words,
k is embeddable zrc a C4-extension).

(2) There exists w E k* such that VkIK(W) is equal to D times a square
o f K*

(3) There exist m and rc 2~c K such that D = m2 + n2.

We will denote by £K the set of isomorphism classes of such quadratic
extensions 1~ of K.

4.1. A Preliminary Formula for CK(C4). We can then summarize the
results of the preceding sections (in particular Theorem 2.3 and all of the
results of Section 3) in the following theorem.

Theorem 4.2. Let K be a number field of signature (ri, r2) and absolute
degree n = ri + 2r2. We have
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where, if we write i) instead of c1(k/K), and if we denote by ITI
the number of distinct prime ideals dividing D, we have

Here

and ~(~2) is an element of k such that ~3(E~2) -= 1 (mod *~2) with

.~~~K(~3(~2~) equal to D times a square of K.
In the above, condition (*) is satisfied if and only if for every

ramified prime ideal ~3 dividing Le we have  with tmax given by
Proposition 3.15, 1 is equal to the product of its local components, these
being given by Corollaries 3.7 and 3.13, = 

and finally a{3 is the unique squarefree ideal of K coprime to D such that
!3Zk = 

To rearrange terms in this formula, we first introduce the following no-
tations.

Definition. For any ideal c of K dividing 4Z K, we set

, , , , . , ,

Then for any character X on G(c) we define £K(X) as being the subset of
elements k E GK satisfying the following conditions, where as usual we set
0 = 

Theorem 4.3. With the above notations, we have

where (K(s) is the Dedekind zeta function of K, LK(X, s) is the standard
abelian L-function,
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and G is any- ideal of k such that e:2 n K = c.

Proof. It is clear that gt2 (K) is a quotient of G(c), and that X is a character
of gr2 (K) if and only if X can be considered as a character of G(c) such that
x(zb) = 1 for any pair (z, b) with z E E T &#x3E;, and (zb, c) = 1.

In addition, we note that by Corollary 3.7, 1 does not depend on
the ideal G such that e:2 = c. Similarly, by Corollary 3.9, there exists
{3 == 1 (mod e:2) such that is equal to D times a square of K
if and only if such a exists with /3 - 1 (mod so we may assume

that we choose /3(~) = ,3(c7G~). Finally, by the same corollaries we have
= Thus the only term which still depends explicitly on

the idéal C such that e:2 = c is the following sum:

This is given by the following lemma.

Lemma 4.4. We have

Proof. It is clear that T(c) is multiplicative. If c = p 2t with p inert then
~ = and if c = pt with p ramified then C = q3t, and the given
formula is clear. So assume that c = p 2t with p split as S1JS1J. Then
C = S1JtlS1Jt2 with max(ti, t2) = t. By separating the terms (tl, t2) = (0, t),
(~1~2) = (ti ~ t) with 1  ti  t - 1, (ti, t2) _ (t, 0), and (ti, t2) = (t, t2)
with 1  t2  t, we find that

corresponding to the formula given in the lemma. D

Finally, it is easy to check that we have

hence using the above lemma and rearranging terms with c and X fixed is
easily seen to give the formula of the theorem. D
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Corollary 4.5. (1) The function converges absolutely for
Re(s) &#x3E; 1/2 and extends analytically to Re(s) &#x3E; 1/3 into a mero-
morphic functions with a simple pole at s = 1/2 having a residue
equal to cK(C.~)/2, where

with

(2) The number of C4-extensions of K up to isorraorphisrra whose ideal
discriminant has norm less than or equal to X satisfies

Proo f . Note first that by Hecke’s theorem we have d = 4a/c2
for a suitable squarefree ideal a of K, hence DI s(D) = 4/c~ so that

N(c~)/JIÎ(s(d))  N(47~K) - 4n. Thus, for any E &#x3E; 0 the Dirichlet se-
ries is termwise bounded from above by for
a suitable constant A, depending on E, and it is well known and easy that
this series converges absolutely for &#x3E; 1, proving that converges
absolutely for Re(s) &#x3E; 1/3. On the other hand, the L-functions LK(x, 2s)
extend to the whole complex plane to holomorphic functions if X is not
the trivial character, and to meromorphic functions with a simple pole at
s = 1/2 of residue (1/2)(K(1) X is the trivial character

modulo c. Since ~K,4 (C4, s) is a finite linear combination of expressions of
the form LK (X, 2s)Fc,x(s), the first part of the corollary follows. The sec-
ond part is an immediate consequence of the first, using standard contour
integration techniques. D

Remark. It is not difficult to prove that extends to a meromorphic
function to Re(s) &#x3E; 1/4 with a simple pole at s =1/3 whose residue can be
computed. Thus, in the case K it is possible to prove a refined
formula of the form

see [7] for the value of the constants.
The formula given above for cK(C4) can be considerably simplified.

Corollary 4.6. We have
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Proof. First note that by Hecke’s theorem, if p ~ 2 we have either 0

(mod 2) or vp(c1) = 2e(p) + 1. Thus

On the other hand, thanks to Corollary 4.5 we have

with

It is clear that Uk = where the sums Uk,p are the same as Uk but
restricted to ideals c ~ 4 which are powers of a single prime ideal p.
When p is inert or split, we know from Corollary 3.7 that for c = p 2t

we have IZî2l = Ypt, and since t varies between 0 and e(p), a trivial
computation gives = 

When p is ramified, we consider two cases.
~ If e(p) + l, then tmax = e(p) - vp(ù) /2  ~p(~)/2, hence using

Corollary 3.13, another trivial computation gives Uk,p = 
. If e(~), then tmax = 2e(p) + 1 - 3vp(D)/2. Using Corollary

3.13 and separating the term t = 0, the terms with 1  t  v~(d )/2 -1
and the terms with v~(d)/2  t  a small computation gives again
Uk,p = It follows that this formula is valid for any prime p
dividing 2, ramified or not, so that

Putting everything together, we obtain the formula of the corollary. D

4.2. Computation of cK (C4). We will now start the computation of the
final formula for cK (C4), which does not involve the intermediate quadratic
extensions To simplify notations, we denote by Q2 (K) the subgroup
of elements of K* which are sums of two squares of K*, and s(a) will denote
the squarefree part of an ideal a in K.
We begin by the following proposition.
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Proposition 4.7. Let a be a fractional ideal of K. The following conditions
are equivalent.

(1) There exists an ideal ,A of K(i) such that a = 
(2) If p is a prime ideal dividing s(a), then p is not inert in K(I)IK (no

condition if K(i) = K).
Furthermore, if there exists an ideal q and an element D E Q2(K) such
that aq2 = DZK then these conditions are satisfied.

Proof. If p is inert in K(i)IK then if a = NK(i)/K(A) we have vp(a) =
2VpZK(i) (.A) = 0 (mod 2), hence p ~’ s(a). Conversely, if this is the case for
all inert primes p, we can write a and it is clear that if we set

where for each p ~ 1 s(a), S1J denotes an ideal of K(i) above p, then
= a, proving the equivalence of (1) and (2).

Finally, if aq2 = DZ K with D = m2 + n~, we clearly have

proving the last statement. D

Definition. Let c ~ 
(1) We denote by lq the group of fractional ideals a of K satisfying the

equivalent conditions of the above proposition.
(2) We set

(note that when ~3 E Q2(K) we indeed have E Iq by the above
proposition) .

(3) We set

and Gq(c2) = 
_

(4) We define Sq (K) as the subgroup of elements u in the Selmer group
S(K) such that for any lift u e K* we have u E Q2(K) and u/x2 =1
(mod * c2 ) soluble in K.

(5) In all the above notations, we omit the subscript ~2 when c = ZK-

Note that in this section all the Hecke congruences will be in K, not in
any larger field.
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We will set

The aim of this section is to compute WK(S), once again using Hecke’s
description of discriminants of relative quadratic extensions. This will give
us the following theorem.

Theorem 4.8. For any ideal c denote by h(c) the number of prime
ideals dividing which are either unramified in .K(i)/K or which di-
vide c and are ramified in K(i)/K (thus no adâitional condition if i E K).
Set rz = 1 if i e K and rz = 0 otherwise. We then have

with

where

Proof. We follow quite closely Section 2, but in a different context, hence
we are brief.

Proposition 4.9. There exists a noncanonical one-to-one correspondence
between edements of £K together with the trivial extension K/K and pairs
(a, u), where a is a squarefree ideal whose class belongs to Dq and

u E Sq (K) . The (isomorphism class of) extension k E LK correspond-
ing to (a, u) is k = where aqo = DOZK with Do E Q2(K) 
Proo f . Clear from the definitions. D

Denote by 1 the set of squarefree ideals whose class belongs to Dq (K)
(this conflicts with the notation used in Section 2, which will not be used
anymore), 1 so that I C lq by Proposition 4.7. By the above proposition
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and Hecke’s theorem, we have with an evident notation analogous to that
used in Section 2

where aodd denotes the part of the ideal a coprime to 2 (i.e., a/(a, 2ZK)
since a is squarefree), and

Similarly to what we did in Section 2, we set

and once again a version of the MÕbius inversion formula gives

Replacing in our formula for we obtain

with

A small computation gives

On the other hand, we have the following result.

Proposition 4.10. We have f Do (c) =1 0 if and only if the class of a belongs
to In that case, we have fDo(c) = IS¿2(K)I.
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Proof. Assume that there exists u e Sq(K) and x e K* such that Dou/x 2
1 (mod *C2)@ in other words !3x2 = Dou with !3 = 1 (mod *c2). Since Do
and u are in it follows that j3 E Q2(K). Thus, we have a = ,Qq2 for
some ideal q, which we may assume coprime to c by changing if necessary,
and this exactly means that the class of a belongs to Dq2(K). Similarly, it
is easy to show that this condition implies that IDo (c) ¥- 0.

Finally, assume that fDo(C) =1- 0, and let v E such that Dov = 
with ~3o - 1 (mod *c2) and Q2(K). Clearly Dou = if and only
if u/v = hence if and only if u E vS¡2(K), proving the
proposition. D

Recall that we have set Gq(C2) = If we denote by J
the set of squarefree ideals belonging we have thus

where Q(c, s) is given above and

since it is easily shown that if p t 2, then p is not inert in K(i) (i.e., is split)
if and only if x2 - -1 (mod *p) is soluble in K, hence if and only if Np =1
(mod 4).

Finally, we need to compute For this, we first need the following
definitions and results.

Definition. We define (ZKlc2)Q as the subgroup of elements y E (ZK/ C2)
such that 1 E Q2(K) for at least one représentative of the class, and we
set Zq = (/C2)/(/C2)*2.C2

Note that this strongly depends on the chosen representative y, and that
is not equal to the group of elements of (ZK/C 2)* which are sums

of two squares of ZK/C 2
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Proposition 4.11. We have the following natural exact sequences:

In particular, we have

Proof. All the maps are clear and well defined. To show exactness, we use
the fact that if a E Q2 (I~) then by Proposition 4.7 we have Iq. The
details are left to the reader. The last equality immediately follows. D

We thus need to compute separately 1 and The
first is given as follows:

Lemma 4.12. We have

Proof. With evident notation, we can write

by local class field theory, where ~3 is any ideal of K(i) above p. Thus

prime ideals p of K which are unramified in K(i) do not contribute to the
product, and each ramified p dividing c contributes a factor 2. Thus

On the other hand, since the x 2 is a bijection from (ZK /c)*
to it is clear that 1 = N(c), proving the
lemma. D

Finally, we note that can also be computed using local
class field theory, but the computation is rather long and given in a sequel
to this paper kindly written for us by S. Bosca [1]. We state the result:
Theorem 4.13 (Bosca). If i e K, we have

while if i E K then
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Corollary 4.14. Denote by j(c) the number of prime ideals p such that
p ~ p { c and p ramified in K(i)1 K. Then if i ~ K we have

while if i E K then

Proof. Indeed, from the two lemmas above we obtain the given formula
when i E K, and also when i e K with

which is equal to the number of prime ideals of K which do not divide c
and which are ramified in K(i)/K. D

Putting everything together, it is clear that this corollary implies Theo-
rem 4.8. D

4.3. Examples. It is not difficult to give explicit and efficient algorithms
to compute the quantities which enter in the formula for given in
Theorem 4.8, and in particular the groups Gq(C2). In this subsection, we
give three examples. The numerical values that we give (which can easily
be computed to thousands of decimal places if desired) are computed using
methods analogous to those of [3], together with Euler-MacLaurin type
methods for computing the Hurwitz zeta function.

4.3.1. K = Q. In this case we have h(ZK) = h(2ZK) = 0, P(7~K, 3/2) _
2/3, P(2ZK, 3/2) = 5/6, the groups Gq(C2) are both trivial, S(LK, 3/2) _
(1 + à/4)ni S(2ZK, 3/2) = II with 1-I = ( mod 4 ) (1 + 2/(~73~2 +~1~2)), i
hence Theorem 4.8 gives the known formula

1

Numerically, we find that
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S (2ZK) = II with II = TINp=1 (mod 4) (1 + 2(Nj732 hence The-

orem 4.8 gives the formula

Numerically, we find that

4.3.3. K = Q(1). In this case we can write 2ZK = p~, @ and we have
h(ZK) = h(p) = 1, h(2ZK) = 0, P(ZK, 3/2) = 2/3, P(p, 3/2) = 7/12,
P(27GK, 3/2) = 5/6, the groups and are both trivial but
the group is of order 2. It is easy to find explicitly the non-
trivial character of this group, and we obtain S(7GK, 3/2) _ (1 + 
~(p, 3/2) = n, + ir with H = llNp-1 (mod 4) ~1 + 21 (Np3/2 +

II’ = lljvp=l (mod 4)B1+l-lN 1)/421N3/2+./Vllz. . Note
that any p not dividing 2 satisfies 1 (mod 4), and that if p - 3

(mod 4), 1 (mod 8). Thus Theorem 4.8 gives the formula

Numerically, we find that
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