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Complexity of Hartman sequences

par CHRISTIAN STEINEDER et REINHARD WINKLER

RÉSUMÉ. Soit T : x ~ x + g une translation ergodique sur un
groupe abélien compact C et soit M une partie de C dont la
frontière est de measure de Haar nulle. La suite binaire infinie
a : Z ~ {0,1} définie par a(k) = 1 si Tk(OC) ~ M et a(k) = 0
sinon, est dite de Hartman. Notons Pa(n) le nombre de mots
binaires de longueur n qui apparaissent dans la suite a vue comme
un mot bi-infini. Cet article étudie la vitesse de croissance de

Pa (n) . Celle-ci est toujours sous-exponentielle et ce résultat est
optimal. Dans le cas où T est une translation ergodique x~x+03B1
(03B1 = (03B11,... 03B1s)) sur Ts et M un parallélotope rectangle pour
lequel la longueur du j-ème coté 03C1j n’est pas dans + Z pour

tout j = 1, ... , s, on obtient Pa(n)/ns = 2s 03A0sj=1 03C1s-1j.
ABSTRACT. Let x + g be an ergodic translation on the
compact group C and M C C a continuity set, i.e. a subset with
topological boundary of Haar measure 0. An infinite binary se-
quence {0,1} defined by = 1 if ~ M and

a(k) = 0 otherwise, is called a Hartman sequence. This paper
studies the growth rate of Pa(n), where Pa(n) denotes the num-
ber of binary words of length n ~ N occurring in a. The growth
rate is always subexponential and this result is optimal. If T is an
ergodic + 03B1 (03B1 = (03B11, ... , 03B1s)) on Ts and M is
a box with side lengths 03C1j not equal 03B1j Z + Z for all j = 1, ... , s,
we show that limn Pa(n)/ns = 2s 03C1s-1j.
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1. Motivation and Notation

The notion of a Hartman sequence has recently been introduced and
studied (cf. ~5~, ~10~, [12]). It can be seen as a generalisation of the notion
of a Sturmian sequence. Sturmian sequences (and their close relatives, the
Beatty sequences) are very interesting objects, as well from the combinato-
rial, the number theoretic and the dynamical point of view. Let us sketch
two approaches.
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Consider sequences a = (ak) of two symbols, say 0 and 1, where k runs
through the set Z of all integers or N of all positive integers. Such sequences
are also called two resp. one sided infinite binary words. Let Pa(n) be the
number of different binary words of length n occurring in a. The mapping
n H Pa(n) is called the complexity function of a. It is easily seen that the
complexity function is bounded if and only if a is (in the one sided case:
eventually) periodic. Among all aperiodic sequences Sturmian sequences
have minimal complexity, namely P(n) = n + 1. This is the combinatorial
approach to characterise Sturmian sequences, which has been introduced
in [6] and [7].
A different characterisation uses the symbolic coding of irrational rota-

tions. If T = R/Z denotes the circle group (one dimensional torus) and M
is a segment of T of angle 27ra with irrational a E then the definition

ak = 1 if and only if ka E M defines a Sturmian sequence (cf. for instance
[2]).

For understanding the definition of a Hartman sequence the second
approach is more appropriate. Replace T by more general compact abelian
groups C with normalised Haar measure p _ pc and replace a by any
ergodic group translation. This means that we are interested in the trans-
formation T : C H C, T : m---~ x -~ g, where g is a generating element
of C, i.e. the orbit E Z} is dense in C. Thus C is required to
be monothetic. C can also be interpreted as a group compactification of
Z since C is the closure of the image of Z under the dense homomorphic
embedding t : Z 2013~ C, t(k) = kg. (Note that for group compactifications
one usually does not require t to be injective. But to avoid trivial case
distinctions we will demand that is infinite.) This approach is particu-
larly appropriate for Theorems 1 and 2. For the classical theory of ergodic
group translations we refer for instance to [11].
A set M C C is called a (/-Lc- ) continuity set if fLc( 8M) = 0 holds for

its topological boundary 8M. For a continuity set M consider the induced
binary sequence a = (ak)’-. defined by ak = 1 ifTk(Oc) E M and ak = 0
otherwise. Such sequences are called Hartman sequences. The set H C Z
defined by k E H if and only if ak = 1 is accordingly called a Hartman set.
Thus, by definition, a Hartman set H is the preimage H = ~-1(M) of a
continuity set M C C where (C, t) is a group compactification of Z and we
can write a = 1H Note that for C = T’ and g = (al, ... , as), where the
family 11, a .. , a, I is linearly independent over Z, Hartman sequences
are binary coding sequences of Kronecker sequences.
As a consequence of uniform distribution of ergodic group translations

(for the theory of uniform distribution of sequences we refer to [9]), Hartman
sequences share some nice properties with Sturmian sequences (cf. [5], ~10~~.
In particular each finite subword occurs with a uniform asymptotic density.
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More precisely: If the measure of a Hartman set H == ¿ -1 (M) is defined by
p(H) := tic(M), then

holds uniformly in 1~ E Z, cf. [5]. In particular, for a given Hartman set
H, this value neither depends on (C, t) nor on M. In terms of Hartman

sequences: If, for a = (ak) = 1H, Ak (n) denotes the number of occur-
rences of l ’s in the block ak+n-l of length rt, there exists a bound

= o(l), n ~ oo, such that

for all k E N. This has been used in [12] to develop a new approach to
identify the underlying dynamical system from its symbolic coding.

In this paper we start to investigate the complexity of Hartman se-
quences. Corresponding to the zero entropy of the underlying dynamical
system, the growth rate of the complexity function of any Hartman se-
quence is subexponential. This upper bound turns out to be best possible.
In particular, the complexity of a Hartman sequence might be much higher
than, for instance, interval coding sequences for which the complexity es-
sentially is linear (cf. for instance [1] and [3]). In some sense this fact is due
to the more general choice of M rather than to the more general choice of
the compact group C. Nevertheless, for the case of an M with a very simple
geometric structure, namely a box in a finite dimensional compactification
C = 1r8 the complexity grows polynomially of maximal order s. A more
systematic investigation of the role of the geometric properties of M and
the further development of the arguments used here is to be the object of
future research. So the results in this paper are the following:

~ For any Hartman sequence a and A &#x3E; 1 we have Pa(n) = for
n ~ oo (Theorem 1).

~ For any sequence P~, of subexponential growth rate and any compac-
tification (C, t) there is a Hartman sequence a coming from (C, t)
with Pn = o(Pa(n)). This is even true, if Pa(n) counts only binary
words which occur in a with strictly positive density (Theorem 2).

~ Assume that M is a box of side lengths pj, j = 1, ... , s, in Then
the complexity Pa(rz) of the induced Hartman sequence a has the
asymptotic growth rate cn’ if aj Z + Z for all j = 1, ... , s. The
multiplicative constant c is given by c = 2’ pj-l (Theorem 3).
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2. A universal upper bound for the complexity of Hartman
sequences

Corresponding to the fact that ergodic group translations have entropy
0, one conjectures that the complexity of a Hartman sequence is subexpo-
nential. Note that the topological entropy of shift spaces and complexity
are very closely related. Nevertheless we cannot apply immediately perti-
nent theorems in textbooks as [4] or [11] to obtain an upper bound for the
complexity of a Hartman sequence in terms of the entropy of the underlying
group rotation. Therefore we give a direct proof that the above conjecture
is true.

Theorem 1. For any compactification (C, t) of Z and any continuity set
M C C the complexity Pa(n) of the corresponding Hartman sequence a =
1H with H = ~-1 (M) satisfies

Proof. By Theorem 4 in [12] we may presume that there is a metric d for
the topology on C. Let g = E C denote the generating element of the
compactification.
We write M’ for the complement C ~ M and M6 for the set of all x E C

with d(x, y)  6 for some y E M. Fix F &#x3E; 0. Using the regularity of the
Haar measure pc and the /-tc-continuity of M, we obtain AC(R)  e for
R = (Ms, B M) U (M~1 ~ M~) whenever 61 &#x3E; 0 is sufficiently small. By a
standard argument we may assume that R is a continuity set. At least one
of the sets M and M’, say M, has nonempty interior. This means that
there is some open ball B with center x and positive diameter 6  bl/2
with B C M. For the sake of simpler notation we assume x = 0.

Let denote the set of all binary words of length 1 with
ak = 1 whenever kg + B C M and ak = 0 whenever kg -~ B C M’.
By compactness of C there is some No E N such that

showing that for every y E C there is some n E f 0, l, ... , No - 1 ~ with
y-~ngEB.
Thus any word w of length No -~ l occurring in a lies in some of the sets

i  No - 1, consisting of all words

with E Wi and Since 
this shows 
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Note that each translate y + B is totally contained either in M or in M’
whenever y 1:. R. Thus, by the uniform distribution of (ng)n in C, the subset
T C Z of all k E Z such that y = kg ¢ R has density R) &#x3E; 1 - e.

It follows that  22E1, hence Pa(No-~-l)  for l sufficiently
large. This yields

and, for n = 

Since e &#x3E; 0 can be chosen arbitrarily small this proves the theorem. D

3. A Hartman sequence of arbitrarily subexponential
complexity

We are going to show that the bound deduced in Theorem 1 is best

possible.
Let (C, t) be any group compactification of Z and § : N )2013~ N. Suppose

0(n) = e~n  n with e~ = 0. We have to show that there exists
a continuity set M C C such that the Hartman sequence a := with
H = ~-1(M) fulfills Pa(n) &#x3E; 2~~n~.
By Theorem 4 in [12] it suffices to prove the assertion for metrisable C

and by Theorem 8.3 in [8] there is an invariant metric d for the topology
on C. For c E C we write I I c I I = d(c, 0). For each n E N choose a subset
H (n) of f 0, ... , n - 11 of cardinality An &#x3E; enn and containing 0 such that
the diameter dn of is minimal. We claim that dn = 0.

Otherwise we had a sequence nl  n2 G ... and a 6 &#x3E; 0 such that

dnk &#x3E; 2J for all k. There is some r E (0, 6) such that the open ball B with
center 0 E C and radius r is a continuity set. By construction, the lower
density of the set of all n with ¿(n) E B is at most Enk for all k. By uniform
distribution of t(n), the lower density is a density and coincides with the
Haar measure, hence ~,(B)  Enk = 0. This contradicts the fact
that nonempty open sets have positive measure.

Let now Hn(0), Hn(l~, ... , Hn (2 An - 1) be an enumeration of all sub-
sets of H(n). Define recursively mn(0) = 0 and + 1) to be the
minimal integer &#x3E; mn(i) + n such that 11¿(mn(i + 1))Il  dn. We put
Hn = + Obviously Hn is a finite set of nonnegative
integers bounded by, say hn E N. Observe furthermore that by construction

 2dn for all h E Hn. Define, again recursively, lo = 1 and to

be the minimal integer &#x3E; In + hn such that II¿(ln+l)11  dn. For the union
H = in) this implies t(n) = 0. Thus M = t(H) is
a countable closed subset of C with the only accumulation point 0, hence
a continuity set of measure 0 and H = ~-1(M) is a Hartman set.
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In the corresponding Hartman sequence each Hn induces at least 2 An
different binary words of length n. Thus the complexity function P(n) is
bounded below by

This construction generates a zero set M. Hence each word in a con-

taining the letter 1 has asymptotic density 0. It would be nice to get a
positive frequency for many words. Let therefore M = fO, m 2 ... ~ be
an enumeration of M. There are 6n &#x3E; 0 with 6n - 0 such that balls Bn,
n E N, with center mn and radius 6n are pairwise disjoint continuity sets.
Replace M by the union of all Bn, which is again a continuity set. This
shows:

Theorem 2. Let (C, c) be any group compactification of Z. Assume ~(n) 
n and 0(n) = o(n) for n - oo. Then there exists a continuity set M c
C such that its Hartman sequence a := fulfills Pa(n) &#x3E; 2~~n~ .
Furthermore M can be chosen in such a way that for each n E l~ at least
2’0(n) words of length n occur in a with strictly positive density.

4. The case of Kronecker sequences and Boxes

We finally restrict our attention to the special case that C = is a fi-
nite dimensional compactification with generating element g = (aI, ... , as)
modulo 1, i.e. ~ : ~ ’2013~ kg = where the family 
is linearly independent over Z (such (kg)k are also called Kronecker se-
quences), and M a box in ~S . To be more precise we use the following
notational convention.

As usual, {r} =r-[r] and [r] = 6 Z : ~  r} denote the
fractional respectively integer part of r E R. Thus Ts = = is

considered to be the image of the additive group R~ under the mapping K =
Ks : (x 1, ... , - Although has no order structure it
is useful to think about intervals in T as images of intervals in R under

boxes in ~s as images of boxes in R~ etc. To avoid too cumbersome
notation we therefore write, for instance, pj E (0,1)
also for the set M = is natural to call a set

M = Tnj + pj) 9 1rs an s-dimensional box in 1rs with side lengths
pj, j = 1, ... , s. We are especially interested in Hartman sequences a = 1H,
H = ~-1 (M), for this kind of M and call such a Bohr sequences.

Let us fix a box M of side lengths pj, j = 1, ... , s, and assume that no
pj is in ajZ + Z. We are going to determine the asymptotic behaviour of
Pb (n) for the Bohr sequence b = 1H, H = ~-1 (M) .
We will use the following notation: For a word w = ao ... E f 0, lln

we introduce the set
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and write w = w(x) for x E Aw. Note that, provided 0, Aw has inner
points. Because of the density of the set n E N~, the continuity of T
and the special form of M this implies

To compute the number of all nonempty A~" we first consider a half open
cube Co := co + [-a/2, Q~2)S C 1r8 with center co and side length Q  pj
for all j = 1, ... , s. We are going to estimate the local complexity function
P(Co, n) := IWI for W = W(Co) := {w E 10, lln : Aw f1 0}. Note
that for k cubes Cl, ... , Ck in 1r8 with disjoint closures we have

for sufficiently large n. As above, Aw f1 implies Co) &#x3E; 0.

So P(Co, n) is the number of different words w = bi ... bi+n-l of length n
in b with ig E Co. Define

and furthermore, for each j = 1, ... , s,

Observe that the sets (in contrast to are pairwise disjoint.
For w = ao ... in W note that

and =~ ~ == 0).
This shows that for w = ao ... an-l and w’ = aQ ... in W the letters

ai and ai can differ only if co -~- ig e r. Since r = Oi ? we define, for
j = 1,... ,5 and ~ = 0,1, 

Due to the special geometric situation (Co and M are boxes), 
(xl, ... , xs) E Co, w = w(r) = E E f 1, ... , s}, the
tuple (ai(x)). 1(j) depends only on Xj, namely in the following way. Let

2E o

Xj = [yo, yo + a) be the interval for the j-th coordinate of points in Co.
Then for each i E there is one point yi (namely either ig or
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-pj/2 - ig) such that y2 splits the interval Xj into two subintervals xjO)
and XY) such that ai(x) = 0 for Xj E xjO) and ai(x) = 1 for Xj E 
Since pj g + Z, all Yi, i e 7 , are distinct. As a consequence the

mapping rj - takes at least + l [ different values, henceE 0

Since the sets Io ; j = 1 ... ; s; are pairwise disjoint and all coordinates j .Since the sets B = 1..... s, are pairwise disjoint and all coordinates j
can be treated independently, we conclude

For e &#x3E; 0 we know by uniform distribution of the sequence (ng)n that

for n sufficiently large. Since ~(Q~) = 2 r[~=i 7~(~ " ~’)~’? .7 = ~ " ’ ? ’~
we get 

’

for n sufhciently large. Thus we obtain

for all E &#x3E; 0 and therefore

As a consequence of uniform distribution we know that x’) &#x3E; 6 implies
w(x) =I- w(~’) if the words are sufficiently long. Thus W (Co) and W (Co) are
disjoint whenever two cubes Co and Co are separated by a strictly positive
distance 6. Fix now k e N and consider the disjoint cubes Cl, ... , Cks with
centers ci = (mi/k), mi E {0, ... , l~ - 11 and side length Q = 1/k - J,

., iJ /

Since this holds for all 5 &#x3E; 0 we can consider the limit 6 - 0 to get
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For k - oo this finally shows the lower bound

To obtain an upper bound for the complexity we consider instead of Aj as
defined above the numbers

Note that the sets 1(j), j = l, ... , s, are (in contrast to the sets 
not disjoint. This implies that possibly depends on more than one
component of x. Comparison with the argument for the lower bound shows
that the relevant mapping r - E G’o, can only take one

1 1 

additional value, namely the zero word ai (x) = 0 for all i C Thus

arguments similar (in fact even simpler) to those above show that I Bj
IIij) + 2 and finally

Since the same argument applies if M is not centered at 0 we have proved:

Theorem 3. Consider an ergodic translation T : x H x + g on 7s with
g = (al, ... , as). Assume pj E (0, 1) B + Z) for all j = 1, ... , s.
For mj E (0,1), j = 1, ... , s, let M = + pj) denote an

s-dimensional box of side lengths pj, and b the corresponding Bohr se-
quence. Then the complexity function of b satisfies

We add the following remarks.
Complexity and volume versus surface: Let V(M) denote the volume
of a box M in S and vj (M) = the (s - 1 )-dimensional measures
(surfaces) of the facets of M. Then we can express the formula in Theorem
3 in terms of V(M) as well as in terms of the vj (M):

Consider first M’ := Mo U Ml, where the Mi are disjoint translates of M.
The same arguments as in the proof of Theorem 3 show that M’ induces a
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Hartman sequence a’ of complexity

Comparison with the value 28 vj (M) for M indicates that the com-
plexity is related to the surface rather than to the volume.
On the other hand we can consider an automorphism A of 1r8 (i.e.

A E SL(s, Z) ). The topological generator A(g) and the parallelepiped
A(M) induce the same Hartman sequence as g and M. Here the volume
V(M) = V(A(M)) is invariant while the product of the surface measures
may change.
The interplay between the geometry of more general sets M and the

complexity of the corresponding Hartman sequences might be an interest-
ing topic of more systematic future investigations.

Dropping linear independence: If the assumption pj ajZ + Z fails
then a modification of the proof of Theorem 3 based on a careful investi-
gation of the resulting cancellation effects yields a corresponding formula.

Complexity determines dimension: Given Pb(n) and the information
that M is a box (of some unknown dimension s and unknown side lengths
pj), Theorem 3 tells us how s can be determined.
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