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Combinatorial properties of infinite words
associated with cut-and-project sequences

par LOUIS-SÉBASTIEN GUIMOND, ZUZANA MASÁKOVÁ et EDITA
PELANTOVÁ

RÉSUMÉ. Le but de cet article est d’étudier certaines propriétés
combinatoires des suites binaires et ternaires obtenues par "coupe
et projection". Nous considérons ici le processus de coupe et pro-
jection en dimension deux où les sous-espaces de projection sont en
position générale. Nous prouvons que les distances entre deux ter-
mes adjacents dans une suite ainsi obtenue prennent toujours soit
deux soit trois valeurs. Une suite obtenue par coupe et projection
détermine ainsi de manière naturelle une suite symbolique (mot
infini) sur deux ou trois lettres. En fait ces suites peuvent aussi
être obtenues comme codages d’échanges de deux ou trois inter-
valles. Du point de vue de la complexité, la construction par coupe
et projection donne des mots de complexité n + 1, n + constante
et 2n + 1. Les mots binaires ont une complexité égale à n + 1
et sont donc sturmiens. Les mots ternaires ont une complexité
égale à n + constante ou 2n + 1. Une coupe et projection a
trois paramètres dont deux spécifient les sous-espaces de projec-
tion, le troisième déterminant la bande de coupe. Nous classifions
les triplets qui correspondent à des mots infinis combinatoirement
équivalents.

ABSTRACT. The aim of this article is to study certain combinato-
rial properties of infinite binary and ternary words associated to
cut-and-project sequences. We consider here the cut-and-project
scheme in two dimensions with general orientation of the project-
ing subspaces. We prove that a cut-and-project sequence arising
in such a setting has always either two or three types of distances
between adjacent points. A cut-and-project sequence thus deter-
mines in a natural way a symbolic sequence (infinite word) in two
or three letters. In fact, these sequences can be constructed also by
a coding of a 2- or 3-interval exchange transformation. According
to the complexity the cut-and-project construction includes words
with complexity n + 1, n + const. and 2n + 1. The words on two
letter alphabet have complexity n+1 and thus are Sturmian. The
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ternary words associated to the cut-and-project sequences have
complexity n + const. or 2n + 1. A cut-and-project scheme has
three parameters, two of them specifying the projection subspaces,
the third one determining the cutting strip. We classify the triples
that correspond to combinatorially equivalent infinite words.

1. Introduction

In this paper we study certain ternary generalizations of binary Stur-
mian sequences [14, 15]. Sturmian sequences have several equivalent char-
acterizations. One of them is using the so-called cut-and-project scheme.
Consider a lattice Z2 , a straight line p : y = ax with an irrational slope
a, and a strip parallel to the line p of such a width that the intersection
of the strip with the x-axis is a line-segment of length 1. The orthogonal
projection of lattice points in the strip on the line p determines a point set
in R with only two possible distances between neighbours. If we represent
these distances by letters A and B respectively and arrange these letters
according to the order of distances in the point set, we obtain a Sturmian
infinite word.

Replacing the orthogonal projection in the above scheme by projection
in any direction may cause the change in ordering of projected points on
the straight line p and thus the distances between neighbours may possibly
take more than two values. Our generalization of Sturmian words stems in
allowing any width of the strip and any projection in the cut-and-project
scheme. Sequences of points obtained in the described way are called cut-
and-project sequences.

In our paper we use the notion of geometrical similarity. Two point sets
are said to be geometrically similar, if one is an affine image of the other.
Geometrical similarity is an equivalence relation. One of the main results
of the present paper is the characterization of classes of this equivalence,
cf. Theorem 6.3. 

’

Our construction of cut-and-project sequences is a special case of the
definition of the so-called model sets. Properties of general model sets have
been extensively studied because they are suitable models for materials
with long-range aperiodic order. For example, it is well known [18] that
every model set has a finite number of local configurations. In particular,
for our one-dimensional case it means that there are only finitely many
different distances between adjacent points.

In our article we show that the distances between neighbours in a cut-
and-project sequence take at least two and at most three values. Similar
problem was studied by Langevin in [13] as a generalization of the well
known three-distance theorem [21]. The theorem is a simple consequence
of our Theorem 4.1 which will be derived in the paper.
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To a cut-and-project sequence we can associate a symbolic sequence in
a two- or three-letter alphabet. Obviously, geometrically similar cut-and-
project sequences determine identical symbolic sequences. The opposite
statement is however not true. Even two cut-and-project sequences that
are not geometrically similar may provide coinciding words. It is therefore
practical to introduce the notion of combinatorial equivalence. In Theo-

rem 7.5 we describe the equivalence classes.
Another result of this paper is the description of complexity of words

associated to cut-and-project sequences (Theorem 5.3). We show that the
binary cut-and-project words have complexity n + 1 and therefore are Stur-
mian ; the ternary words correspond to codings of three-interval exchange
transformations with permutation (3, 2,1).

2. Words

A finite alphabet is a set of symbols .A = A concatenation
w of letters is called a word. The length of a word z,v is the number of letters
from which w is formed. We denote by ,A.* the set of words in the alphabet
,~4. A one-way infinite word u is a sequence u = (Un)nEN = ulu2u3 ... ·
with values in .A. One may consider also bidirectional infinite words as

sequences u = (un)nEZ- In our article we work with bidirectional infinite
words. Two words in an alphabet ,A and (vn)nEz in an alphabet
x3 are combinatorially equivalent if there exists a bijection h : 
an no E Z such that h(un) = vn+no for all n E Z.

Let i E Z, n E N. A concatenation uiuz+1... uZ+n_1 is called a factor of
u of length n. We define the density of a factor w of u of length n as

if the limit exists.
The function that assigns to a positive integer n the number of different

factors of length n in an infinite word u is called the complexity of u, usually
denoted by C,

For the complexity of an infinite word in a finite alphabet .,4 one has

The complexity function is thus a measure of disorder in the infinite word.
For more about the complexity function see [3, 7, 10].

Let us recall some facts about one-way infinite words. We say that an
infinite word U = ulu2u3 ... in a finite alphabet A is eventually periodic, if
there exist finite words wo, wl in ,~1.* such that w = WOWIWIWI .... A word
which is not eventually periodic is called aperiodic. It is well known that a
one-way infinite word is eventually periodic if and only if there exists n E N,
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such that G(n)  n, (see [17, 9]). It follows that the most simple aperiodic
one-way infinite words are those of complexity C(n) = n + 1. Such words
are called Sturmian. A nice survey of Sturmian and related sequences may
be found in [17, 15, 14]. Algebraically, every Sturmian word can be written
as a sequence of 0’s and l’s given by one of the following formulas

for of,/3 E ~0,1), a irrational. Note that the above expressions can be
extended for n E Z so that they define aperiodic bidirectional infinite words.

J. Cassaigne defines in [8] the quasisturmian sequences as such infinite
sequences for which there exist integers k and no such that the complexity
function is C(n) = n + k for n &#x3E; no. An example of a quasisturmian
sequence is a sequence that arises from a Sturmian word if one substitutes

every 0 by a finite word wo and every 1 by a finite word wl. Cassaigne has
shown that every quasisturmian sequence is, up to a finite prefix, of this
kind.

Using the powerful notion of the Rauzy graphs, the words with complex-
ity 2n+ 1 can be divided into four classes according to the maximal indegree
and outdegree in the associated sequence of directed graphs. Arnoux and
Rauzy gave geometrical characterization of infinite words of type 3-3. We
show that cut-and-project sequences are geometrical reprezentations of in-
finite words of type 2-2.

In order to explain the classification of sequences with complexity 2n + 1
into four groups, let us recall the definition of a Rauzy graph. A Rauzy
graph for a given infinite word u and given integer n is an oriented graph
rn = (Vn, En), where the vertices are represented by factors of length n
and the oriented edges are determined by factors of length n+1. An edge e
starts in a vertex vi and terminates in a vertex v2 if the factor vl of length
~ is a prefix of the factor e and v2 is its suffix. Thus #Vn = C(n) and
#En = C(n + 1). The number of edges that start (end) in a vertex v is
called the outdegree (indegree) of v. For a bidirectional infinite word, every
vertex of every graph has both in- and outdegree at least one. For words
of complexity 2n + 1 in every graph rn the number of edges is equal to the
number of vertices plus 2. Therefore the maximal outdegree for the graph
is either 2 or 3. The same statement is true for maximal indegree. The
pair maximal indegree - maximal outdegree for words of complexity 2n + 1
can therefore have only four values. This classification holds for sequences
for which the indegrees are always non-zero. This is the case if the word is
bidirectional or one-way recurrent. Arnoux and Rauzy in [4] show that if
for some no the maximal outdegree in the graph is 2, then it is 2 for
every graph &#x3E; no. The same statement again holds for indegree. In
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the article the authors find geometrical representation of words with Rauzy
graphs of the type 3-3 for every n E N. The infinite words considered in
this article are of the type 2-2, which means that starting from a certain
no both maximal indegree and maximal outdegree are equal to 2.

3. Cut-and-project sequences

Generally, cut-and-project sets are defined as projections of lattices of
arbitrary dimensions [18]. In this paper we study the simpliest case. The
cut-and-project scheme in 1I~2 is given by two one-dimensional subspaces Vi
and I§ and by projections 7r,: and 7r2: }R2 ~ V2 which satisfy:

1) xi restricted to Z~ is an injection.
2) 1I"2(Z2) is dense in V2.

The scheme is illustrated by the following picture.

In this scheme 1rl(Z2) and 1r2(Z2) are additive abelian groups. The bi-
jection between them, ~ri 10 ~r2 is usually denoted by * and called the star
map. Its inverse is denoted by -*.

Let Ví be the linear span of a vector ~1 = (1, é) and V2 the linear span
of a vector x2 = (-1, ~7). In order to satisfy conditions 1) and 2) we choose
,-7 17 irrational -7/. Any vector (p, q) E 7G2 can be written as

For simplicity we omit the common factor 1/(e + 7~) (which corresponds
to different normalization of vectors - and ~2) and consider the abelian
groups 

’

The star map *: Z[77] - 7G(e~, given by

is an isomorphism of the two groups. Using this formalism we can easily
define a cut-and-project sequence as

where f2 is a bounded interval, called the acceptance window. We denote
the length of an interval f2 by 101. An example of the construction of a
cut-and-project sequence is found on Figure 1.
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FIGURE 1. Construction of a cut-and-project sequence.

It is well known [18] that any cut-and-project set is Delone with finite
number of polygons in Voronoi tiling of space. For C R it im-

plies that there exists an increasing sequence (Xn)nEZ such that E~~~(SZ) _
E Z} and the set of tiles T = Itn = E Z} is finite.

If we assign to each tile t E T a letter h(t) from an alphabet A, the
sequence can thus be viewed as a bidirectional infinite word in
the finite alphabet A.

For the description of we can use a different increasing sequence
xn := xn+p for arbitrary fixed p E Z. The corresponding sequence 
has then the property = tn+p for all n E Z. The word (h(in))nEZ is thus a
p-shift of the infinite word (h(tn))nEZ. In order to avoid specification of the
point indexed by 0, we introduce the symbol for the entire class of
all bidirectional infinite words, that are associated to E~~~ (SZ). In [17] the
infinite bidirectional words without specific origin are called trajectories.
The terminology pointed/non-pointed words is also used.

We are interested in combinatorial properties of words In par-
ticular, we study



703

- the cardinality of the alphabet E T~ C ,A., in case when differ-
ent tiles are assigned to different letters, i.e., the map h is injective,

- the subword complexity of 
- the triples of parameters ë, 11, !1 that give the same bidirectional

infinite words, up to the choice of the letter assignment h into the
alphabet A.

4. Distances in 

In this section we first determine the number of different tiles in 
and then we derive the lengths of these tiles.

Let us first focus on cut-and-project sequences with symmetric accep-
tance intervaj f2 = (-d, d), with d &#x3E; 0. Let 0  x 1  X2  ... de-
note the positive elements of the set E,,,7(-d, d). Let xk be the minimal

positive element of E,,,7(-d, d) with sign xk =1= sign xi. Since the im-

ages x* cover densely the interval (-d, d), such an Xk must exist. Then
0  xZ - Xl  xi  xk for all i = 2, 3, ... , k - 1 and (zj - xl)* E (-d, d).
Thus Xi - xl are positive elements of E(-d, d) which is possible only as
xi - x1 = Xj for some j = 1, 2, ... , i - 1. This implies that

Moreover,

Indeed, suppose that xk - x1 - (zk - (-d, d), Le., xk - zi E
Eë,1J( -d, d). Since Xk &#x3E; ~ 2013 xi &#x3E; 0, according to (2) there must exist a
j E {0,1,..., A? - 1}, such that Xk - xi = jxi, which gives xk = ( j + 
The latter is a contradiction with the assumption sign x¡ =1= sign xi .
Theorem 4.1. For any irrational numbers ~, r~, ~ ~ 2013~~ and any bounded
interval 11 = [c, c-I-d), there exist positive numbers Ai and A2 such that the
distances between consecutive points in take at most three values

among A2, Ai + 

Proof. The points of + d) form an increasing sequence 
i.e., + d) - I n E Z}. A positive number A is a distance
between consecutive points of c + d) if there exists such that
0 = For any tile A &#x3E; 0 we have l:1 E E~,~(-d, d). Moreover, let
both 6 &#x3E; 0 and 16, i E N, i &#x3E;_ 2, belong to E-d, d). Then 16 is not a tile
in Eë,1J[C, c + d), since if x and x + 16 are elements of c + d) then also
z + 6 belongs to and hence z + 16 is not the closest neighbour
of x. 

’

Denote by Ai the smallest positive element of ~E~~(-d, d) with ði &#x3E; 0,
and denote by A2 the smallest positive element of E~,~(-d, d) satisfying
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~2  0. Formally,

The values ill and A2 are the two smallest candidates to be lengths of tiles
in c + d).

According to (3) we have

Let xl E E~,,~ ~c, c + d) such that xi E [c, c + d - AT). 1 Since xi + Di E
[c, c + d) and xl + A*  c + d - A* + A*  c (compare (4)), the point
xj + O1 belongs to c + d) and xl + Ai is the closest right neighbour
of xl. 

’

Let X2 E such that xi E Similarly, E

c, c + d) and x* + [c, c + d), therefore x2 + A2 is the closest right
neighbour Of X2-
Now let X3 E Ec, c + d) such that x3 E [c + d - c - Then

and the point X3 + Ai + A2 belongs to c + d). We want to show that
x3 + O1 + A2 is the closest right neighbour of the point x3.

Suppose that there exists a tile A, such that

Combining the inequalities

we obtain

Consider the point 6 := Ai + A2 - A &#x3E; 0. Since A &#x3E; Ai, A2 (as ~1, A2
are the two smallest candidates for lengths of tiles), it holds that 0  6 

.nIA1, A2} but using (5) we get

It means that J E F,,,,7(-d, d), which contradicts the definition of ~1 and
A2 as being the smallest elements of EE~~ (-d, d). As a result, the closest
right neighbour of X3 E ê,[C, c + d), with x* E [c + d - c - 2)’ is the
point x3 + A1 + 02.
By that we have determined the right neighbours of all the elements of

~ê,r¡[C, c + d) and the proof is completed. 0

Let us make several comments on the above theorem:
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~ From the proof of the above theorem it follows that ~1 and A2 de-
pend only on the length d of the interval 0 = [c, c + d) and not on
the position of the point c. The lengths of tiles ~1 and A2 satisfy
A]A]  0 and we shall always denote by ~1 the tile with positive
star image A] &#x3E; 0, similarly, ~2  0.

~ If the acceptance window were an interval f2 = (c, c + d~ or Q =
(c, c + d) the proof of Theorem 4.1 could be repeated identicaly; for
the case S2 = [c, c+d] a minor amendment is needed. Hence for every
acceptance interval 12 with non-empty interior the set E,,,7(f2) has at
most three types of tiles.

e Theorem 4.1 implies that every segment of the set has three

types of distances ~1, A2, ~1 + A2 between neighbouring points.
More precisely, the set

has at most three distances between neighbours for arbitrary irra-
tional c, t7, - 0 -77, and arbitrary bounded intervals J, f2. For a

given positive irrational a and a positive integer n we define 17 = -a,
ê = -~, J = (0,1~, and Q = ~1, K), where K = [a(n + 1)] +
a(n+1)+1. Then

The condition 0  a - ba  1 implies a = 1 + (ba), hence a - ba =
1 - {ba}. We also have

We thus obtain M = {1 - 1~ _ ~0,1, ... , n}. The set M has
at most three distances between neighbours. The same property is
satisfied by 1- M = 1~ = 0,1, ... , n}, which is the well known
three-distance theorem [21].

From the proof of Theorem 4.1 we may derive a prescription to find
the right neighbour of a given point x in the cut-and-project sequence,
according to the position of x* in the acceptance interval.

Corollary 4.2. Let {1 = [c,c -I- d) be a bounded interval, and let A2,
and ~1 + A2 be the tiles in such that Lli &#x3E; 0 &#x3E; 02. The closest

right neighbour of a point x E is



706

In the remaining part of this section we derive the lengths of tiles in
for a given interval {1 = [c,c + d) and positive e, q. As it will be

seen from the study of geometrical similarities of cut-and-project sets, the
assumption of c, 77 positive does not cause a loss of generality.

Changing continuously the length d of the acceptance interval
S2 = [c,c + d) causes discrete changes of the triplet of distances A2,
01 + A2). Let c + d) be a generic cut-and-project sequence, and let
A* &#x3E; 0, OZ  0 and A* + 02 be the star map images of its tiles.

Denote by d+ the smallest number such that d  d+ and at least one of
the distances Ai , A2, O1 + A2 does not occur in c + d+). Similarly,
denote by d- the largest number such that d-  d and at least one of
the distances Ai , A2, O1 + A2 does not occur in c + d-). Due to
Corollary 4.2, we have d+ = A* - 02 and thus E~~~(c, c + d+) has only two
distances, namely Ai and A2. Hence growing the length of the acceptance
interval, the largest distance O1 + A2 disappears.

Similar situation occurs in c + d-). One of the distances ill,
A2, O1 + A2 disappears, but it happens in such a way that the remaining
distances have their star map images of opposite sign. Thus [c, c + d_ )
has distances 

From Corollary 4.2 we obtain

respectively.
Starting from a given initial value do, for which the set c + do)

has 2 tiles, we can determine by recurrence all lengths dn, n E Z, of the
acceptance windows for which c + dn) has only two tiles. The initial
value do is determined below in Example 1.

Let &#x3E; 0 and  0 be the star images of distances occurring in
the sequence dn), i.e., dn = ~~2.
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Similarly, the algorithm which from the triple dn, An2 finds the triple
7 A(n-1)2 has the inverse form

We have yet to determine some initial values for the recurrences (6)
and (7). It turns out that it is reasonable to start with a cut-and-project
sequence whose acceptance interval is of unit length. Since the distances do
not depend on the position of the interval, we can focus on the acceptance
interval [0, 1).

Example 1. Let -,17 be fixed positive irrational numbers. Let us study
the sequence E~[0,1) = {p p, q E Z, 0  p - qé  1}. Elements of
this set have to satisfy qé :5 p  1 + qe. Therefore we can write

From the above formula one may easily observe that the tiles in a ~ê,f1[O, 1)
form a Sturmian word with slope ê. Indeed, since is an increasing
sequence, the lengths of tiles in E,,,7[0, 1) can be computed as

The sequence E~~~[0,1) has thus two distances ordered as a Sturmian word
with slope a = e and shift intercept /3 = 0, cf. definition of Sturmian
words (1). We denote the length of the acceptance interval by do = 1. In
the notation of the recurrence relations (6) there is

It is now obvious that for the determination of the lengths of tiles in
a generic cut-and-project sequence c + d) with ê, 1/, d &#x3E; 0, it suf-
fices to find n E ~ such that  d  dn. Then numbers Ani , An2,

A(n+1)2 take three different values that are the lengths of tiles in
c + d).

Proposition 4.3. Let ê, 1/ &#x3E; 0 be irrational numbers and let E2 = [c, c + d)
satisf y 

- - - - --. - - - -.
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The sequence Ee,l1(O) has three types of tiles and the lengths of these tiles
are

Let us realize that in this case A* and OZ do not depend on 17 &#x3E; 0.
Therefore also the algorithm (6), corresponding to shortening the accep-
tance interval, does not depend on q (unlike the algorithm (7)). The value
of q influences only the length of tiles and not their ordering. Therefore
we can choose the parameter 17 &#x3E; 0 according to our needs, for example we
can set 17 = c-1 which corresponds to the case when the projection in the
cut-and-project scheme is orthogonal.

Proposition 4.4. Let c, 77 &#x3E; 0 and let fl be an mterval of length d,

In case that the acceptance window has length d &#x3E; 1, the parameter 77
plays an important role, as it is shown by the following assertion, which
summarizes the results of this section. Its proof is a consequence of algo-
rithms (6) and (7) and uses mathematical induction.

Proposition 4.5. Let ê, ’11 &#x3E; 0 be irrational numbers with continued frac-
tion [ao, ai, a2, ... ~ and ~bo, bi , b2 , ... ] respectively. Denote by and

the sequences of the convergents associated to - and ’11, that is

o Let 0  d  1. c + d) is a cut- and-project sequences with two
tiles there exist k E No, and s E 1  s  ak+l, such that
d = = 1(8 -1)(Pk - eqk) + Pk-1 - eqk-ll. In this case the lengths
of tiles are

o Let 1  d. c + d) is a cut-and-project sequence with two tiles
there exist k E No, and s E 1  s  bk+l’ such that d = Pk,s =

(S + 1)(rk -I- etk) + rk-1 -i- etk-l. In this case the lengths of tiles are

Note that we have described all acceptance windows f2, for which 
has only two types of distances between neighbouring points. This happens
if the length of n belongs to one of two sequences of values, Jk,, &#x3E; 1,
0  pk,s  1 from the above proposition. We have
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6k,s = 0, and the lengths of corresponding tiles increase to oo. For
the other sequence we have

limk-+oo pk,s = oo, and the lengths of corresponding tiles tend to 0.

5. Complexity of cut-and-pro ject sequences
It is useful to introduce a function that allows to determine the neighbour

of a point x E according to the position of ~* in f2. Its definition
is based on Corollary 4.2.

Definition 5.1. Let Q = [c, c + d) be a bounded interval, and let Ai , A2,
and O1 + A2 be the tiles in E,,,7(Q), such that A* &#x3E; 0 &#x3E; il2. Let

The function is called the stepping function of EE~~(S2). If there is no
misunderstanding possible, we shall omit the subscripts.

The map f is actually an exchange of three intervals. Codings of three-
interval exchange transformations are studied for instance in [11]. The
three-interval exchange corresponding to the map f from the above defini-
tion is associated with the permutation (3, 2,1). Every exchange of three
intervals with permutation (3, 2,1) can be realized as a map 

Note that the stepping function is obviously invertible. The right neigh-
bour of x E Ee,1J(O) is ~fE,~(x*)~ *. Similarly, the n-tuple of its right
neighbours is given by ( f (x*)) *, ( f ~2&#x3E;(x*)) *, ... , ( f ~"~(x*)) *. In par-
ticular, for any given Yo EOn 7G(e) we have

Let us denote the tile O1 + A2 by letter A, the tile O1 by letter B
and the tile A2 by letter C. According to the first n right neighbours,
we can associate to every point E a word of length n in the
alphabet A = IA, B, Cl. This word will be denoted by word (x, n). For

xi, x2 E -1 the words word (xl, n) and word(x2, n) are different if and
only if there exists an i = 1, 2, ... , n, such that at least one discontinuity
point of f lies between and f(i-l)(x2). Therefore the set of all

points x* E satisfying word(x, n) = w, has the form where
I is an interval. Such interval corresponding to the word w will be denoted
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by Qw and without loss of generality we shall consider 9 semi-closed. In

particular, we have

It is known that the density of points in a cut-and-project set is proportional
to the volume of the acceptance window [19]. It follows that the density of
the word w is proportional to the length of interval f2,,. In particular, we
have the following proposition.

Proposition 5.2. Let e, q be irrationad -"1, and let S2 be
a bounded interval. Let w be a factor in the word Then for the
density ow of the factor w we have

In particular, for the densities of letters A, B, C we have

Recall that the complexity C(n) of an infinite word u is the number of
different factors in u of length n. In our case it is given by the number of
all non-empty intervals Qw that cover Q. The number of such intervals is
determined from the number of left end-points of these intervals. A point
z is a left end-point of a non-empty interval Qw if and only if it is either
a left end-point of 0 itself, i.e., z = c, or there exists i E f 0,1, 2 ... n - 1 ~
such that f i (z) is a discontinuity point of the function f , i.e., fi (z) E
{c + d - 0 i , c - ~2}. Therefore we have the following prescription for the
complexity,

where we denote for simplicity of notation a = c + d - ili and Q = c - ~2.
We can now determine the complexity of c + d).

Theorem 5.3. Let C denote the complexity ,function + d).
. then

9 If d E Z[e], then there exists a unique non-negative k E No such that
f ~k~ (a) _ (3 or (p) = cx, where a, Q are the discontinuity points
of the stepping function f . Consequently,
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Proof. and are stepping functions corresponding to acceptance
intervals 92 and f2 + t respectively, then = t) + t for any
translation t of the interval 11. This means that blocs occurring in the word

c+ d) occur also in c+d+t) and vice versa. Two words with
such property are said to belong to the same local isomorphism class. The
words and must have the same complexity.
Without loss of generality we can thus consider f2 = [0, d). Recall that

~i, ~2 E Z[e], and that the discontinuity points of f for such an interval
S~ are a = d - A* and {3 = -A*. Our aim is to determine the number of
elements in the set

The function f ~~~ has no fixed point for any k, which implies the following
facts:

(i) The points a, f ~-1~ (a), ... , f ~-~n-1» (a) are mutually distinct. The
same holds if we replace a by Q.

(ii) One can never have simultaneously ,8 and f’(,8) = a for
some k, i E N.

(iii) Since f((3) = 0 = c, the point 0 is the closest right neighbour of (3-*
and we have f -~ (,~) ~ c for all i E No.

~ Suppose that d 0 Z[c]. Then a = d - Z[e] and (3 = -A* E
Z [,-]. Since f(y) E if and only if y E we have f ~~‘~~ (a) ~
{O, {3, f ~-1~ (a)7.... ¡( -en-I»~ ((3)}. Together with properties (i) and
(iii) this means that the set M has 2n + 1 elements.

~ Let now d E ?~ ~~J, i.e., the star map images a-*, (3-* of both discon-
tinuity points of f and the point 0 belong to E~~,~(S~). Since the point
0 is the closest right neighbour of (3-* we have either a-*  ~i-* or
0  a-*. In the first case it means that there exists a non-negative
k such that a-* is the k-th left neighbour of (3-*, i.e., # a
for i  k and f ~-~} (,~) = a. In the second case that there exists
a non-negative k such that 0 is the k-th left neighbour of a-*, i.e.,
f t-i~ (a) ~ {O, {3} for i  k and /(-~)(~) = 0 = f((3). Starting from th
value n -1= k the pairs of elements in the set coincide, which influ-
ences the cardinality of this set and consequently also the complexity
of the infinite word.

0

Since infinite words with complexity n+ const. (quasisturmian sequences,
see [8]) are well described, we shall now focus on words of complexity 2n+1.
According to the result of Alessandri and Berth6 [2, 7J, for a given n E N
the densities of factors of length n can take at most 3 (C(n + 1) - C(n)) = 6
values. In fact, there are only five frequencies for factors of given length.
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This can be proved following the ideas in [2] and using the fact that the
words associated to cut-and-project sequences are codings of three interval
exchange.

Let us determine the maximal in- and outdegree in the Rauzy graphs
corresponding to the infinite words in consideration. Let e be a factor of
length n + 1 in the infinite word u,,,7[c, c + d) and let v be the prefix of
e of length n. Obviously S2e C 011. Therefore in the Rauzy graph rn
the vertex v is the starting point of the edge e. If 52e = 011, then the
outdegree of the vertex v is equal to one. This happens only if the points
f (-n) (a), f ~-n~(~3) do not belong to the interval 011. If the interval 011
contains exactly one of the points f -" (a), f -" (,Q), then f2v= 52e1 
where el, e2 are the only two factors of length n + 1 with prefix v and the
outdegree of the vertex v is equal to 2. In case that both points f (-n) (a),
f ~-"~ (p) happen to belong to the interval 011, the outdegree of the vertex v
is equal to 3 and all other vertices in the Rauzy graph rn have outdegree 1.
Since the set { f ~-"~ (a), f ~-"~ (~i) ~ n E N} covers the acceptance interval
SZ densely and uniformly [22], the lengths of intervals 011 tend to 0 as
n tends to infinity. If for every n E N both of the points f (-n) (a) and
f ~-n~ (/~) fall into the same interval 011 for some factor v of length n, then

= 0. Take c large enough so that I f (-n) (a) -
f -’ (,) I  j. From the properties of the stepping function, as piecewise
linear function with slope 1, it can happen that I =
I f ~-n~ (a) - f ~-"~ (,Q) I . However, this cannot be true for every n. In the

opposite case, we have f ~-n-1~ (a) I » I f~-n&#x3E; (a) - f~-n~ (,(3) I
and thus points f ~-’~-1~ (a), f ~-n-1~ (/3) cannot be in the same interval 011.
Thus we have proved the following statement.

Proposition 5.4. Let c, 77 be irrational numbers, 20137?~ and let S2 =

[c, c + d) be a non empty interval. Then there exists an no such that for
all n &#x3E; no the maximale indegree and the maximale outdegree in the Rauzy
graph rn of ’UE,1J(O) are equal to 2.

6. Geometrically similar cut-and-project sequences

Two sets A and A C R are geometrically similar, if there exist p, 1b E R,
cp =1= 0, such that A = OA + ~. We shall denote this property by A 19 A.

Remark 6.1. Note that if two cut-and-project sequences and

are geometrically similar with a positive similarity factor cp, then
the corresponding infinite bidirectional words and coincide.
A converse statement is not true, cf. Proposition 4.4. 

In order to describe classes of mutually geometrically similar cut-and-
project sequences, let us consider the group of symmetries of the lattice Z~.
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We have the translations 7~2 + ( g ) = Z~, for a, b E Z, and the group of
rotation symmetries of ?~2. They are given by all integer valued matrices A
with determinant + I . Then AZ = 72. These symmetries of Z2 correspond
to the following transformations of cut-and-project sequences.

Proposition 6.2. Let e, r~ be irrational 2013y?~ and let S~ be a

bounded interval.

~ For x we have

o Let a, b, c, d be integers, such that ad - bc = Then

Proof. First, let x = a E Z[77]. Then

Now let A = ( g [ ) be an integer valued matrix with determinant ±1. Then
AZ2 = Z~ and therefore
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The group of integer valued matrices with determinant :J:l is generated
by matrices Ai =(~),A2 = ~ o -°i ~ ~ A3 = (~ å ). Elementary transforma-
tions of cut-and-project sequences for these matrices are

Using the above elementary transformation we show that we may limit
our considerations to c, 77 and 11 with certain properties, without loosing
any infinite bidirectional word. The aim of this section is to prove the

following theorem.

Theorem 6.3. Let e, q are irrationat numbers, - :A 2013~. Let Q be a bounded
interval. Then there exist irrational, numbers 6,17 and an interval fl, such
that

The proof of the theorem will be divided into two lemmas. Before stating
the lemmas, let us recall certain properties of continued fractions [12].

If ~ &#x3E; 0 is an irrational number with continued fraction [ao, ~i,~2! -" ]
the sequence of the convergents associated to ~, then for every

Lemma 6.4. For any irrational El ~ -77, and bounded interval í2,
there exist irrational numbers ~, ~ and a bounded interval S2 such that

Proo f . Using transformation (12) we may assume without loss of generality
that 1] &#x3E; 0. We first find convergents q2n and associated to 77, so that’ q2n 1 "

2013c [S2s. From the property (i) of continued fractions we have’ q2n Q2n+1 -’ i. B /
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Let us define the matrix A = ( a b ) = for transforma-
c d -92n-E-1 9’2n

tion ( 10) . Then from (14) we have

and from (15) we have

From the property (iii) of continued fractions we obtain

In the transformation (10) with the matrix A we obtain a new acceptance
window Ô := Q. Let us find an estimate of the denominator in the
fraction

Note that in the estimate we have used property (ii) of continued fractions.
Since +oo and 117 + -1 ~ 0, it is possible to choose a
sufficiently large n, so that the length of the interval f2 is smaller or equal
to 1. Cl

Lemma 6.5. Let ê, 17 &#x3E; 0, ê,17 irrational and let S2 be an interval of length
 1. Then there exist irrational numbers ~, ~ and an interval f2 satis-

lying

Proof. Without loss of generality we may.assume that -  1. Otherwise we
would use the transformation (11) to get

where - - [e]  1. We first show that there exist 0  ~  1, ~ &#x3E; 0 and C2
such that 

- - -

The case of JOI I &#x3E; e is trivial, because it suffices to put t = e, ij = 1/
and C2 = Q. Assume that for given f2 we have Inl  e. Let (~-) ~ be
the convergents associated to e. According to property (ii) of continued
fractions, the sequence (IPn - is decreasing and thus it is possible
to find n E N so that 

°
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Let us transform the cut-and-project set using the transforma-
tion (10) with matrix A = ( qn_ 1 qn ) ~ We obtain E~,~ (SZ), where

According to properties (i) and (ii) of the continued fractions we have
0  t  1. The number 7y is clearly positive. Since for Inl we have (16), for
the length of C2 we may write

- I IV ,..

what was to be shown.
If moreover 101 I &#x3E; 1- ë, we may set % _ ë, f¡ := ~, and f2 : = C2, and the

lemma is proved. It thus remains to solve the case

This, however, is possible only 1, i.e., its continued fraction has the
form t = [0, cl , c2, ... with 2. Since

it is possible to find a minimal s 6 {1,2,..., cl - 1} so that

Now we use the transformation (10) with the to get

Let us verify that 6,7y and S2 satisfy the inequalities required by the lemma.
The paralneter fi is positive as it is a ratio of positive numbers. For e we
use the inequality (18) to obtain 0  e  1. For the estimate of Ö we derive
from (17) and (19) that

In order to complete the proof of the lemma, it remains to show tha
if2i &#x3E; 1 - e. If the minimal s satisfies 5  cl - 2, we have 1 - (s + l)e 

1 - st which implies

- -- - - -

If the minimal s is s = ci - I, then automatically e &#x3E; 1 - ê which, together
with (20) implies in both cases 1 &#x3E; if2i &#x3E; max(ê,1 - e) and proves the
lemma. 0

Combination of Lemmas 6.4 and 6.5 constitutes the proof of Theorem 6.3.
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Remark 6.6. Note that in Theorem 6.3 we may choose the interval f2 in
such a way that the similarity factor between and is pos-

itive, thus infinite bidirectional words associated to these cut-and-project
sets are identical. If it happens that = for some p  0,
we can use the transformation matrix A = (Õl ~1) to obtain

A I1

Therefore using the interval -s1 instead of Ö gives us a positive similarity
factor -Sp.

7. Combinatorial classification of cut-and-pro ject sequences
Let us recall that two words u = (un)nez and u = (fill),,EZ in alphabets

,r4 and 4, respectively, are combinatorially equivalent, if there exists a bi-
jection h: A - /l and an no E Z such that fin = for all n E Z.
We denote this û. Note that if a bijection h should exist, certainly
the density of a letter a in the word u must be the same as the density of
h (a) in Û.

Remark 7.1. Recall that two words associated to cut-and-project sets
which are geometrically similar with positive similarity factor are combi-
natorially equivalent, see Remark 6.1. Using Theorem 6.3 and Remark 6.6
we may thus limit our consideration, without loss of generality, to words

with parameters satisfying

In this case the stepping function has the form :
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and thus we have

For the densities of tiles A, B, and C we have in this case

respectively, cf. Proposition 5.2.
Proposition 4.4 shows that two geometrically non-similar cut-and-project

sequences may correspond to combinatorially equivalent infinite words. Let
us show yet another example of combinatorially equivalent words.

Example 2. Consider Sturmian words u, u in the alphabet 10, 11 with the
slope a, and a = 1 - a respectively, where 0  a  1. Obviously, u and t
are combinatorially equivalent since fi arises from u by replacing O’s with
l’s and vice versa. Such Sturmian words correspond to cut-and-project
sequences with Q a semi-closed interval of length 1, see Example 1. For

77 &#x3E; 0 we have

Both of the sets have two tiles of lengths 77 and 77 + 1. More precisely, the
distances are

We can see that

The above example illustrates that for acceptance window of length 1 the
interchange - ++ 1 -,-, fl ++ -0 gives combinatorially equivalent words. The
following lemma states that the same property holds for general acceptance
window as well.

Lemma 7.2. Let 0  e  1, ~ &#x3E; 0 be irrational numbers, and let S2 be an
interval of length max(e,1 - e)  1. Then

, , , . , , ..

Proof. Although = 7G (1- eJ, the star maps from 7G r) to Z[e] = 
are different for the cut-and-project sequences Ee,l1 ( -0) and E1-e,17(0). We
shall therefore distinguish them by indices,
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According to Proposition 4.3 in both cut-and-project sets the three dis-
tances are q, 1 + 1/ and 1 + 2r¡. Their images under the star map are however
different for * 1 and *2, namely,

For the proof we use two facts:

Let Then the fact (F2) says that the sequence of distances to
the left from the point in the set E~~~ (SZ) is the same as the sequence
of distances to the right from the point - xo * 1 in the set E ( - SZ ) .
The fact (Fl) says that the sequence of steps to the right from the point

in the set is the same as the sequence of steps to the left
from the point xo *1 in the set E~~~(SZ), only the length of steps 77 and 1 + ~
are interchanged. 0

Note that the density of the shortest tile 77 in the set EE~,~ (-S~) is equal to
1- a, whereas the density of the shortest tile 77 in the set is equal
to 1 - It is therefore obvious that the cut-and-project sets 
and are not geometrically similar. Nevertheless, the associated
infinite bidirectional words are combinatorially equivalent.
From every Sturmian sequence in the alphabet ~A, B} we can form a

special word in the alphabet B, C} in the way that in between every
two letters of the Sturmian sequence we insert k-times the letter C. Such
a sequence we call a k-padded Sturmian sequence.

Definition ?’.3. Let u be a Sturmian word in the alphabet (A, B). Let

k E N and h be a B } -~ IA, B, C } * , given by h (A) = ACk ,
h(B) = BCk. The word h(u) is called a k-padded Sturmian word.

The following proposition shows that k-padded Sturmian sequences can
also be cut-and-project sequences.

Proposition 7.4. Every k-padded Sturmian word is a word associated to
a cut-and-project sequence.

Proof. Let u be a Sturmian word with slope cx, 0  a  1. Similarly as in
Examples 1 and 2 we can consider u to be the word c + 1), for some
c E R and p &#x3E; 0. For a given k e N we form a k-padded Sturmian sequence
and want to find parameters ~, TJ, SZ, so that the k-padded Sturmian word
is a word We put

1
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Note that f2 can be written as 0 = [c, c + j) for c = cc and i = (k + 1)e.
Since 1  c  1 we have  i  1 and therefore star

k+2 

images of tiles in are ,1- -, and 1 - 2e.
For such parameters the stepping function is given by

We can verify easily that

Therefore every letter A or B is followed by the string of J~ letters C,
whereas the (1~ + 1)-th letter is different from C. Moreover, the restriction
of to OA U Q B is a scaled stepping function f a ~ ~ 1. 0

Theorem 7.5.

. For any irrational numbers ê, ~ -77, and a bounded interval 0
there exist irrational t and an interval Ö satisfying

such that u,,,7(ft) for any irrational &#x3E; 0.

. 

0 Let e, t, q, fi be positive irrational numbers such that 0  e, e  2
Let f2, f2 be intervals satisfying 1 - E  1, 1-  IÖI 1,
u S c u ,. Then 

- -

Then 
,

- either 6 = e and there exists x E Z[e] such = 

Z[e], i. e., = 

- or there exists k E N, and an irrational a, 0  a  1, such that
is k-padded Sturmian word with slope a and is a k-

padded Sturmian word with slope 1- a.

The proof of the first statement of the theorem is a direct consequence
of Lemma 7.2 and Remark 7.l. In the remaining part of the section we are
going to prove the second statement.

Let us determine using the stepping function the possible lengths of
blocks of one letter in the word Let us denote by min(A), max(A),
(resp. min(B), max(B)) the minimal and the maximal number of letters
C that follow a letter A (resp. B) in the word 
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Lemma 7.6. Let 0  ê  2, 11 &#x3E; 0 be irrational numbers, and let f2 be an
interval of length 1 - c  1. Then

Proof. Let us rewrite formally the definition of max(A),
t I

We have

. ,- . , , ...

For every i = 2, ... , max(A) we have C f2c and therefore

We can thus write

Let us derive the value of min(A). From the definition of min(A)and from
the properties of the stepping function we have

I- 1

Using similar argumentation for the interval S2B we derive

Using the stepping function we can determine some relations for the
densities of factors in the word that will help us in proving the
main theorem.

Lemma 7.7. Let 0  e  !, 11 &#x3E; 0 be irrational numbers, and let S2 be an
interval of length 1 - e  1. Then
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Proof. The fact pc &#x3E; oB is obvious since c  ~. Let us determine the
set QCB- We have x E if x~ E Qc and f (x) E f2B, hence =

From the properties of the given stepping function it is

clear that C nc and therefore = f-1(nB). The function
f is piecewise linear with slope 1 and thus f ~1(S~B)~ - I QB I -
This implies = LOB. All the other relations can be derived in a similar

way. 0

Proof of Theorem 7.5. 0, 1 - c  1, 1 - c 
~5~~  1. The sequences and are bidirectional infinite words

in the alphabet IA, B, C}. If ~c~~~(S~), then the word Uf,1)(n)
arises from by a simple permutation of letters in the alphabet. For
the purposes of the proof we shall distinguish the letters A, B, C in the word

and letters A, B, C in the word We have 6 permutations
on three letters, given by .

Obviously, the densities of factors of finite length must correspond in 
and According to Lemma 7.7, we have Loc &#x3E; LOB and oc &#x3E; 

thus we may exclude the permutation hs.
Let us exclude the permutation h5. We use Lemma 7.7 to find that oB =

PCB = = 0, but this implies that 1- ~ = d which is a contradiction.
In the same way we exclude h4, since h4 and h5 differ only by interchange
of letters with and without hats. For the permutation h3 one would have
LOB = = LOAf3 = 0, which is again a contradiction.
The remaining permutations are h, or h2. The permutation hl implies

PA = oA and thus d = d. Then necessarily also Loc = oC which implies
e = E. The combinatorial equivalence of and means that

the sets and are geometrically similar. The only
way this can happen is that f2 n _ (x + Q) n for some x E ~~~~, cf.
Proposition 6.2.

Permutation h2 provides
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This is possible only some k e N. From the relation

min ( A) = min ( B ) we then have 4 = and therefore = - k + 1.
The latter gives us finally 

~ 

Therefore both and u’ê,f¡(Ô) are k-padded Sturmian words derived
from Sturmian sequences with slopes a = (k+2)e-l and 1-a = (k+2),f - 1 0

8. Conclusions

Infinite ternary words associated with cut-and-project sequences are
natural generalizations of Sturmian sequences. Every cut-and-project se-
quence is characterized by a triple e, q, f2, where e, q are irrational num-
bers such that e # and n is a bounded interval. We have introduced
an equivalence on the set of such triples (e, 1/, fl) using the combinatorial
equivalence of corresponding infinite words and we have characterized the
equivalence classes, cf. Theorem 7.5.

According to the complexity we may distinguish between quasisturmian
sequences with complexity n + const., and words of complexity 2n + 1 . We
have shown that a cut-and-project sequence has the complexity n+const., if
and only if the length of the acceptance interval f2 belongs to 7~ ~~~ . Rauzy
graphs (rn)nEN associated to an infinite word of complexity 2n + 1 are
starting from an no of the type 2-2, and therefore the cut-and-project
sequences are different from those studied in [4]. This after all agrees with
the fact that words associated with cut-and-project sequences are codings of
three interval exchange transformations, whereas Arnoux-Rauzy sequences
are not.

It is interesting to study the invariance of symbolic sequences under
morphisms (substitutions). If has a self-similarity factor (there
exists q &#x3E; 1 such that C Ee,l1(n)), we can decide about existence
of such a morphism. Imposing the requirement of self-similarity implies
that c is a quadratic integer and 1/ = -~’, i.e., the algebraic conjugate of e.
Moreover, q must be a quadratic Pisot number in the same algebraic field,
7 E Q(e) [6]. In [5] there is a necessary and sufficient condition so that a
self-similar cut-and-project sequence is invariant under a morphism. In [1]
Adamczewski studies a weaker property, in particular he determines when
a coding of a 3-interval exchange is substitutive. Similar question is treated
in [16] by different methods. An algorithm for construction of substitution
rules for cut-and-project sequences was implemented by Jan Patera, it is
available at [20].
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