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Polynomial growth of sumsets
in abelian semigroups

par MELVYN B. NATHANSON* et IMRE Z. RUZSA**

To Michel France

RÉSUMÉ. Soit S un semi-groupe abélien et A un sous-ensemble
fini de S. On désigne par hA l’ensemble de toutes les sommes de
h éléments de A, et par |hA| son cardinal. On montre, par des
arguments élémentaires de comptage de points dans les réseaux,
qu’il existe un polynôme p(t) tel que pour tout entier h assez

grand |hA|= p(h). Plus généralement, on étend ce résultat aux
ensembles h1A1 +... + hr Ar en obtenant la croissance polynomiale
du cardinal en termes des variables h1, h2, ... , hr.

ABSTRACT. Let S be an abelian semigroup, and A a finite sub-
set of S. The sumset hA consists of all sums of h elements of A,
with repetitions allowed. Let |hA| denote the cardinality of hA.
Elementary lattice point arguments are used to prove that an ar-
bitrary abelian semigroup has polynomial growth, that is, there
exists a polynomial p(t) such that |hA| = p(h) for all sufficiently
large h. Lattice point counting is also used to prove that sum-
sets of the form h1 A1 + ... + hr Ar have multivariate polynomial
growth.

1. Introduction

Let No denote the set of nonnegative integers, and No the set of all k-
tuples of nonnegative integers. Geometrically, No is the set of lattice points
in the euclidean space R~ that lie in the nonnegative octant.

If A is a finite, nonempty subset of No, then the sumset hA is the set
of all integers that can be represented as the sum of h elements of A, with
repetitions allowed. A classical problem in additive number theory concerns
the growth of a finite set of nonnegative integers. For h sufficiently large,
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the structure of the sumset hA is completely determined (Nathanson [5]),
and its cardinality IhAI is a linear function of h.

If A 1, ... , Ar are finite, nonempty subsets of No and if hr are
positive integers, then h,Al + ... + is the sumset consisting of all
integers of the form bl + ..- + by, where by E hjaj for j = 1, ... , r. For

hl, ... , hr sufficiently large, the structure of this "linear form" has also been
completely determined (Han, Kirfel, and Nathanson [2]), and its cardinality
is a linear function of h 1, ... , he.

If A is a finite, nonempty subset of No, the geometrical structure of the
sumset hA is complicated, but the cardinality of hA is a polynomial in h
of degree at most 1~ for h sufficiently large (Khovanskii [3]). If the set A is
not contained in a hyperplane of dimension k - 1, then the degree of this
polynomial is exactly equal to k.
The sets No and No are abelian semigroups, that is, sets with a binary

operation, called addition, that is associative and commutative. Let S be
an arbitrary abelian semigroup. Without loss of generality, we can assume
that S contains an additive identity 0. If A is a finite, nonempty subset
of S and h a positive integer, we again define the sumset hA as the set
of all sums of h elements of A, with repetitions allowed. Khovanskii [3, 4]
made the remarkable observation that the cardinality of hA is a polynomial
in h for all sufficiently large h, that is, there exists a polynomial p(t) and
an integer ho such that IhAI = p(h) for h &#x3E; ho. Khovanskii proved this
result by constructing a finitely generated graded module M = Mh
over the polynomial ring C[ti , ... , tk], 7 where JAI = k, with the property
that the homogeneous component Mh is a vector space over C of dimension
exactly IhAI for all h &#x3E; 1. A theorem of Hilbert asserts that dimc Mh is a
polynomial in h for all sufficiently large h, and this gives the result.

If A,7 ... Ar are finite, nonempty subsets of an abelian semigroup ,S, and
if hi , ... , hr are positive integers, then the "linear form" h,Al + ... + 
is the sumset consisting of all elements of S of the form bl +... + 6r? where
by E for i = 1, ... , r. Using a generalization of Hilbert’s theorem
to finitely generated modules graded by the semigroup No, Nathanson [6]
proved that there exists a polynomial p(t, 7. to) such that -~- ~ ~ ~ +

= p ( h 1, ... , for all sufficiently large integers h 1, ... , he.
The purpose of this note is to give elementary combinatorial proofs of

the theorems of Khovanskii and Nathanson that avoid the use of Hilbert

polynomials. Our arguments reduce to an easy computation about lattice
points in euclidean space.

2. Growth of sumsets

We begin with some geometrical lemmas about lattice points. Let x =
(x 1, ... , and y = ( y1, ... , be elements of N§ . Define the height of
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The set Q(h) is a finite set of lattice points whose cardinality is the number
of ordered partitions of h as a sum of k nonnegative integers, and so

which is a polynomial in h for fixed k.
We define a partial order on Nk by

In N§, for example, (2, 5)  (4, 6) and (4, 3)  (4, 6), but the lattice points
(2, 5) and (4, 3) are incomparable. Thus, the relation z  y is a partial
order but not a total order. We write x  y if x  y y. y,

Lemma 1. Let W finite subset of No, and let B(h,W) be the set of
all lattice E a(h) such for all w E W. Then [
is ca polynomial in h for all sufficiently large h.

and so

for h &#x3E; ht(w* ) . This completes the proof. 0

An ideal in an abelian semigroup is a nonempty set I such that if x E I,
then x+t E I for every element t in the semigroup. In the partially ordered
semigroup Nk, a nonempty set I is an ideal if and only if x E I and y &#x3E; x
imply y E I. The following result about lattice points and partial orders is
known as Dickson’s lemma [1]. We include a proof for completeness.
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Lemma 2. If I is a ideal in the abelian semigroup. No, then there exists a
finite set W* of lattice points in Nksuch that

Proof. The proof is by induction on the dimension k. If k = 1, then I is a
nonempty set of nonnegative integers, hence contains a least integer w. If
x &#x3E; w, then x E I since I is an ideal, and so I = ~x E w~.

Let k &#x3E; 2, and assume that the result holds for dimension k -1. We shall
write the lattice point x = (xl, ... , Xk-1) Xk) E Nk in the form x = (x’, xk),0

where x’ = (x1, ... , No-1. Define the projection map 7r : 
by 1r(x) = x’. Let I’ = x(I) be the image of the ideal I, that is,

We have I’ ~ ~ since I ~ 0. Let x’ E I’ and y’ E No-1. Since x’ E I’,
there is a nonnegative integer x~ such that E I. If y’ &#x3E; x’, then
y’, xk &#x3E; x’, xk in N§, and so (y’, Xk) E I, hence y’ E I’. Thus, I’ is

an ideal in Since the Lemma holds in dimension k - 1, there is
a finite set W’ C I’ such that x’ E I’ if and only if x’ &#x3E; w’ for some
w’ E W’. Associated to each lattice point w’ E W’ is a nonnegative integer

such that (w’, xk (w’) ) E I. Let m = w’ E W’} and
Wm = ~ (w’, m) : w’ E W’}. If w’ E W’, then (w’, m) &#x3E; (w’, zk (w’)) and so
(w’, m) E I. Therefore, Wm C I.

For 1 = 0,1,... , m - 1, we consider the set

If Ie = 0, let 0. 0, then I~ is an ideal in No-1, and there is a
finite set W§ such that x’ E Ie if and only if x’ &#x3E; w’ for some w’ e Wi. Let
W~ _ ~ (w’, ~) : w’ E Then Wi C I. We consider the set

which is a finite subset of the ideal I.
We shall prove that x E I if and only if x &#x3E; w for some w E W*. If

X = (X’, Xk) E I and m, then x’ E I’, hence x’ &#x3E; w’ for some 2v’ E W’.
It follows that

and (w’, m) E Wm 9 W *. 
and so x’ &#x3E; w’ for someIf x = (x’,E) E I and 0  .~  m, then x’ E Ie, and so x’ &#x3E; w’ for some

w’ E W~ . It follows that

and (w’, i) E Wi C W*. This completes the proof.
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Let x = (x 1, ... , Xk) and y = ( yl, ... , be lattice points in N§. We
define the lexicographical order on N§ as follows: if either X =

y or there k~ such that Xi = Yi for i = 1, ... , j -1 and
Xj  Yj. This is a total order, so every finite, nonempty set of lattice points
contains a smallest lattice point. For example, (2,5)~r(4,3)~(4,6). If

then X + + t for all t E N§. We write if and

Theorem 1. Let S be an abelian semigroup, and let A be a finite nonempty
subset of S. There exists a polynomial p(t) such that p(h) f or all
sufficiently large h.

Proof. Let A = ~al, ... , ak ~, where IAI = k. We define a map f : N§ -~ S
as follows: If X = (x 1, ... , E N§, then

This is well-defined, since each xi is a nonnegative integer and we can add
the semigroup element ai to itself ~i times. The map f is a homomorphism
of semigroups: If x, y E No, then f (x + y) = + f (y). We consider the
set

If x E Q(h), then f (x) E hA and = hA. The map f is not

necessarily one-to-one on the set Q(h). For any s E hA, there can be many
lattice points E Q(h) such that = s. However, for each s E hA, there
is a unique lattice point uh(s) E f-l(8) na(h) that is lexicographically
smallest, that is, for all x na (h). Then

The lattice point x E Nk will be called useless if, for h = ht(x), we have
x =1= Uh (s) for all s E hA. Equivalently, x E Nk is useless if there exists a
lattice point u E such that f(u) = f (x) and Let I be the

set of all useless lattice points in No.
We shall prove that I is an ideal in the semigroup No. Let x E I,

ht(x) = h, and t E Nk. Since x E I, there exists a lattice point u E Q(h)
such that f (u) = f (x) and Then

and
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hence

It follows that x + t is useless, hence x + t E I and I is an ideal of the
semigroup No. We call I the useless ideal.
By Dickson’s lemma (Lemma 2), there is a finite set W* of lattice points

in No such that x E N kis useless if and only if x &#x3E; zu for some w E W*.
The cardinality of the sumset hA is the number of lattice points in a(h)
that are not in the useless ideal I. For every subset W C W*, we define
the set

By the principle of inclusion-exclusion,

By Lemma 1, for every W C W * there is an integer ho (W ) such that
I B (h, W) I is a polynomial in h for h &#x3E; ho(W). Therefore, IhAI I is a poly-
nomial in h for all sufficiently large h. This completes the proof. D

3. Growth of linear forms

Let kl, ... , k,. be positive integers, and let k = kl + ... + k,.. We shall
write the semigroup Nkin the form

and denote the lattice point x E No by x = (xl .... xr), where xj E No’
for j = 1, ... , r. Let hj = ht (z; ) for j = l, ... , r. We define the r-height
of x by htr(x) = (hl, ... , hr). For any positive integers hl, ... , hr, we
consider the set

Then

is a polynomial in the r variables hl, ... , hr for fixed integers ki , ... , kr.

Lemma 3. Let 1~1, ... , kr be positive integers, and k = kl + ..- + kr. Let
W be a finite subset of No = Nol x - - - x and let B(h1, ... , hr, W )
be the set of all lattice points x E No such that x E a( hI, ... , hr) and
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)jB(i,... a polynomial in hi , ... , hr ,for all sujficiently large
integers h1, ... , h~..

Proof. Let x = (xI , ... , E Let W; be the set of all lattice points
Wj E N§~ such that there exists a lattice point w E W of the form w =
( w 1, ... , w~ , ... , wr ) . for all w E W if and only if for
all Wj E W;, it follows that the set 2?(~i,... , hr, W ) consists of all lattice
points x = (x1, ... , Xr) E N© such that X j E B (hj, for all j = 1, ... , r.
Therefore,

It follows from Lemma 1 that hr, W)I is a polynomial in the
r variables hl, ... , hT for all sufhciently large integers hl, ... , hr. This

completes the proof. 0

Theorem 2. Let S be an abelian semigroup, and let ~4i,... Ar be fi-
nite, nonempty subsets of S. There exists a polynomial p(tl, ... , tr) such
that lh,Al + ... + p(hi, ... , hr) for all sufficiently large integers
hl,... hr .

Let k = k1 + ... + k,.. We consider lattice points

where

Define the semigroup homomorphism f : S’ as follows: If x =

(xl, ... , Xr) E No, then

A lattice point x E N© will be called r-useless if there exists a lattice
point u E a(htr(x)) such that f(u) = and As in the proof
of Theorem 1, the set Ir of useless lattice points in N§ is an ideal. By
Lemma 2, there is a finite set W * that generates Ir in the sense that x E N§
is r-useless if and only if x &#x3E; w for some w e W * .

Let ( h I , ... , E No and



560

number of lattice points in a~(hl, ... , hr) that are not useless. For every
subset W C W * , we define the set

By the principle of inclusion-exclusion,

By Lemma 3, for all sufficiently large integers hl, ... , he, the function
[B (hi , ... , is a polynomial in hl, ... , h,., and so I
is a polynomial in hl, ... , he. This completes the proof. 0

Remark. It would be interesting to describe the set of polynomials f (t) such
that f (h) = (M) for some finite set A and sufficiently large h. Similarly,
one can ask for a description of the set of polynomials f (tl, ... , such
that f (h1, ... , hr) _ where ~4i,... , Ar are finite subsets
of a semigroup S.
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