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Prime geodesic Theorem

par YINGCHUN CAI

RÉSUMÉ. Soit 0393 = PSL(2, Z). On démontre que 03C00393(x) = lix +
&#x3E; 0, où l’exposant améliore précé-

demment obtenu par W. Z. Luo et P. Sarnak.

ABSTRACT. Let 0393 denote the modular group PSL(2, Z). In this
paper it is proved that 03C00393(x) = lix + &#x3E; 0. The

exponent improves the obtained by W. Z. Luo
and P. Sarnak.

1. Introduction

Let r denote the modular group PSL(2, Z). By definition an element
P E r is hyperbolic if as a linear fractional transformation

-’ 2013 /

it has two distinct real fixed points. By a conjugation any hyperbolic
element P can be given in a form P = 0’-1 P’O’ with a E SL(2, R) and

P’ = t 0 t &#x3E; 1. Here P’ acts as multiplication P’z = t2z.

The factor t2 is called the norm of P, let us denote it by NP, it depends
only on the class {P} of elements conjugate to P, NP = N{P} - t2.
P and {P} are called primitive if they are not essential powers of other
hyperbolic elements and classes respectively. For primitive P the norms can
be viewed as "pseudoprimes", they have the same asymptotic distribution
as the rational primes,

where

The problem of finding a formula with good error term was intensively
studied by many mathematicians, first of all by H. Huber [4], D. Hejhal [2,
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3], A. B. Venkov [13] and N. V. Kuznetzov [7] before the eighties, not always
for the same group. The result were of the type

this result was also known to A. Selberg and P. Sarnak [12] gave a "direct"
proof of it.

In order to investigate the asymptotic distribution A. Selberg in-
troduced the Selberg zeta-function which mimics the classical zeta-function
of Riemann in various aspects. The Selberg zeta-function is defined by

for Re(s) &#x3E; 1 where {P} runs over the set of all primitive hyperbolic classes
of conjugate elements in r. The most fascinating property of the Selberg
zeta-function Z(s) is that the analogue of the Riemann hypothesis is true.
In view of this property one should expect an error term 0(x2+~). Let us
explain why this result is not obvious. It is convenient to speak of the allied
sum

where ~1P = log NP if {P} is a power of a primitive hyperbolic class and
AP = 0 otherwise. Then like in the theory of rational primes, we have the
following explicit formula:

Lemma 1 ([5]).

where Sj = 2 runs over the zeroes of Z(x) on Re(s) = 2 counted with
their multiplicities.

s. 1
Here, in the sum each term % has the order §j but the number ofJ &#x3E;

terms is (refer to [2])

therefore, treat (1.1) trivially yields
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On taking the optimal value T = we obtain the error term

0(x 4 log x). At this point the situation differs very much from the one con-
cerning rational primes because the Selberg zeta-function Z(x) has much
more zeroes than does the Riemann (( s ).
From the above arguments one sees that in order to reduce the exponent

3 one cannot simply handle the sum over the zeroes in (1.1) by summing
up the terms with absolute values but a significant concellation of terms
must be taken into account. Only after N. V. Kuznetzov [8] published
his summation formula does this suggestion become realizable. In 1983
H. Iwaniec [5] realized such a treatment and proved that

by means of Kuznetzov trace formula incorporated with estimates for sums
of real character of a special type. More precisely, the basic ingredients in
Iwaniec’s arguments is the following mean value estimate for the Rankin
zeta-function:

. - 1 1.

where Rj(s) is the Rankin zeta-function and Re(s) = 1; and the estimate
for the following sum

where (-*) denotes the Jacobi’s symbol.
In the meantime P. G. Gallagher obtained

In 1994 W. Z. Luo and P. Sarnak [9] proved Iwaniec’s mean value con-
jecture : (1.2) holds with the exponent 2 replaced by 2 + ~. By this mean
value estimate and A. Weil’s upper bound for Kloosterman sum,

they proved

for the modular group r = PSL(2, Z).
In 1994 W. Z. Luo, Z. Rudnick and P. Sarnak [10] made considerable

advance in the research of Selberg’s eigenvalue conjecture. They showed
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that for any congruence subgroup r c SL(2, Z) the least nonzero eigenvalue
~ ~ As a by-product they obtained

for any congruence subgroup r C SL(2, Z).
In this paper we insert Burgess’ bound for the character sum estimate

and the mean value estimate ( 1.2) for the Rankin zeta-function into the
arguments of Iwaniec and obtain the following result.

Theorem. For the modular group r = PSL(2, Z),

2. Some preliminary lemmas

Lemma 2 ([9]). Let pj(n) denote the n-th Fourier coefficients for the
Fourier expansion at 00 of the j-th Maass cusp form, and

denote the Rankin-Selberg L-function for the j-th Maass cusp form. Then

Lemma 3 ([1]). If q is not a square then

where ~~~ denotes the Jacobi’s symbol and the constant implied in « de-
pends at most.

We infer from Lemma 3 a simple corollary.

Lemma 4. Let 1  R,  R2, a &#x3E; 1, q &#x3E; 1. Then

Lemma 5 ([8]). Let cp(x) be a smooth function on ~0, oo~ such that
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Define

where

6mn is the Kronecker’s delta symbol.

Proof. This is Kuznetzov Trace Formula. See Theorem 9.5 in [6]. 0

3. A mean value theorem for Fourier coefficients

Let

where h(~) is a smooth function supported in (N, 2N~ such that

By Rankin [11] we know that C(2s)Rj(s) has meromorphic con-
tinuation onto the whole complex with only a simple pole at s = 1 with
residue 2 cosh 1rtj. And by [11] we know that Rj (s) is of polynomial growth
in lsl.
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Lemma 6. We have

with

Proof. Consider the Mellin transformation

for s = 0’ + zT by partial integration 1999 times. By the inverse Mellin
transformation and Cauchy’s theorem we have

and Lemma 6 follows from Lemma 2.

4. A mean value theorem for p(c, a)
Let p(c, a) stand for the number of solutions d(modc) of

and

where cp(c) is the Euler’s function. Now

Lemma ’ I
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Proof. Write c = kt where k is a squarefree odd number and 41 is a square-
full number coprime with ~. By the multiplicativity of p(c, a) in c we get

d2 - ad + 1 - 0(modc) in d(modk) is equivalent to a2 - 4(modk) in
x(modk) and the number of incongruent solutions of the latter is

Let Q stands for the set of squarefull numbers. Then

By (44) in [5] we have

with some absolute constant A.

By Lemma 4, after splitting up the summation over r in Foo(A, B, C)
into intervals of the form (Rl, R2) with 1 - 1 R  R1  R2  2R1 we deduce
that
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Since for p &#x3E; 2, a &#x3E; 2 we have p(pc, a) :5 where pI3 = a2 - 4,p~) it
follows that

and finally

By (4.3) and (4.4) with R = we get that

Comparing (4.1) and (4.5) for B = A2, C = o0 one finds A = 7r2 6 i
which completes the proof of Lemma 7. 0

5. An application of Kuznetzov trace formula

Let

Then (cf. [9])
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Then we have cp = p B + WH- It is easy to show that

Let

where S(n, c) = S(n, n; c). Then by Lemma 6 we have

1 i 1
By Jo(y) G and we get

By the above arguments and Kuznetzov Trace formula we get

where and below, we take
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6. An estimation for En 
Since

we have

Notice that

thus

Moreover we have

And Weil’s bound implies
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Now

falls into one of at most O(logX) partial sums of the form

By Poisson summation formula we have

Hence

For al &#x3E; GN-1+é = A by a multiple partial integration we have
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the integration of M over x is

where we have used the multiple integration by parts
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with I = [1] + 2, since ANC! 1 &#x3E; XI.
Integration over x from C ) of R yields

Combining all the above arguments (6.1)-(6.7) we get

7. Proof of the theorem

By (5.1) and (6.8) we get

By (7.1) and the Fourier Technique used in [9] we get

By (58) in [9]

and the theorem follows from (7.4), Lemma 1 and summation by parts.
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