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On the ultrametric Stone-Weierstrass theorem

and Mahler’s expansion

par PAUL-JEAN CAHEN et JEAN-LUC CHABERT

RÉSUMÉ. Nous explicitons une version ultramétrique du théorème
de Stone-Weierstrass. Pour une partie E d’un anneau de valuation
V de hauteur 1, nous montrons, sans aucune hypothèse sur le corps
résiduel, que l’ensemble des fonctions polynomiales est dense dans
l’anneau des fonctions continues de E dans V si et seulement si la
clôture topologique Ê de E dans le complété de V est compacte.
Nous explicitons ainsi le développement d’une fonction continue
en série de fonctions polynomiales.

ABSTRACT. We describe an ultrametric version of the Stone-
Weierstrass theorem, without any assumption on the residue field.
If E is a subset of a rank-one valuation domain V, we show that
the ring of polynomial functions is dense in the ring of continuous
functions from E to V if and only if the topological closure Ê of
E in the completion of V is compact. We then show how to
expand continuous functions in sums of polynomials.

Introduction

The classical Stone-Weierstrass theorem says that the ring of real

polynomial functions is dense in the ring of real continuous func-
tions on a compact subset E of endowed with the uniform convergence
topology. Obviously, Q[X] l is then also dense in 

Dieudonn6 proved a similar p-adic result [9, Theorem 4], replacing R by
the p-adic completion ~ of Q, and this was extended by Kaplansky [13] to
a compact subset E of a valued field L for a rank-one valuation (with no
assumption on the residue field) (see also [12, Theorem 32]). Since the ring
of p-adic integers Zp is compact, then every function 0 E Zp) may
be uniformly approximated by polynomials in and, in particular, the
ring Int(Z) E Q[X] of integer-valued polynomials is dense
in the ring 

Considering a domain D, with quotient field K, and a subset E of K, we
more generally introduce the ring Int(E, D) of integer-valued polynomials

Manuscrit re~u le 15 septembre 2000.
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on E:

In particular, for E = D, we let Int(D) = { f E K[X] I f (D) g D}
be the ring of integer-valued polynomials on D. If V is a discrete valuation
domain with finite residue field, its completion V is compact, and hence, the
polynomial ring Int(V) is dense in the ring of continuous functions C(V, V),
for the uniform convergence topology [4, Theorem 111.3.4] (in fact, one may
even replace V by a local, one-dimensional Noetherian domain D, with
finite residue field D/m, such that D is analytically irreducible, that is, its
completion D in the m-adic topology is a domain [4, Corollary 111.5.4]).

Considering a subset E of a discrete valuation domain V such that E
is compact, it follows from Kaplansky’s extension of the Stone-Weierstrass
theorem that the polynomial ring Int(E, V) is dense in the ring C(2?, V)
of continuous functions from 2? into V, with no assumption on the residue
field (and we showed recently that, here again, we could replace V by a
local, one-dimensional Noetherian domain which is analytically irreducible
[5, Proposition 4.3~).
On the other hand, Mahler [14, Theorem 1] gave an explicit description

of the expansion, of a continuous function E Zp), in series of the
form where

For the domain V of a discrete valuation v with finite residue field, replacing
the sequence of integers by a ’very well distributed’ sequence and

the binomial polynomials ( ~ ) by the integer-valued polynomials f n (X) _
11’ X, Amice [1, Chap. II] generalized this description to the expan-k=O un -ui, 1

sion of a continuous function 0 E C(V, V ) (see also Wagner [21] for positive
characteristic) : § can uniquely be expanded in the form

Moreover

It is then said that the f n’s form a normal basis of the ultrametric Banach
space C(V, K) ~1~.

In fact, Amice’s result applies more generally to functions 0 E C(E, V )
on ’regular’ compact subspaces E of V. In a recent paper, Bhargava and
Kedlaya [3] extended Amice’s results to every compact subset E of V,
using the notion of ’v-ordering’, introduced in [2], which appears to be a
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fine generalization of Amice’s very well distributed sequences. An alternate
version of this result appeared also recently [18, Theorem 1.2], where the
sequence is replaced by the sequence of the Fermat polynomials,
which are known to form a basis of Int ( V) ([10] or [4, Proposition 11.2.12]).)

Despite their generalizations to subsets, these expansions in series con-
cern only the case of a rank-one discrete valuation domain with finite residue
field, although the Stone-Weierstrass theorem holds without this finiteness
hypothesis, and, in fact, also for a non discrete rank-one valuation domain.
The aim of this paper is to give an extension of these results in this

more general setting, and in the same time, to provide proofs which are
significantly shorter than in [1] and [3] and also more elementary than in
papers dealing with normal bases such as [20]. Moreover we conversely
establish that the compactness of E is necessary in the ultrametric Stone-
Weierstrass theorem.

HYPOTHESIS: We let V be the ring of a rank-one valuation v, with
quotient field K, and we consider a subset E of K. We denote by V, K and
E the completions of V, K and E (but simply denote by v the extension of
the valuation to K).

For sake of completeness, we first establish an analogue of the Stone-
Weierstrass theorem which, in fact, can be derived from Kaplansky’s general
results [12, Theorem 32]: if E is compact, the ring Int(E, V) of integer-
valued polynomials is dense in the ring C(2?, V) of continuous functions
from E to V. In the second section, assuming moreover the subset E to be
infinite, we use this result to give explicit series expansions of continuous
functions. Finally, in the last section, we prove the converse: the Stone-
Weierstrass theorem holds if and only if the completion E of E is compact.

1. The Stone-Weierstrass theorem

Let us recall that the absolute value of x is defined by Ixl = thus
K is an ultrametric space, endowed with the distance

For a E R and a E V, we denote by Ba (a) the closed ball with center a and
radius e-a :

The balls with center a form a fundamental system of clopen neighborhoods
of a.

If f E K(X~ is a polynomial with coefficients in K, and b a common
denominator of its coefficients, then b f E V(X~, and hence, for x, y E V, we
have
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that is, f is uniformly continuous on V. Now, if E is a compact subset of
K, then E is bounded, that is, lxl  M, for each x E E, or equivalently, E
is a fractional subset of V, that is, there is a nonzero element d E V such
that 
Under the hypothesis that E is a fractional subset, letting g = f (X/d),

we have f (x) = g(dx), and it follows that f is uniformly continuous on E.
We can thus consider K[X] as a subring of the ring C(E, K) of continuous
functions from E to K, similarly we can consider the ring Int(E, V) of
integer-valued polynomials as a subring of the ring C(E, V) of continuous
functions from E to V.
We wish to prove that, if E is compact, then Int(E, V) is dense in

C(E, V). First we establish that the polynomials in Int(E, V) separate the
points of E (a property similar to that of interpolation domaans [6]):
Lemma 1.1. Let K be the quotient field of a rank-one valuation domain
V and E be a compact subset of K. For each pair of points a, b E E, there
exists f E Int(E, V) such that f (a) = 1 and f (b) = 0.

Proof. Set v(a - b) = q. Since E is compact, it is contained in the finite
union of disjoint closed balls Ry(6t), with centers ba, bl, ... , bn, one of them
containing a and b. With no loss of generality, we set bo = b. We prove, by
induction on n, that there is a polynomial g, with coefficients in K, such
that g(b) = 0 and v(g(x)) &#x3E; v(g(a)) for all x E E. Hence, the lemma is
proved, with f(X) = 
- For one ball, that is, E C B.y (b), we have v (x - b) &#x3E; v (a - b), for each
x E E. We can thus take g = X - b.
- Assume the result to be true for n balls and consider the case of n + 1
balls: E c We set ði = v(b - bi) and order bl, b2, ... bn
in such a way that b2 &#x3E; ... &#x3E; 6n. We note that q &#x3E; 61, and hence,
v(a-bn) = 6n; we note also that, for 1  i  n, 6n - We let El be
the intersection of E with Uoan-1 By induction hypothesis, there
is a polynomial gl such that 91 (b) = 0 and v ~gl (x)) &#x3E; v (gi (a)) for each
x E El. Multiplying gi by a constant, we may assume that gi E Int(E, V),
and hence, that v (gl (x)) &#x3E; 0, for each x E E. Since the value group of
the valuation is a subgroup of Jae, and (’Y - 6n) &#x3E; 0, there is an integer m
such that m(’Y - b~) &#x3E; We claim that we can take g of the form
9 = gi (X - bn) m. For this, we consider two cases:
o If x E El, then x E B’Y(bi) for some i  n. Then v(x-bn) = 6n-
Thus, we have

but z g El, we have x E that is, ~y. It follows
that we have
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We are ready for a first version of the Stone-Weierstrass theorem (the
proof is similar to [4, Exercise III.20~):
Lemma 1.2. Let K be the quotient field of a rank-one valuation domain
V and E be ca compact subset of K. Then Int(E, V) is dense in the ring
C(E, V) of continuous functions from E to V, endowed with the uniform
convergence topology.

Proof. Each continuous function can be arbitrarily approximated by a lo-
cally constant function. Thus it is enough to prove that, for each clopen set
U, the characteristic function 0 of U can be approximated by an integer-
valued polynomial: for each A &#x3E; 0, there exists a polynomial f E Int(E, V),
such that v ~ f (x) - ~(~)~ &#x3E; A, for each x E E. Choose a E U. For each
b ft U, by the previous lemma, there is a polynomial fb E Int(E, V), such
that fb(a) = 1, and fb(b) = 0. Since fb is continuous, we have A
for each x in some neighborhood of b. Since U is a clopen set and E is
compact, there is a product ga of a finite number of such polynomials such
that ga(a) = 1, and A for each x in the complement of U in E.
Since ga is continuous, we have v (ga (X) - 1) ~! A, for each x in some neigh-
borhood of a. Since U is compact, there is a finite product fl (1 - ga) = 1-g
with such polynomials ga such that v~g(x) - 1~ &#x3E; A, for each x E U and
v (g(z)) &#x3E; A, for each x E E B U. D

In fact, it is often the case that the topological closure # of E in the
completion V of V is compact while E is not (as for the ring V itself, if
V is a - non-complete - rank-one discrete valuation domain, with finite
residue field). If E is compact, then E is a fractional subset of V, the
polynomials with coefficients in K are uniformly continuous on E, thus
Int(E, V) can be considered as a subring of the ring C (Ê, V) of (uniformly)
continuous functions from k to V, and K[X] as a subring of the ring
C(E, K) of (uniformly) continuous functions from E to K. We thus derive
another version of the Stone-Weierstrass theorem:

Proposition 1.3. Let K be the quotient field of a rank-one valuation do-
main V and E be a subset of K such that P is compact. Then,
(i) Int(E, V) is dense in C(E,V) for the uniform convergence topology,
(ii) K[X] is dense in C(.9, K) for the uniform convergence topology.
Proof. (i) From the previous lemma, Int(E,V) is dense in C (f, f7): each
4&#x3E; E C(#, V) can arbitrarily be approximated by polynomials (with coeffi-
cients in K). In fact, as K[X] is dense in each 0 E C(Ê, V) can be
approximated by polynomials with coefficients in K. Finally, if f E K[X]
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is such that v ( f (x) - ~(x) &#x3E; 0 for every x E Ê, then f is clearly an
integer-valued polynomial.
(ii) Since.9 is compact, each function § E C (#, K) is bounded. Multiplying
~ by a constant, we obtain a function in C(E, V). Hence the result follows
from (i). D

2. Mahler’s expansion
We assume from now on that E is an infinite subset of K. We first

generalize the notion of introduced by Bhargava for a subset of
a discrete valuation domain.

Definition 1. Let v be a valuation on a field ~, and E be a infinite subset
of .K. We say that a sequence funInEI4 of elements of E is a v-ordering of
E if, for each n &#x3E; 0, and each x E E, we have

It is immediate that such an (infinite) sequence exists in the case where
v is rank-one discrete. We show that this is also the case, for a rank-one

valuation, if E is compact:
Lemma 2.1. Let v be a rank- one valuation on a field K, and E be a infinite
subset of K such that E is compact. Then, for each a E E, there exzsts a
v-orde7ing funInEI4 of E such that uo = a.

Proof. The sequence is obtained inductively. Supposing we have
obtained the first n elements, we want to find un which is a minimum for the
continuous function T (x) = v (H n-1 u~) . Since E is compact, such a
minimum is reached for some yn E E. On the other hand, if un E E is close
enough to yn (to be precise, if v(un - yn) &#x3E; v(yn - Uk), for 0  k  n -1),
then D

We now suppose, as in the first section, that V is a rank-one valuation
domain (corresponding to the valuation v). Given a v-ordering ~un~n of
the subset E of K, we set

It is then easy to show that is a regular basis of the V-module
Int (E, V), that is, a basis such that In is of degree n for each n [2, Theorem
1]. Indeed, it follows from the definition of a v-ordering that each f n is in
Int(E, V), and that they form a basis follows from the fact that, for each
n, fn(un) = 1 and = 0, for k  n.
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By analogy with real analysis, the numerators of the f n’s, that is, the
polynomials g~ (X ) - fl§~I§ (X - Uk) may be called Tcheb ychev polyno-
mials [11]. Indeed, for the norm of the uniform convergence on E, one
has:

But, contrarily to the real case, there is no uniqueness for the Tchebychev
polynomials since there is no uniqueness for the v-orderings.
We shall prove that each continuous function can be expanded in series

of the form 0 = From the Stone-Weierstrass theorem, we first
show that it is always possible to expand continuous functions in series of
integer-valued polynomials. For sake of completeness we give the proof of
the next lemma that we may find, for instance, in [19, Lemma 1.2].
Lemma 2.2. Let K be the quotient field of a rank-one valuation domain V
and E be a subset of K. Denote by t an element of V such that v(t) &#x3E; 0. If
E is compact, then every continuous E V ) can be expanded
in the with gn e Int(E, V).

Proof. Since Int (E, V) is dense in C(E, V ) [Proposition 1.3], there is a poly-
nomial go E Int (E, V) such that, for all x E P, v (O(x) - go (~) ) &#x3E; v (t) . That
is, 0 = go + t~1, where ~1 E C (E, V ) . Similarly, one can find gi E Int (E, V)
and 02 E V ), such that 1 = 91 + t02, and hence, 0 = go + tgl + t2 2 -
Proceeding by induction, we obtain the desired expansion. 0

We next show how to obtain a series expansion from another one.

Lemma 2.3. Let ~ - cngn, be a series expansion of a continuous
function 0, such that each 9n is an integer-valued pol ynomial on E, and
with coefficients cn E K such that lim cn = 0. Consider a set 

n-+oo

of generators of the V -module Int(E, V), and decompose each gn on these
generators: 9n = bk,nvk, with bk,n E V. Then, for each k E N, the
series bk = E’o cnbk,n converges in V, lim bk = 0, bncpn.n= 

k--oo -

Proof. The series Cnbk n converges, since lim c, = 0. Fix N E N,
, n-+oo

there is j E N such that n &#x3E; j implies v (cn ) &#x3E; N. Let = sup{ io,... , 
For k &#x3E; i ( j ), we then have cnbk,n, and hence, v (bk ) &#x3E; N.
Therefore, lim bk = 0, and the series bnpn converges. Now, for each

k--oo -

j, consider the difference
w n 1 _ _ 1
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From the definition of the coefficients b~, we have

And hence, N, that is, lim = 0. In other words,nfEfl 

We then obtain the following, generalizing [3, Theorem 1~ :
Theorem 2.4. Let K be the quotient field of a rank-one valuation domain
V and E be an in finzte subset of K such that E is compact. Considering
a v-ordering funInEN of E, and letting fn(X) = X-, then everyUn-U,l k

continuous function 0 E C(.9, K) can be expanded in a series of the form
~ = an f n, with lim an = 0. The coefficients an E K are uniquely

- n~oo

determined by the recursive formulae:

Moreover

Proof. The possibility to expand a function 0 E in a series of
the form 0 = with lim an = 0, follows immediately from

- n-&#x3E;oo

Lemma 2.2 and Lemma 2.3. This generalizes to a function 0 
since 2 is compact, 0 is bounded, and hence, C (E, V) for some nonzero
constant a E V.
The recursive formulae, follow immediately from the fact that !n(un) = 1

and fk(un) = 0 for k &#x3E; n. In particular, the ak’s are uniquely determined.
Finally, let a = infnEN v(an); as v(an) -~-~ oo, this infimum is reached.

Let no be the smallest integer such that v(ano) = a. From the recursive
formulae, we have

and hence, from the choice of no, = a. We obtain
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We conclude that we have equalities from the following (obvious) lemma.
a

Lemma 2.5. Let be the sum of a series, where 
a sequence of integer-valued polynomials, and where the coefficients cn E K
are such that lim cn = 0. Then we have 

n

that is, sUPxEÊ IØ(x)1 sUPnEN 

Remark 2.6. The previous result may be interpreted in the theory of
normal bases. Let M be an ultrametric Banach space on K and let Mo be
the unit ball, that is, the sub-V-module Mo = ~x E M 1}. Recall
that a family lei I i E I } of elements of Mo is called a normal basis [1]
or an orthonormal basis ([16] or [17]) of M if each x E M has a unique
representation of the form x = EIEI xaez with xi E K, lim, 0 where
F denotes the filter formed by the cofinite subsets of I, and Ilxll _ ¿iEllxil.

(i) Of course, the polynomials {fn}nEN in Theorem 2.4 form a normal
basis of the ultrametric Banach space C(#, K).

(ii) The theoretical existence of such a normal basisofc (f, K) with a
polynomial of each degree was already proved by Van der Put [20, Prop. 5.3~,
however these polynomials were not given explicitly.

(iii) One could give another proof of Theorem 2.4 using the theory of
normal bases. Recall first a result of Coleman [8, Lemma A.1.2~ (extending
to a rank-one valuation a result of J.-P. Serre [17, lemme 1] dealing with the
case where the valuation is discrete) which essentially says the following: a
family lei I i E I } of elements of Mo is a normal basis of M if and only if
there exists t E K with It I  1 such that the classes of the e~’s form a basis
of the V/tV-module Mo/tMo.

In Theorem 2.4, M = c(P, K) and Mo = C(2) V ). It is then easy to

see that the polynomials fn satisfy Coleman’s condition: it follows from

Proposition 1.3 that C(E, V ) = Int(E, V) + tC(E, V ), thus, the classes
of the f n’s generate C (.9, V )/tC(E, V ); on the other hand, the equalities

= 6k,n for 0  k  n easily imply that these classes are linearly
independent.

Finally, we generalize [3, Theorem 2] and [18, Theorem 3.3]:

Theorem 2.7. Let K be the quotient field of a rank-one valuation domain
V, and E be an infinite subset of K such that.9 is compact. Then, f or every
set o f generators {CPn}nEN o f the V-module Int (E, V) and every continuous

there exists a sequence such that 0 =
with lim bn = 0. Moreover, if the Wn’s f orm a basis of the

- n-&#x3E;oo

V -modute Int(E, V), then the previous sequence Ibnl is unique and one
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has:

In other words, if E is compact, then every basis of the V-module
Int(E, V) is a normal basis of the ultrametric Banach space K).
Proo f. From the series expansion 0 = [Theorem 2.4], we derive
another one: 0 = where b k = E- n= 0 anbk,n, with bk,n E V
[Lemma 2.3]. Note that, for such a sequence we have the inequality

Finally, we assume that the pn’s form a basis of Int(E, V), and prove that
the expansion E bnpn is unique. Consider two series expansion bnwn
and bnwn of the same function 0 and assume, by way of contradiction,
that bko -=I for some ko. Let t E V be such that v(t) &#x3E; v(bko - bko). As

and -~ +oo, there is an integer n such that v(bk - b~ ) &#x3E; v (t) for
k &#x3E; r~ (note that n &#x3E; ko ) . Consider the polynomial1/J = 
As we can also write it follows that 1/J belongs
to tInt(E, V). Since the decomposition of 0 along the basis formed by the
Wn’s is unique, we have in particular v (t) . We thus reach a
contradiction.
The first part of the proof shows that &#x3E; It

follows from Lemma 2.5 that we have an equality. 0

3. The compactness of 2? is necessary
We have already noted that, if f is compact, then E is a fractional subset

of V. On the other hand, if E is not a fractional subset, then Int(E, V) = V
[4, Proposition 1.1.9], hence non-constant continuous functions cannot be
approximated by polynomials in Int (E, V) . We shall thus suppose that E
is a fractional subset, and replacing E by dE (which is homeomorphic to
it), that it is even a subset of V (see also [4, Remark 1.1.11]).
We first give a characterization of the subsets E such that E is compact,

similar to [5, Lemma 4.4] (see also [4, Proposition 111.1.2]). For this, recall
that the non-zero ideals of V are either of the form Ia = {x E V v (x) &#x3E; o:},
or Ia = {x E V I v(x) &#x3E; a~, for a real and positive. Correspondingly, the
cosets modulo Ia are closed balls of the type Ba (a), and the cosets modulo
la are the corresponding open balls. In any case, since K is an ultrametric
space, each such coset is a clopen set.

Lemma 3.1. Let V be a rank-one valuation domain and E be a subset of
V. The following assertions are equivalent.
1. The completion E of E is compact.
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2. For each non-zero ideal I of V, E meets only finitely many cosets of V
modulo I.

3. For each positive integer n, E meets onl y finitel y many cosets of V
modulo the ideal In = {x E V ( v(x) &#x3E; nl.

Proof. 1 ~ 2. The condition is obviously necessary: if E meets infinitely
many cosets modulo an ideal I, then E is covered by infinitely many disjoint
clopen subsets, and its completion P is then also covered by the disjoint
union of the completions of these clopen subsets.

2 ~ 3. This is obvious.
3 - 1. By hypothesis, for each n, # meets only finitely many cosets of

V modulo In. Let be a sequence in E. Infinitely many of its terms,
forming a subset Xl of k, are in the same class modulo 7i. Infinitely many
terms of Xl, forming a subset X2 of Xl, are in the same class modulo f2-
And so on. We thus define a decreasing sequence (Xn) of subsets, the
elements of Xn being in the same class modulo In. Let x~n be the first term
of the sequence which is in Xn. The subsequence is then a

Cauchy sequence in 2 and it converges. 0

We shall write that is infinite (resp. finite) if E meets infinitely many
(resp. only finitely many) cosets modulo I.

Lemma 3.2. Let V be a rank-one valuations domain, with quotient field
K, and let E be a fractional subset of V. If Int(E, V) is dense in C(.9, V ),
then the completion E of E is compact.

Proo f . Assume that E is a subset of V and, by way of contradiction, that
2 is not compact, that is, E/Ia is infinite, for some a &#x3E; 0. The principle
of the proof is the following:
We consider a sequence fxnl of elements of E in distinct classes modulo

some Ia (or some It is thus possible to define a function 0 E C(E, V )
such that, alternatively, for n even and n odd, we have §(zn) = 0 and
O(xn) = 1- Suppose that Int(E, V) is dense in V): in particular, there
exists f E K[X] such that, alternatively, v ( f (xn)) &#x3E; 1 and v ( f(zn)) = 0.
We reach a contradiction by choosing the sequence in a such a way
that, for each f E K~X~, the sequence converges. In fact, as
we can write f = a gk) in an algebraic extension L of K, it is
enough to make sure that, for ~ E L, the sequence ~) } converges
(in 1~, extending the valuation v to a rank-one valuation of L).

If is infinite, then, a fortiori, and EII’O are infinite for (3 &#x3E; a.

We set
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If the valuation is discrete (with value group Z), then 7 is an integer and
necessarily E/I,y is finite while is infinite. We then consider three
cases:

1) E / I’Y is finite, and is infinite: there is a sequence in E such
that all the are in the same class modulo but in distinct classes
modulo For m, we then have v (xn - Let C be an element
of an algebraic extension L of K. Therefore
- either  y for some then g) = g) for all n;
- or &#x3E; ’1 for some no, then for n ~ no;
- or ’1 for all n.

At any rate, the sequence ~)} is eventually constant.

2) is finite. In this case, the valuation is not discrete and E/h is
infinite for each # &#x3E; 7. Let (Qn) be a strictly decreasing sequence in 1~
converging to ’1. Among the (finitely many) classes that E meets modulo

there is one which, for each n, meets infinitely many classes moduloan
By induction, we can thus build a sequence fxnl such that all its terms are
in the same class modulo I§ but xn is not in the class of x1, X2,... nor xn-1
modulo For m &#x3E; n, we thus have,   In particular,
all the xn’s are in distinct classes modulo Moreover
- either  ~ for some no, then v (xn - C) = for all n;
- or ç) ~ ’1 for all n and ~) &#x3E; Ono for some no; for n &#x3E; no
we then have v (xn - C) = xno ), and hence y :5 v (xn - )  (3n;
- or y :5 for all n.

Hence, the sequence converges to q or is eventually constant.

3) is infinite. In this case again the valuation is not discrete and 
is finite for {3  q. Here, we let be a strictly increasing sequence in R
converging to ~y. Let X be an infinite subset of E, the elements of which
are in distinct classes modulo Infinitely many elements of X, forming a
subset Xl of X are in the same class modulo Ipl. Infinitely many elements
of Xl, forming a subset X2 of Xl, are in the same class modulo IP2. And
so on: we define a decreasing sequence ~Xn} of subsets, the elements of Xn
being in the same class modulo For each n, choosing zn in Xn, we thus
build a sequence such that, for m &#x3E; n, we v(xm - zn)  7.
Therefore
- either  8n,, for some no, then = ~) for
n &#x3E; no;
- or ~) &#x3E; #n for all n and v(xno - ~) ~ 7 for some no; for no
we then have v (xn - ç) = thus  7;

 -y for all n.

Hence, the sequence converges to 7 or is eventually constant.
0
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We conclude with the following.
Theorem 3.3. Let V be a rank-one valuations domain, with quotient field
K, and let E be a fractional subset of V. The following assertions are equiv-
alent.

1. The completion E of E is compact.
2. K[X] is dense in c(.9, K), for the uniform convergence topology.
3. Int(E, V) is dense in C(.9, V ), for the uniform convergence topology.
4. Every continuous E G (E, K) can be expand ed in tie form

cngn, with gn E Int(E, V) and lim cn = 0.n= 
n--oo

5. Every continuous E C(E, K) is bounded.
Proof. Replacing E by dE, we assume that E is a subset of the ring V. That
1 implies 2, 3 and 4 was proved in the previous sections [Proposition 1.3 &#x26;

Proposition 2.4]. That 4 implies 5 follows, for instance, from Lemma 2.5.
And that 2 implies 5 from the fact that the values of a polynomial are
clearly bounded on a fractional subset.

Conversely, 5 implies 1. Indeed, assume by way of contradiction, that 2?
is not compact: then.9 can be covered by infinitely many disjoint clopen
subsets, and hence, it is easy to define a continuous (in fact, locally con-
stant) function which is not bounded.

Finally, that 3 implies 1 is the previous lemma. 0

Remarks 3.4. 1) Analogously to [3, Theorem 3], we derive an easy con-
sequence of Theorem 2.7 (this is also a consequence of [17, Prop. 3]):
Assume K = K and E = E is compact, and let be a basis of

Int (E, V ) . Then, a K-valued measure on E, that is, a continuous K-linear
map p : C(2?,~) -~ K, is uniquely determined by the sequence of
its values on the basis (that is, pn = if 0 = E’o anpn ,
then J.t( 4» = E’o Conversely, given a sequence of K, we claim
there is some measure p such that pn = if and only if this sequence
is bounded. It remains to show that the boundedness is necessary:
Assume that for a measure p, the sequence is not bounded. Let

t E V be such that v(t) &#x3E; 0. There is an increasing sequence of

positive integers such that -2nv (t); but then, the value of p
cannot be defined on the continuous function 4&#x3E; = 
2) We considered only the case where E is infinite, although k is compact
when E is finite. In fact, it follows from Lagrange interpolation that each
function from a finite set to K is continuous and "polynomial" : if E =

jai, ... , if Pj = for 1  j  r, and if 0 E C(E, K), thenai-ai ,

4&#x3E; = However, this representation is not unique: for instance
the zero function may be represented by the polynomial f for

every f E K[X]. Finally, it follows from the fact that Int(E, V) contains the
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ideal that there is no regular basis of the V-module
Int (E, V) (similar to the basis given by a v-ordering of an infinite subset).
3) Let D be a one-dimensional, local, Noetherian domain with maximal
ideal n, such that the completion D of D in the n-adic topology is an
integral domain. It is known that, for a subset E of the quotient field of D,
such that the topological closure E of E is compact, Int (E, D) is dense in
the ring C(E, D) of continuous functions from E into D [5, Proposition 4.3].
Conversely again, the compactness of E is necessary. Indeed, assume that.9
is not compact. Since D is an integral domain, the integral closure V of D is
a discrete valuation domain with maximal ideal m, and the m-adic topology
induces the n-adic topology on D. Consequently, 2 is not compact for the
m-adic topology. If E is not a fractional subset of V, then Int(E, D) g
Int(E, V) = V, and hence, Int(E, D) cannot be dense in ~{E, D). If E
is a fractional subset of V, it follows from the proof of Lemma 3.2 that
some continuous function § E C(E, V ), taking only the values 0 and 1,
cannot be approximated modulo m by a polynomial f E Int(E, V). Since
its values are in D, then 0 belongs to C(E, D), and a fortiori, it cannot be
approximated modulo n by a polynomial f E Int{E, D).
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