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More on inhomogeneous Diophantine
approximation

par CHRISTOPHER G. PINNER

RÉSUMÉ. Pour un nombre irrationnel 03B1 et un nombre réel 03B3, on

considère la constante d’approximation non-homogène

M(03B1,03B3) 

en rapport avec le développement en fraction continue négatif
semi-régulier de 03B1

et un 03B1-développement adéquat de 03B3. Nous donnons une majora-
tion de

p(a) := sup M(03B1, 03B3),
03B3~Z+03B1Z

dans le cas où 03B1 est mal approximé, qui s’avère fine lorsque les
quotients partiels ai sont presque tous pairs et supérieurs ou égaux
à 4. Lorsque le développement de 03B1 est de période 1, on décrit
entièrement le spectre des valeurs prises par

L(03B1):={M(03B1) : 03B3~Z+03B1Z},
au-dessus du premier point d’accumulation.

ABSTRACT. For an irrational real number 03B1 and real number 03B3
we consider the inhomogeneous approximation constant

M(03B1,03B3) 

via the semi-regular negative continued fraction expansion of 03B1

and an appropriate alpha-expansion of 03B3. We give an upper bound
on the case of worst inhomogeneous approximation,

p(a) := sup M(03B1, 03B3),
03B3~Z+03B1Z

Manuscrit reçu Ie 3 mai 2000.
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which is sharp when the partial quotients ai are almost all even
and at least four. When the negative expansion has period one
we give a complete description of the spectrum of values

L(03B1) := {M(03B1, 03B3) : 03B3~Z+03B1Z},
above the first limit point.

1. Introduction

For a fixed irrational, real number a and real ~y in [0, 1) one defines the
two-sided inhomogeneous approximation constant

where lixll denotes the distance from x to the nearest integer. The homo-
geneous case y = 0 is of course classical. Here we shall think of a as fixed
and y varying to obtain an inhomogeneous spectrum of values for a

We shall say that, and y are equivalent (with respect to a), denoted ,rev,’ ,
if q = y + ncx + m for some integers n, m, where clearly -y’ implies
that M(a,,) = M(a,,’). Historically there has been most interest in the
case of worst inhomogeneous approximation

particularly for quadratic a. It is conjectured that for quadratic a the value
of p(a) should always be isolated (this would follow from a quadratic forms
conjecture of Barnes-Swinnerton-Dyer [1], and may well be equivalent to
it). In our previous paper [5] we approached the computation of M(a, -Y)
via the regular continued fraction expansion of a, verifying the isolation of
p(a) when the regular expansion had period one or two, or the period all
even partial quotients. We show here how to alternatively use the negative
continued fraction expansions. The formulae and bounds obtained this way
are similar but simpler to work with (the absence of a sign alternation
making the expressions more symmetric). We are thus able to show the
isolation of p(a) for additional classes of quadratic a having straightforward
negative expansions. For example when the partial quotients are all even
and at least four we explicitly give the y achieving p(a) (see Theorem 2).
In Section 2 we give a complete description of the spectrum above the first
limit point when the negative expansion of a has period one (the structure
is similar to that of the traditional Lagrange spectrum). As an added

advantage the use of the negative expansion leads naturally to a separate
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consideration of the positive and negative integers, and hence to formulae
for the one-sided approximation constants;

By the negative expansion we mean that

where the integers ai ~! 2 are generated by rounding up rather than round-
ing down in the continued fraction algorithm:

with corresponding convergents = [0; ai , ..., an]- given by

The negative expansion [0; aI, a2, a3, ...]- can of course be thought of as a
regular expansion where the partial quotients are alternately positive and
negative integers. Using van der Poorten style identities for dealing with
illegal partial quotients,

and , to write

it is straightforward to switch between regular and negative expansions:

Writing

it is readily seen that
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For a real number y  1 we generate the coefficients bi in the alpha-
expansion by taking

so that

gives the unique expansion of -y of the form such that

(i) 0  bi  ai - 1,
(ii) the sequence of bi does not contain a block of the form bt = at - 1,

with 6y =aj -2foralli &#x3E; torwithbk = ak - 1 for some k &#x3E; t and
k.

We define the integers Qk = by

and parameters £k := Qk/qk so that

with

We set

In evaluating M+ (a, ’Y) we shall frequently encounter

and for M- (a, 7)

To obtain more symmetrical expressions for these four functions it is often
convenient to replace the bk by the sequence of integers tk, where
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and to define

(use of the negative expansion avoiding a sign alternation in d~ ). Hence

we can replace

where

Of course the tk are integers with the same parity as ak and -(ak - 2) 
ak. We observe that

with 1 - a~ (respectively 1 - ak) iff the sequence tk, tk- 1, - - -
(respectively tk+l, tk+2, ...) takes the form ti = ai with ti = aj - 2 for any
preceding tj. Notice that ifti =I ai then the expansion of 1-a-7 is obtained
by simply changing the signs of the ti, where M_(a,,) = M+ (a,1- a - ~y),
the sign change merely interchanging sl(k),S2(k) with s3(k),s4(k).
Theorem 1. For -y,1, 0

If the alpha- expansion of 7 has bi = ai -1 at most finitely many times then,

and
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We readily deduce the following bound on p(a);

Corollary 1. For 1 rf 0

In particular if lim ai = l~ &#x3E; 3, then

If 3 for almost all i then, since

When the ai are all even and at least four we can achieve this bound by
simply taking the t2 = 0:

Theorem 2. Suppose that the negative expansion of a has ai even for
i &#x3E; N. Then

has

In particular if the ai &#x3E; 4 we have p(a) = M(a,7*) = p*(a). Moreover if
a is also quadratic,

then the value of p(a) is isolated with

for

We note that the simplified bound (1.4) need not hold when a2 - 2
infinitely often (so that the condition a2 &#x3E; 4 is needed here). For example
if for i &#x3E; 0 the aN+2i = 2 with 4 even, then

is larger than M(c~, -y* ), where ,** : := DN-2 - 2 DN-1 corresponds to taking
= = -2. Theorem 2 also shows that bound (1.3) can

not be improved when R is even (consider period R, 2A with A --~ oo) .
Finally, the following bound (useful in the explicit computations of Sec-

tion 2) shows that large Itil I produce small values for M (a, -y).
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Lemma 1. Suppose that, ~ 0. If tk = ak infinitely often then

otherwise

2. Period One a

We suppose that a has a period one expansion

and set

From Theorem 1 we can write

and evaluate M* (a, y) using the liminf of the slightly simpler functions

with

We define sets of whose sequences ti are

eventually periodic:
When a is odd define

and when a is even
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When a = 4 (as for a = we interestingly obtain a second sequences of
q with values also tending to the first limit point;

We set

Theorem 3. Suppose that (
V 

When a &#x3E; 5 is odd the values -y -A 0, greater than

are given by

and for k &#x3E; 1

with Jk ~ as k - oo, and M(a,,) = bk is in Sk.
If a &#x3E; 6 is even, then the values of M(a, ,), , rf 0, greater than



547

are given by

and for

with b~ ’Bc as I~ -~ oo, and J
For a = 4 we have the additional values

with I

Since M(a, 0) = 0/(l - (2) = 1 /T the exclusion of the homoge-
neous case q - 0 is only relevant when a  7, with M(a, 0) &#x3E; p(a) when
a  6 (with equality when a = 6). We note that is actually a limit point
of limit points from below; for example if the expansion ti for 7 consists of
blocks 0, (-2, 2, )kt or with ki not eventually con-
stant and k = lim inf ki then M (a, ,) /’ as k -+ oo (with achieved if

k = oo, the limit points from taking the ki to have period k, 1 with 1 -&#x3E; oo,

tending to as k -&#x3E; oo). When a = 5, the set S-3 has J-3  and so is

not included in the list. When a is odd the value of 6-1 actually lies between
61 and J2, otherwise the values are given in decreasing order. The value of
p(a) for odd a &#x3E; 5 together with the optimal -y can be deduced from paper
I of Barnes-Swinnerton-Dyer [1] (Theorem 1 for a &#x3E; 7 and Theorem 3 for
a = 5). Komatsu [4] has also evaluated for special values of 7 (in
the regular continued fraction these a of course have period two, 1, a - 2).
The remaining case a = 3 (corresponding to the golden ratio) has been
dealt with by Davenport [3], and by Cusick, Rockett and Szfsz [2] who
show a similar structure from p(a) = 1/(4B/5) (achieved with ti of period
(-1, 3, -1)) down to the first limit point 1/(10 -~ 2~), the intermediate
values corresponding to expansions with period (-1, 3, -1, )k (1, -1).
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3. Proofs for Section 1

3.1. Proof of Theorem 1.
Observe that any positive integer n,  qk, has an expansion

1.

so that

2=1

gives the a expansion of {na}. This expansion amounts to taking zk =
Ln/qk-lj, repeating this process and so on. We shall assume
that tina-III = (since otherwise = 1 - (Inal --Y) &#x3E; -Y
or IIna -,11 = 1 + &#x3E; 1 --y and Inlllna - [ is unbounded).
We suppose Qk so that zs # bs for some 1  s  k with Zj = 6y

for any 1  j  s.

and

so that &#x3E; A(Qs) (with the second inequality implying that Qs --7 00
as n - oo if A (n) -1+ oo). Thus it is enough to consider s = k, in which
case

For 0 ~ ~  ~ this is clearly minimised for zk = 0 or zk = bk so that
(n)

So suppose that zs &#x3E; bs and

If
I Ina - ,11 - Dk-l and A(n’)  A(n). Hence we can assume that s = k,

1 and n = Q~ + qk-l.
If the alpha-expansion of y has bi = ai - 1 at most finitely many times

then, since E biDi-l + ¿(ai - 2 - bi)Di-l = 1 - a, we know that --y is
equivalent to a gamma with bi = (ai - 2 - bi) for almost all i. From this one
can readily deduce that M_ (a, y) = M+(a, --y) = 
(qk - qk-l)), À(Qk - 0
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3.2. Proof of Corollary 1.
Defining

Corollary 1 follows from the more precise bound

If 

rv i """"

., then

and in the same way i then

Bound (1.3) is immediate from (1.4) and the observation that (1 - ai) 
(1 - aizii) with ai = 1/(R - 1/R infinitely often. 0

3.3. Proof of Theorem 2 and (1.6).
Assume that ai is even for i &#x3E; N. For, = 7* or 7** we have 7~ - ~y and

M(a,-y) = For -y* we have tN+i = 0 giving
dt , d¡; -~ 0 and

Suppose now that a is also of the form (1.5). Notice that a2 &#x3E; 4 for
almost all i gives  0; 4 - + o ( 1 ) = (2 - V3 + o ( 1 ) ) . Hence if q has
t2 - a2 infinitely often then (1.7) gives M (a, -y) :5 1 lim 4 I-aiai i

2 M (a, ~y* ) . Hence we can assume that ti = ai at most finitely many times.
Set I := Suppose that q # :1:,*, 0. Then, for each i = 0, ..., r - l, there
will be infinitely n - i (mod r) with 0 for some m with n - l  m  n

or n + 1  m  n -~- 1 -~- l (and tj = 0 for any j closer to n or n + 1
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as in the proof of Corollary 1,

and

Suppose now that

and writing

and

3.4. Proof of Lemma 1.
Bound (1.7) follows at once from bound (3.1). Bound (1.8) follows on

observing (for ±,y) that the minimum of

is certainly no more than

4. Proof of Theorem 3

4.1. Evaluating the Jk-
We evaluate J* = 4(1 - e2~a~. Apart from the J-k, k &#x3E; 2 when a = 4

(which have some ti = a) we can assume that
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with
, I" 8- I ,

Except for 6-3 , a odd, we have [  20 so that s2(n),s¡(n) &#x3E; (1 - 0)~
and we need only evaluate the For y in So with a even the

and plainly 61 = (1 - 8)2 (the largest possible value). For y
having ti of period (t, -t), t = 1, 2, 3 we have {c~c~}~ ~ tB/(1 + 0)
and ~(~),~)-(1 - 0)~ - + 0))~, giving the value of 80, a odd
and b*_1, a even (and  6§l if a = 5). When t = 3, a ~ 7 odd,
min(s] (n) , s§(n) )-(1 + 0 - t0/(1 + is smaller and gives b* 3.
Now if the ti have period 0, ( - 2, 2,)k the smallest pair {d~ , dn } (and

smallest {2013d~,2013d~}) are asymptotically

occurring when tn = 0 (or 0) giving the smallest (or s3 (n) )
and the value claimed for ~~, I~ &#x3E; 1, when a is even.

For a ~ 5 odd and b* 1, ð~2’ ~~,1~ &#x3E; 1 we note that the values claimed are

- - 4" ,. "-’’’ , 
--

. Hence it is enough to consider
(for both, and its negative). For b* 2 these

and si(n) gives the value claimed. For

with giving the value claimed for 611. For the l~ &#x3E; 1 when the

-1, -1 occurs in a block -1,1,-1,-1,1,1 or 1,1, -1, -1, l, -1 we have
~d~ , dn } tending to

with asymptotically giving the value claimed for 6(, with this cer-
tainly less that (1 - 28 + ~ + (5) 2. When the -1, -1 occur inside blocks
1,1,-1,-1,1,1 
hence irrelevant (1 - 29 + 82 + 83 - 84 - (5)2.

Finally we deal with the ~_~, 1~ &#x3E; 2 when a = 4. In this case we need
check s2 (n) for both, and its negative. If tn = a then dn &#x3E; ~201329~
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merely reversing the roles of dj and dn ) . Moreover when tn - a we have
d; &#x3E; 0, dn  0 and &#x3E; 1 and when tn+l = a

Hence we can ignore the t~, = a and when = a merely check s2(n). For
q in S-2 and tn+1 = a we have d~, d +1~(-2B+aB2)/(1-B2) _ -0 giving

the value claimed for b* ~_2. *

For the negative of this -2, 0, a, 0, ( - 2, 2, ) k- Z we have d~ + 1 N - 292 / ( 1 +
8) - 292k+2/(1 - 82~+2) asymptotically giving the same value. For the

4.2. Proof of the Theorem when a is odd.

Writing 8~ = 4(1 - (]2)800 we suppose that -y has M* (cx, -y) &#x3E; 8~. We
note the rough bounds

infinitely often then,

and if Itit [ &#x3E; 5 infinitely often, then from (1.8)

Hence it is enough to consider, with ti = ~ 1, ~3 for all i (if we were only
interested in p(a) we could similarly rule out ti = ±3 infinitely often).
Now if tn = -3 and (or vice versa) infinitely often, then

and
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Similarly we can dismiss ti = 3, 1 (by considering the negative
1. w 1 n ... r.. I - -1 .~

I /

Likewise if ~ t~ , t~+ 1 } - ~ 3, -1 ~ . Hence apart from the p erio d - 3, 3 ele-
ments of S-3 we can assume that ti = :1:1 for all i. We assume that I g So
so that I (or its negative) has infinitely many blocks tn, tn+l = -1,-1

Now we can rule out blocks

having the negative of these) since these would give

, . --

Hence we can assume that the sequence tn, t,-,, ... takes the form

or

and t then

Hence excluding the y in ,S_ 1 with period - 1, - 1, 1, - 1, 1, - 1, 1, 1 or its
negative, and the q in S-2 with period - 1, - 1, 1, 1, we can assume that
we have infinitely many blocks -1,1, -lor 1,-1,1 with these contained
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6uppose that i . then

Now we can rule out i

Hence we can assume that the sequence consists solely of blocks

with ki ! 1 (or solely of their negatives -1, l, ( -1, -1, l, l, ) ki ) . Now if we
have a block of the form

and

This leaves only the periodic expansions of elements in 

4.3. Proof of the Theorem when a is even.

Suppose that lVl * ( a, y ) &#x3E; b~ where

We suppose first that all the t2 = 0, ::1:2. We can certainly assume this
when a ~ 6 since if t2 = a infinitely often then  8 and if [ ~4
infinitely often M"(~,7) ~ (a - 4)9 = 1 - 49 + 82  6£ (when a = 4 we
consider separately the q with ti = a infinitely often). We can rule out
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infinitely blocks (-2, -2) (or their negative (2, 2)) since these
give

Also when tn - 0 we must have ruling out
blocks 0, ( - 2, 2, ) ~ - 2, 0 or 0, (2, -2, )k 2, 0, since if i
-29/ ( 1 + 0) then the minimum of

is certainly at most

Moreover if q does not have period 0 and tn = 0 then dn and dn- 1 must be
of opposite signs, since if for example 0, -2 with dn - 1  0 then

Hence we can assume that the sequence of ti has period 0 or (-2, 2) or con-
sists only of blocks 0, (-2, 2, )li, l2 &#x3E; 0 (or only of its negative 0, (2, -2, )li ).

.1

Now if we have a block ...,
with 0  1  k then

and

This leaves only the periodic elements of Sk.
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It remains to check the case a = 4 when q has ti = a infinitely often.
Observe that if tn = a then

and we can assume that

since otherwise the minimum of these is certainly no more than

Hence dn~2, ... must take the form 0, -2, ... or -2, 2, ... or -2, a, ...
(since 2, or 0, t~+2 &#x3E; 0 would give d~ ~ -283/(1 - 0) and

-2, tn+2  0, would give -20 + We can rule out blocks

(-2, -2) just as in (4.1). Hence condition (4.3) forces the (a, 0, - 2) to lie in-
side blocks ~,...~=~0,-2, (2,-2, )~0. But if tk = 0 and  1-8

then Idtl, d- 1 20/(1+0) just as in (4.2). So the a, 0, -2 lie inside blocks
a, 0, -2, (2, -2, ) 0, a. Now if we have dn = a and dn+2, ... = 0, -2, ...
then dn-1, dn-2, ... = 0, -2, ... (and vice versa) since dn-l = -2 would give

-282,  -20 + ao2 and s2 (n - 1)  6£. Hence, since going
from q to 1 - ’Y interchanges the blocks a, 0, -2 and a, -2, 2 (and fixes the
a, -2, a) we can assume that either -y has period a, -2 or consists entirely
of blocks a, 0, -2, (2, -2, )li 0, li &#x3E; 0 (or its negative composed entirely of
blocks a, -2, 2, (-2, 2, )li - 2). Now if we had a block .... tn-1, Itn, ... of the
form

with I  k then

and

This leaves only the periodic elements of S_~~+2)-
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