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Two theorems on meromorphic functions used as
a principle for proofs on irrationality

par THOMAS NOPPER et ROLF WALLISSER

RÉSUMÉ. Dans cet article, nous nous intéressons à deux théorè-
mes dûs à Nikishin et Chudnovsky se rapportant à des fonc-
tions méromorphes. Notre propos est ici de déduire simplement
de certaines propriétés de fonctions méromorphes, satisfaisant
à des conditions arithmétiques, des résultats d’irrationalité bien
que déjà connus mais non triviaux. L’intérêt de cette approche
ne réside pas dans les résultats (obtenus comme corollaires de
nos théorèmes) sur l’irrationalité de nombres, dont la transcen-
dance a été établie depuis longtemps (cf. [4], [9] and [10]). Il

réside plutôt dans l’intervention de théorèmes concernant les co-
efficients de Taylor de fonctions méromorphes qui ont une ca-
ractérisation arithmétique. De la même manière que Niven [6]
utilise la méthode d’Hermite pour donner tous les résultats connus
sur l’irrationalité de valeurs de fonctions trigonométriques, nous
utilisons les résultats de Nikishin et Chudnovsky (cf. [2], [8]), pour
déduire l’irrationalité de valeurs de fonctions non-élémentaires.

ABSTRACT. In this paper we discuss two theorems on meromor-

phic functions of Nikishin and Chudnovsky. Our purpose is to

show, how to derive some well-known but not obvious results on
irrationality in a systematic and simple way from properties of
meromorphic functions with arithmetic conditions. As far as it
stands, we have no new results on irrationality, to the contrary
some results on numbers of the corollaries are known already since
a long time to be transcendental (cf. [4], [9] and [10]). Our main
intention lies in theorems on meromorphic functions whose Tay-
lor coefficients are arithmetically characterized. Like Niven [6]
used Hermite’s method to give all known results on irrationality
of trigonometric functions, we use methods going back to Nikishin
[5] and Chudnovsky (cf. [2] and [8]), to give results on irrationality
of values of non-elementary functions.

Manuscrit reru le 27 octobre 1999.
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1. On a theorem of Nikishin

In [5] E.M. Nikishin gave a short proof of the following theorem on entire
functions satisfying certain arithmetic conditions:

Theorem 1. Let f be a transcendental entire function of strict order
 ~  2 1. All derivatives of f at the points 0 0, as well as A
shall be numbers of the Gauss field Q(i). Let Do(n) and D,B(n) be the least
common multiple of the denominators of the numbers and f(k)(À),
k = 0, ... , n, respectively. If for a given n

for D(n) := Do(n)Dx (n) the relation

holds, where a does not depend on n.

Nikishin remarks that from this theorem the irrationality of the numbers
exp(p/q) and 7r can be deduced. Obviously one can extract much more out
of it; sometimes, however, the condition (1.1) causes some difficulty. That
is the reason why we have tried to weaken condition (1.1). With a slight
generalization of Nikishin’s method we can prove the following result:

Theorem 1’. Let f be a transcendental entire function of strict order
 Q  3/2. All derivatives of f at the points 0 0, as well as A
shall be numbers of the Gauss field Q(i). Let Do(n) and Da(n) be the least
common multiples of the denominators of the numbers and 
k = 0, ... , n, respectively.. Then for infinitely many n E N

where

and C &#x3E; 0 does not depend on n.

Proof of Theorem 1’. We shall not give the whole proof of Theorem I’
but refer for the first part to the paper of Nikishin [5]. To avoid condition
(1.1) we proceed in the following way:
We take the Pade approximation for e’ as mentioned in ~5~,

1 i.e. there is a C &#x3E; 0, such that log Oru for r ~ ro
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with

An(z) and Bn(z) are polynomials of degree n with integer coefficients and
the property An(z) = -Bn(-z). If we substitute z in (1.2) by the operator
Ad/dz and then apply the operator Rn (Ad/dz) to the entire function f (1)
we obtain

This holds for all n E N and 1 E No. For a verification of this identity
compare [5]. Since (1.2) also holds for n - 1, it immediately follows that
(cf. Siegel [11], pp. 6)

Substitution of z in (1.4) by the operator Ad/dz and application of the
resulting operators to f yields

where Fn(z) := and An(z) := E’ ak,nz k E Since by
assumption f is a transcendental entire function, there are infinitely many
n E N with f ~2~-1~ (0) ~ 0. Therefore there exists an infinite subset M C N
with the property: for all n E M there is a 0  kn  n, such that

Without loss of generality it can be assumed that in (1.5) always the first
or second case holds (take otherwise a subsequence of M).

Lemma. For sufficiently large n E I~Y we have 
where Cl is a constant independent of n and as in Theo-

rerra 1 ’.

Proof of the Lemma. Obviously
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holds. By Cauchy’s integral formula it follows that

Choosing r = and taking into account the estimation

where the constant C2 does not depend on r, we obtain for sufficiently large
values of n

There the constant C3 does not depend on n. A simple calculation shows
that

and with

we finally get the inequality ~F~~"~ (0) ~  Cïn-8(u)n. Obviously the same
estimation holds for F(kn) (0) - The proof of the Lemma is completed.

Now we assume 0 for all n E M. If we take 1 = kn in (1.3) and
use the identity An(z) = -Bn(-z), we get at the point z = 0

If C5 denotes the denominator of A, we obtain by (1.7) and the assumptions
about the values of the derivatives of f at the points 0 and A

and therefore

Taking into account the estimation of the Lemma for FÁkn) (0) this leads
for all n E M to
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with a constant C &#x3E; 0 not depending on n. Since the case (0) ~ 0
yields the same estimation, the proof of Theorem 1’ is completed .

Remark. Instead of Q(I) we can consider any imaginary quadratic number
field.

Application. As we don’t require condition (1.1), Theorem 1’ can be ap-
plied more easily than Theorem 1 in order to gain results on the arithmetic
nature of the values of non-elementary functions. As an example, we de-
rive some results on irrationality for certain hypergeometric series and the
incomplete gamma function.

Corollary 1. For all x 0 0 in an imaginary quadratic number field K
and all a E QB{O, -1, 20132,... } the confluent hyper geometric function

never has values in the same field K.
In particular, all real zeros different from 0 of the so-called incomplete

function ,(a, ~) for a E QB{0, 20131, -2, ... } are irrational and the
complex zeros different from 0 are in no imaginary quadratic extension of
Q. Here ,(a, x) is defined by

for real x &#x3E; 0 and for Re(a) &#x3E; 0 and by analytic continuation for complexe
values of a and x.

Proof of Corollary 1. The entire function y(x) := ~(1, 1-f-a; x) has order
of growth 1 and fulfills the differential equation

If we consider y(x) at the point 0, then dk := Y(k)(0) = k!/(a+1) ... (a+k)
for all k &#x3E; 0. Following Siegel [11], pp. 54, there is a constant Co &#x3E; 0,
independent of k, such that we have for the denominators of the numbers
do, ... , d~

Let us suppose that there is a number w E KB101 with y(w) = q E K.
With A := D := den(a) and
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the differential equation (1.8) inductively yields for all k &#x3E; 0

(~K denoting the ring of integers of K. Setting f = y in the notation of The-
orem l’ we therefore get D(2n) = Do(2n)Dw(2n)  Cn for all sufficiently
large n. As this limitation of the growth of the denominators contradicts
Theorem 1’, the assumption made above is wrong. Hereby the statement
about the arithmetic nature of values of + a; x) is proved.

holds (cf. Erdélyi [3], p. 133). If -y(a, x) = 0 for an x E x)
would vanish. This contradicts the considerations above and so the claim
about the zeros of the incomplete gamma function is proved.

2. On a theorem of Chudnovsky

In connection with the work of Nikishin we mention a far-reaching the-
orem on meromorphic functions with arithmetic conditions by G.V. Chud-
novsky [2] (also cf. E. Reyssat [8]), which is proved within modern tran-
scendence theory:

Theorem 2. Let f be a transcendental meromorphic junction of order
 p 2. S denotes the set of all algebraic numbers w E Q, such that all
derivatives f(k)(w) are rational integers. Then the set S is of cardinality
at most p.

Like Niven [6] applied Hermite’s proof of the transcendence of e to prove
irrationality of values of elementary functions, we use a simple general-
ization of Theorem 2 to get results on the arithmetic nature of values of
non-elementary functions, too. In our case Q is replaced by a certain alge-
braic number field K of degree 4 and the values f(k)(w), w E K, are certain
algebraic numbers with a restricted growth of the denominators. With this
modification one gets the following result:

Theorem 2’. Let f be a transcendental meromorphic function of order
p  2 and K a quadratic extension of k, where k = Q or any imaginary
quadratic field. Let there be a sequence of positive integers bk and a constant

2 a meromorphic function is said to be of order  p, if it can be expressed as a quotient of two
entire functions of order  p



259

C with

such one has bkf(k) (Wi) E Ok (rsng of integers of K).
Then wl = w2.

Remark. Theorem 2’ can be proven with some minor changes in the proof
of Theorem 0.1 in Chudnovsky [2] because of the nature of the denominators
bk. Therefore we omit the proof. Furthermore, one can easily see (compare
the way how Chudnovsky obtained the inequalities of Lemma 0.10 in [2],
p. 391) that if a function of order  1 is taken, then a stronger growth of
the denominators bk can be allowed:

Theorem 3. Let f be of order p  1 and K as in Theorem 2’. If at
the point wl E K condition (2. 1) of Theorem 2’ holds and if there exist
Co, Cl E N‘ , such that for W2 E K

then wl = W2-

In order to show that Theorem 3 can be applied in a much more general
setting than Theorem 1, we give an application concerning the irrationality
of certain continued fractions (compare e.g. Bertrand [1]):

Corollary 2. For any imaginary quadratic a E K, a ~ 0, which is not a
zero of

the value of the logarithmic derivation of ~" is never in K. In particular,
for all such a iuith 0 and v E No the value of the continued
fraction

is not in K.

Proof of Corollary 2. Let v E No be fixed. The entire function has
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order 1/2. The function

is meromorphic and of order  1/2. As 4bv fulfills a linear differential

equation of second order one obtains

and this equation inductively yields

Here + 2 for i = 1, 2, 3. Furthermore, a simple calculation
shows that

Let us assume that there is an a E K, 0, with 0 and

E K. With C := equation (2.2)
yields

If we now apply Theorem 3 with f = fv, Co = Cl = v + 1, wi = a and
w2 = 0 then a = 0 follows. Hence the assumption made above was wrong,
which proves the statement about the values of the logarithmic derivation
of 

In order to obtain the statement about the continued fractions we consider
the entire function

The identity

can easily be verified for all a e k with 0. Following [7], p. 210,
the right side of (2.3) can be expanded into the continued fraction

Thus Corollary 2 is proved.
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