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Arakelov computations in genus 3 curves

par JORDI GUÀRDIA

RÉSUMÉ. Les invariants d’Arakelov des surfaces arithmétiques
sont bien connus pour le genre 1 et 2 ([4], [2]). Dans cette note,
nous étudions la hauteur modulaire et la self-intersection
d’Arakelov pour une famille de courbes de genre 3 possédant beau-
coup d’automorphismes, à savoir

Cn : Y4 = X4 - (4n - 2) X2Z2 + Z4 .
La théorie d’Arakelov fait intervenir à la fois des calculs arithméti-

ques et des calculs analytiques. Nous exprimons les périodes de Cn
en termes d’intégrales elliptiques. Les substitutions utilisées dans
les intégrales fournissent une décomposition de la jacobienne de
Cn en produit de trois courbes elliptiques. En utilisant l’isogénie
correspondante, nous déterminons le modèle stable de la surface
arithmétique définie par Cn .

Une fois calculés les périodes et le modèle stable de Cn, nous
sommes en mesure de déterminer la hauteur modulaire et la self
intersection du modèle canonique. Nous donnons une bonne esti-
mation de cette hauteur modulaire, traduite par son comporte-
ment logarithmique. Nous donnons également une minoration
de la self-intersection qui montre qu’elle peut être arbitrairement
grande.

Nous présentons ici nos calculs presque sans démonstrations.
Les détails peuvent être lus dans [5] .

ABSTRACT. Arakelov invariants of arithmetic surfaces are well
known for genus 1 and 2 ([4], [2]). In this note, we study the
modular height and the Arakelov self-intersection for a family of
curves of genus 3 with many automorphisms:

Cn: Y4 = X4 - (4n - 2)X2 Z2 + Z4.
Arakelov calculus involves both analytic and arithmetic computa-
tions. We express the periods of the curve Cn in terms of ellip-
tic integrals. The substitutions used in these integrals provide a
splitting of the jacobian of Cn as a product of three elliptic curves.
Using the corresponding isogeny, we determine the stable model
of the arithmetic surface given by Cn. Once we have the periods
and the stable model of Cn, we can study the modular height and
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the self-intersection of the canonical sheaf. We can give a good
estimate for the modular height, which reflects its logarithmic be-
haviour. We provide a lower bound for the self-intersection, which
shows that it can be arbitrarily large.
We present here all our calculations on the curves Cn, almost

without proofs. Details can be found in [5].

1. A family of curves of genus 3

We will study the curves given by the equation:

for a E 0, :i:l. These are non-singular curves of genus 3. We note
that each of the four values of the parameter a, -a,1/a, -1/a gives rise
to the same curve. Equation (1) is particularly well-suited to study the
geometry of the curves (7~) , but to study their arithmetic we should use
the equation

obtained from (1) through the change of parameter a = + In

either equation one can observe that these curves have many symmetries.
More specifically, we prove:

Proposition 1. Let a ¥= 0, ::1:1, :1:1 ::I: B/2. The automorphisms of C(a) are
the restrictions of the following 16 projectivities of p2(C):

The group Aut(C(a» is isomorphic to a semidirect product Y4. The
automorphismes

form a system of generators for Aut(C(a».
Proposition 2. The curve isomorphic to the Fermat curve of
fourth degree, F4 = ly4 = X4 + Z4}. The group Aut(F4) has order 96,
and is isomorphic to a serraidirect product (Z/4Z x ~53.
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2. Geometry of the curves C(a)
The determination of the period lattice of the curves C(,,) is possible

thanks to their many symmetries. First of all, we can find a basis for the
space of holomorphic differentials on C(~) :
Proposition 3. Let x = XIZ, y = Y/Z. The differential formes

yield an orthogonal basis for 

We can also determine a basis for the singular homology of the curves.
We regard the curve C~a~ as a 4-sheeted covering of the complex projective
line, through the map:

Figure 1 .

We can explicitly describe the monodromy of this map. For instance, a
path on P (C) crossing the segment [- 1 /a, 1 /a], when lifted to C(a) through
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7r goes from a sheet n to the sheet n + 2 (mod 4). The action of the

automorphism a of C(~) is easily described in terms of the covering ~: it

lifts points one sheet. With all these data, we can proceed to build closed
paths on G(a) , lifting closed paths in I~2(~), as seen in figure 1. We refer
to the path sketched there as G. We proceed analogously to build the path
F indicated in figure 2 (numbers indicate the sheet on which each part of
the path lies).

Figure 2

Proposition 4. The homology classes of the paths

form a symplectic basis for H¡(C(a), 7~).
Once we have bases for the spaces HO (C(a), and H¡(G(a)’ Z) we com-

pute the period lattice of the curve C(a) - The Abelian integrals that we
must compute can be reduced to elliptic integrals, and can thus be expressed
in terms of elliptic functions. We obtain:

Proposition 5. A normalized period matrix for the curves C(a) is (IlZa),
where

. ... II....... · ""II..." .
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and I is the complete eltiptic integral

o f the first kind.

For instance, for the Fermat curve of fourth degree, isomorphic to the
curve C1+V2’ we re-obtain its well-known period matrix:

B 2 2 -’-/

The fact that all the Abelian integrals on C(a) can be reduced to elliptic
integrals tells us that the jacobian of the curve should split as a
product of elliptic curves. We can show the situation exactly. Let p =

Proposition 6. Let E be the elliptic curve

and let En be the elliptic curve

which is a Weierstrass model of the curve
- - . - -

We have isomorphisms defined over Ko:

The quotient maps induce an isogeny of degree 8

defined over Ko. 
’ ’

3. Arithmetic of the curves Cn

From now on, we will assume that n E N is a natural number, and, for
technical reasons only, that n 0 0,1 (mod 25). The isogeny described in
the previous section is the key to the study of reduction of the curves Cn.
It is well known that the the reduction of a curve is intimately related with
that of its jacobian. Moreover, at the level of Abelian varieties, the type of
reduction is invariant under isogenies. Thus, studying the reduction of the
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elliptic curves we can achieve the reduction of the curves Cn. First
of all, we determine the locus of good reduction:

Proposition 7. The curve Cn has good reduction outside the primes di-
viding n (n -1 ) .

Let Kn = where a = 3 18 - 6 ~ and 24 ) 3 - j ( E~ )
(an - 27) = 0. Let On be the ring of integers of K~. The elliptic curves
E, En acquire good reduction at 2 over the field since their Deuring
models are defined over this field. The curve En has multiplicative reduc-
tion at odd primes dividing n (n -1 ) . From this, we conclude:

Proposition 8. a) The curve Cn has a stable model Cnst and a minimal
regular model over On.
b) At the On which divide 2, J(Cn) has Abelian reduction over
C
c) At the odd primes p in On which divides n(n-1), J(Cn) has semi-Abelian
reduction over On, and the tolsc part of its N6ron model has dimension 1.

We now describe the bad fibres of the stable model Cn of the curves Cn.
At the odd primes, Prop. 8 gives enough information to describe the bad
fibres.

Theorem 9. a) The special fibre of at an odd prime p in On dividing
n (n - 1 ) has two elliptic components, intersecting at two different points.

b) The intersection pairing on this fibre is given by

The situation at the primes dividing 2 is much more complicated, and
requires a detailed study of the reduction of the automorphisms of Gn.
Once this is done, we obtain that:

Theorem 10. a) The special fibre of Gn at a prime p in On dividing 2
consists of three elliptic components, which intersect a rational component
at three different points. These intersection points map to 4-torsion points
in the elliptic quotients of 
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b) The intersection pairing on this fibre is given by

4. Arakelov invariants for arithmetic surfaces

Having a great deal of geometric and arithmetic information about a
curve, one can proceed to study it from the Arakelov viewpoint. We will
now do so with the curves Cn. We will study the two basic Arakelov
invariants for curves: the modular height and the self-intersection. We
briefly recall their definitions (details can be found in [4]).

Given a curve X of genus g, defined over a number field K, consider an
extension where X acquires stable reduction, and let ;rest ---+ T =

be its stable model. The relative dualizing sheaf úJxest/T can be
provided with an admissible metric, giving rise to an Arakelov line sheaf
WxestlT-

Definition 11. The modular height of the curve X is

The Arakelov self-intersection of X is

mhere (.,.) Ar denotes the Arakelov intersection pairing d4])-
For genus g = 1, it is known that e(X) = 0 and h(X) can be expressed

as a function h(X) = in terms of the periods of the curve, its
discriminant and its locus of bad reduction. For genus g = 2, Bost - Mestre
- Moret-Bailly ([3])give explicit formulas for both invariants, where again
the periods and the reduction of the curve play an important role. But
there is not much more information about these two invariants in general.
Ullmo ([8]) has proved that e(X) &#x3E; 0 for g &#x3E; 1, and Abbes and Ullmo ([l])
have found upper and lower bounds for the self-intersection of modular
curves Xo(N), N squarefree.
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5. Modular height of the curves Cn

Theorem 12. Let Tn = The height of the curve
Cn is given by

Sketch of the proof The modular height of a curve coincides with that
of its jacobian as an Abelian variety. A result of Raynaud ([7]) controls
the behaviour of the modular height of Abelian varieties through isogenies
A ~ B of degree a prime power p’: we have that h(A) = h(B) + k logp,
with k E Z, Ikl  e/2. Moreover, the modular height of a product of
Abelian varieties is the sum of the heights of the factors. We thus obtain:

Now we use the explicit formula for the height of the elliptic curves given in
([4]), to determine the terms h(E), h(En). Note that Tn is the fundamental
period of the elliptic curve En. 0

6. A lower bound for e(Cn)
Lemma 13 ([6]). Let X - S = Spec(OK) be a stable arithmetic surface
of 2. Let pl, ... , pt be the primers in OK where the fibres of X
are reducible. We have that

We can apply this result to the curves Cn, since we have a precise de-
scription of the primes where their stable model has reducible fibres: they
are the primes which divide n(n - 1). We thus obtain:

Proposition 14.

As the degree ~.I~n : K] is always less than or equal to 1152, this result
implies that the Arakelov self-intersection of a curve can be arbitrarily
large.
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