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The strongly perfect lattices of dimension 10

par GABRIELE NEBE et BORIS VENKOV

Dedicated to Prof. Jacques Martinet

RÉSUMÉ. Cet article donne une classification des réseaux forte-
ment parfaits en dimension 10. A similitude près il y a deux tels
réseaux, K’10 et son réseau dual.

ABSTRACT. This paper classifies the strongly perfect lattices in
dimension 10. There are up to similarity two such lattices, K’10
and its dual lattice.

1. Introduction

This paper is a continuation of a series of papers on lattices and spherical
designs (~Ven~, [BaV], [Marl]). For the basic definitions we refer to these
papers and to the books [Mar] and [CoS].
We study lattices, in Euclidean space, whose minimal vectors form a

spherical 4-design. Such lattices are called strongly perfect lattices. They
form an interesting class of lattices. In particular strongly perfect lattices
are perfect lattices in the sense of Voronoi (cf. [Mar]). In small dimensions
there are only few such lattices and a complete classification was known
up to dimension 9 and for dimension 11. Up to similarity they are root
lattices of types Al, A2, D4, E6, E7, E8 and their duals (~Ven~). There are
no such lattices in dimensions 3, 5, 9, and 11. In this paper we classify the
strongly perfect lattices in dimension 10. This is the first dimension where
less trivial lattices do appear. Up to similarity there are exactly two such
lattices Kio and its dual lattice (cf. Theorem 3.1). This was conjectured
in ~Ven~. For a description of these lattices we refer to [Mar, Chap.VIII,
paragraphe 5].

2. Some general equations

2.1. General notation. For a lattice A in n-dimensional Euclidean space
we denote by A* its dual lattice. Important invariants of the lattice A are its
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determinant det(A), its minimum min(A) and its Hermite invariant, which
is defined as

The Hermite invariant is an invariant of the similarity class of A. As
a function of A, 7 is bounded by a constant := I A C
JRn is a lattice } that depends only on the dimension n. The exact values
for qn are known for n  8. For higher dimensions, only upper bounds for
,n are known. We use Rogers’ bound, which gives that 2.2752 ([CoS,
Table 1.2]). Closely related to the Hermite invariant is the Berge-Martinet
invariant

which takes into account also the dual lattice.
There are also general bounds on the number of shortest vectors, the

Kissing number, of an n-dimensional lattice. For n = 10 the bound is 2 ~ 297
(see [CoS, Table 1.5~).

ForaEllB,a&#x3E;Owelet

and nz(a) := 
If A is an integral lattice, that is A C A*, we let for p E N‘

In general is only a subset of A, but in many cases that we consider,
it turns out to be a sublattice of A.

2.2. Designs and strongly perfect lattices. Let (ILBn, (, )) be the Eu-
clidean space of dimension n. In this section we assume that m E 1I8, m &#x3E; 0
and X C ~~ E I (y, y) = ml is such that X f1 -X = 0 and
X U -X is a spherical 4-design. Let s := IXI.
Then by the definition of designs in [Ven] one has for all a E IIBn:

and
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Substituting a := + in (D2) and comparing coefficients, one
finds

Writing a as a linear combination of 4 vectors, (D4) implies that for all

In particular

Lemma 2.1. Let a E R’ be such that (x, a) E 10, ±1, ::I::2} for E X.
Let := ~x E X U -X ~ I (x, a) = 2} and put

Then = c(a, a)/2 and

Proof. Put a2 = a in (Dll) and (D13). Then (D13) - (Dll) reads as

The left hand side is

and hence

for all 7 E where c is the constant of the lemma. Taking the scalar
product with a, one sees that 2IN2(a)1 = c(a, a). D

Recall that a lattice L C l~n is called strongly perfect, if its minimal
vectors form a 4-design.
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Lemma 2.2 ([Ven, Théorème 10.4]). Let L be a strongly perfect lattice of
dimension n. Then the Bergé-Martinet invariant

Since the left hand side is a sum of non negative numbers, the right hand
side is non negative and therefore r &#x3E; One also sees that equality
implies that n2 = n3 = ... = 0. D

2.3. Gauss sums and the Milgram-Braun formula. For the classifi-
cation of (strongly perfect) lattices it is helpful to know restrictions on the
possible genera of even lattices. Let L be an even lattice in the Euclidean
space (, )) and L* be its dual lattice. Then the bilinear form (, ) induces
a quadratic form q : L*/L 2013~ R/Z on the finite abelian group D := L*/L
by q(x + L) := 2 (x, x) +7G. Then the Gauss sum G(L) = G(D, q) is defined
as

The following is known as the Milgram-Braun formula.

Lemma 2.3 (see [Scha, Corollary 5.8.2], [MiH, Appendix 4]).

Moreover if (D, q) _ (Dl, ql) L (D2, q2) then G(D, q) = G(Dl, ql).
G(D2, q2). Since D is the orthogonal sum of its Sylow p-subgroups, and
G(L) is independent of the even lattice L, it suffices to calculate G(D, q)
for anisotropic orthogonally indecomposable p-groups.

Lemma 2.4 ([Scha, Corollary 5.8.3]). If IDI = 1, then G(D) = 1. If
= p for some odd prime p, D = (x), then

For p = 2 one has 8 nonisometric anisotropic orthogonally indecompos-
able quadratic 2-groups:
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Lemma 2.5. Let p = 2 and (D, q) be a nontrivial anisotropic orthogonally
indecomposable 2-group. Then one of the following three possibilities occurs:

Proof. By [Cas, Lemma 8.4.1], any regular quadratic 2-group (D, q) is iso-
metric to the orthogonal sum copies of

and

One now easily finds the anisotropic quadratic spaces among these. D

This explicit calculation of the Gauss sums has the following important
consequence.

Lemma 2.6. Let L be an even lattice of dimension n with n - 2 (mod 8).
Then exactly one of the following holds:

(a) The number of primes p = 3 (mod 4) such that p divides det(L) to
an odd power is odd.

(b) 22 divides det(L) and the number of orthogonal components of type
(2) or (3) in Lemma 2.5 in the discriminant group of any maximal
even overlattices o f L is - 2 (mod 4).

3. The strongly perfect lattices of dimension 10

In this section we prove the following theorem:

Theorem 3.1. There are exactly two similarity classes of strongly perfect
lattices in dimensions 10. They are represented by K’o and its dual lattice
K
The lattices Klo and are described in [Mar, Chap. VIII, Tableau

5.9’, 5.11]. Kl’o has minimum 4, determinant 2 2 3~ and kissing number
2 - 135. The rescaled dual lattice has minimum 6, determinant
2~ . 3~ and kissing number 2 . 120.

Lemma 3.2. The proper overlattices of Klo or (Kio)* have a strictly smal-
ler minimum.
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Proof. Let A be such an overlattice of Kio and p := [A : its index.

Then by Rogers’ bound ([CoS, Table 1.2])

If min(A) = then p = 1. Analogously one shows the lemma for
a

Because of this lemma, we only have to show Theorem 3.1 under the
assumption that the strongly perfect lattice is generated by its minimal
vectors.

Now let A be a strongly perfect lattice. We assume that A is rescaled
such that min(A) = 1 and choose X C Al such that x n (-X) = 0 and
X u (-X) = Ai .

3.1. Some invariants. In this subsection we use the equalities in Section
2, to determine s :_ ~X~ and r := min(A*) = (-y’)2(A).
By Lemma 2.2 one has r &#x3E; 4. But in fact equality holds here, which

means that A is of minimal type in the sense of [Ven].
Lemma 3.3. r = 4 and n2(a) = 0 for all a E (A*)4.

Proof. Let a E (A*))r. By the bounds on s and r given in Subsection 2.1,
one has

Since (i4 - i2) = i2(i - 1)(i + 1) is divisible by 12 for all i E Z, C is
integral, C = n2(a) + 6n3(a) + .... Therefore n3(a) = n4 (a) = ... = 0
and n2(a)  3. Write r =: p/q with p, q E N and gcd (p, q) = 1. Assume
that p ~ 4q. Then s = 480n2(a)q2/(p(~ - 4q)). Since gcd(p, q) = 1 one
has that p divides 480n2 and q2 divides s  297. One finds the following
possibilities:
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This table lists the possible values n2(a), s, p, q that satisfy the condi-
tions above. The last column gives the constant Lemma

2.1.
Since = 0 for all i  3, the conditions of Lemma 2.1 are satisfied

and

where c is the constant in the last column of the table above. If n2(a) = 1,
then N2 (a) = and therefore

This is a contradiction in the four cases where n2 (a) = 1.
Since N2(a) consists of minimal vectors (of square length 1) in a lat-

tice, the scalar products (~1, x2)  1/2 for all N2(a). Hence if

n2(a) = 2, then

which leads to a contradiction in the cases where n2 = 2.
In the remaining two cases n2 = 3. Let N2 (a) := {x, y, zl. Then

c(x, a) = 2c = (x, x) -E- (x, y) + (x, z). Analogous equations for y and z
show that

whence (~, y) = (2c - 1)/2 &#x3E; 1/2 which is a contradiction.
Therefore n2 (a) = 0 and r = 4. 0

We now determine the possible values for s:

Lemma 3.4. s = 5so where so E {24, 32, 27, 25}.

Proof. From equation (D2), with a E (A*)4, one gets that 2s/5 = nl(a) E
Z. Therefore s is divisible by 5,

For any a E A* write (a, a) = p/q with p, q E Z, gcd(p, q) = 1. Since

i2 ((174) - (D2)) E Z one gets that

In particular 45, hence q E ~ 1, 2, 3, 4, 5, 6 ~ .
If q is even, then 128 = 27 divides so which is a contradiction. Hence q

is odd. 
-
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So assume that q = 1, i.e. (a, a) E Z for all a E A*. If 4 1 (a, a) for
all a E A*, then T is an even lattice with min(r) = 2 and
min(r*) = 2. Hence f2 C (r*)2. But then for all a E (A*)4 one has
2 a E 111 and (a, !a) = 2 contradicts the statement n2 (a) = 0 of Lemma
3.3.

Therefore there is a E A* with 41 (a, a) and hence 8 so, so E {8, 16, 24,
32, 40}.

If 25 does not divide so then A* is an even lattice. Assume also that
hence 24, 32. By (D22) for all a, ~3 E A*, one has

Since 3 f s, this implies that 3 divides
~ * , and therefore

is a sublattice of A* of index 3. Since 1(3) is an even lattice, the
determinant d := det(A*) is divisible by 310-2 = 38. But min(A) = 1 and
det(A) = l/d implies that

which is a contradiction. 0

The main result of this subsection is the next lemma, which is stated
without proof in [Ven, Th6or6me 13.2].
Lemma 3.5. s = 120 or s = 135.

Proof. By Lemma 3.4, we have to exclude the cases s = 160 and s = 125.
Assume first that s = 160. Then by (*) the norms of all vectors in A*
are integral and either 0 or 1 modulo 3. We also have nin(A*) = 4 and
min(A) = 1. Assume that there is a E A* with (a, a) = 6. Then n2(a) = 0
for all i &#x3E; 3 and n2 (a) = 4. Let N2 (a) = f xl, x2, x3, x4~. Then by Lemma
2.1 x := Xl + X2 + X3 + ~4 = 4/3a. But 16/9 - 6 = (x, x) &#x3E; 10 contradicts
the fact that x~)  1/2 for i # j  4. Therefore (A*)6 = 0. Let
r := fA* . Then r is an even (and hence integral) lattice. Since 3 does not
divide s the equation (**) of the proof of Lemma 3.4 shows that r(3) is a

sublattice of r of index 3, and 38 divides det(r) =: d. Since 18,
one gets that

"’In

On the other hand min(r*) = 1/2 and therefore
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which is a contradiction.
Now assume that s = 125. By equation (*) of the proof of Lemma 3.4

one has that r := is an even lattice. By (~t), since 31s, the set
r~3~ is a sublattice of r of index 3.
Assume that there is a vector a E (A*)24/5. Then n2(a) = 7 and v :=

EXEN2 (a) X = ~-5 a by Lemma 2.1. Since the x E N2 (a) are minimal vectors
of A, one has (~) ~7+7.6.~=28. But (v, v) = (~~)2254 &#x3E; 40 which is
a contradiction.

Therefore min(r(3)) ~ 18 and the determinant d := det(r) satisfies

which is a contradiction. 0

3.2. The case s = 120. In this subsection we assume that A is a strongly
perfect lattice of minimum 1 and dimension 10, such that lAi I = 2 . 120.
We also assume that A is generated by its minimal vectors.

Let r := A*. Then equation (*) of the proof of Lemma 3.4 shows that r
is an even lattice of minimum 4.
We show the following theorem:

Theorem 3.6. Let r be an even lattice of dimension 10 and of minimum
&#x3E; 4 such that the minimum of r* is &#x3E; 1 and r* is generated by its minimal
vectors. Then r is isometric to either Klo or QI0.
The lattice QI0 ([CoS]), (denoted by F5 in [Sou]) has minimum 4, deter-

minant 2244 and 2 ~ 130 vectors of norm 4. The dual lattice of QI0 is similar
to QI0 and not strongly perfect. Therefore all strongly perfect lattices with
kissing number 2 ~ 120 are similar to which is strongly perfect.

Let r be such a lattice as in the theorem and d := det(r). Since

min(r*) = 1, one has d  3719. Let D := r*/r. Then q : D -
Q/Z; x + r ~--&#x3E; 2 (x, x) + Z is a non degenerate quadratic form on the finite
abelian group D. Since r* is generated by its minimal vectors, the group
D is generated by vectors x with q(x) = 2 + Z. Therefore one has:
Lemma 3.7. Let 2 be a prime and Dp be the p-prirnary component of
D. Then Dp is not cyclic. If IDpl = p2 then Dp is hyperbolic.

Proof. Let ~D~ = LPa with pll. Then Dp = 1D. Therefore Dp is generated
by the isotropic vectors lx with x E X. This implies that Dp is not cyclic,
and Dp is hyperbolic, if a = 2. 0

We classify the lattices f according to the 2 possibilities of Lemma 2.6:

Lemma 3.8. It 11’ satisfies case (b) of Lemma 2.6 then Qlo.
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Proof. Let d = det(r) be the determinant of r.
~ We first claim that 24 divides d, and 26 divides d if the maximal even

overlattice of r has determinant divisible by 8. Let D2 be the Sylow-2-
subgroup of the quadratic module (r* /r, q). Then D2 is generated by
elements x with q(x) = 1/2 + Z. The condition (b) of Lemma 2.6 implies
that D2 contains an element y with q(y) E !Z. Write y = as

sum of vectors xi E D2 with q(xi) = 1/2 + Z. Then

Therefore, there are vectors x, x’ E D2 with bq(x, x’) = ~1/4 + Z. Hence
(x, z’) E£ x Z/4Z is a submodule of D2 and therefore 24 divides d.

If 8 divides the determinant of a maximal even overlattice of r, then D2
contains an element y with q(y) = e/8+Z, with E = ~1, ~3. One concludes
that there is a pair of elements x, x’ E D2, = q(x’) = 1/2 + Z and
&#x26;g(.r, x’) = 1/8 + Z. The order of (x, x’) is at least 2 6
Now d/24  3719/24  233 and hence all the primes p that divide d are

 13. Moreover if a prime p &#x3E; 3 divides d then p2 is the largest ppower
dividing d and Dp is hyperbolic. If 33 divides d then also 34 divides d and
d = 2~ 3~.
*Let L be a maximal even overlattice of r. Then det(L) = 22 and L is

in the genus of Dio, det(L) = 4 ’ 2 and L is in the genus of E7 1 D3 or
det(L) = 22 ~ 32 and L is in the genus of A5. Calculating the respective
genera with [MAG] one sees that min(L*) &#x3E; 1 implies that L = Dio.
- We claim that no prime p &#x3E; 2 divides d. Otherwise r* contains a lattice
M* _ (DiD, v) with M*/Dio = p. In the coordinates with respect to an
orthonormal basis of the sublattice Z10 of Dio write v = 1/p(al, ... , alo)
with ai E Z and lail :::; (p - 1)/2. Let n2 := 10 1 lajl [ = il for
z=0,... p-l Theni = 0.... 1 2 . Then

Multiplying by the integers 2, ... , p - 1 and reducing the coefficient 
modulo Z, one finds in total (p - 1)/2 inequalities (1), where the ni are
permuted cyclicly. Summing them up, one finds

If p &#x3E; 7 this implies that nl + ... + n~p_1)/2 &#x3E;_ 11 which is a contradiction.
For p = 3, 5 one checks by hand, that there are no such lattices, using the
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fact that

0 One finds 336 overlattices of DIO of index 2 with minimum 1, which fall
into 2 isometry classes, represented by, say, L and L’. The overlattices of
L and L’ with minimum 1 and index 2 fall into 3 isometry classes. These
three lattices have up to isometry a unique overlattice, say M*, of index 2,
minimum 1. The lattice M is isometric to QI0. As in the proof of Lemma
3.2 one sees that M* has no proper overlattice of minimum 1. 0

Lemma 3.9. If T satisfies case (b) of Lemma 2.6 then r = 

Proof. Let r be such a lattice.
.We first show that 22 divides d: Let r’ := (r,x) for any x E X. Then r’

is an integral lattice with 2 1 [r’ : T~. Therefore 22 ~ 1 [r* / (r’) *] [r’ : r] d.
Since d  3719 and p3 divides d for some prime p - 3 (mod 4), one has

that either 73 ~ d or 33 ~ d. In the first case d = 73 - 22 or d = 7~ ’ 23. In the
second case d = 2~ ’ 33do with do  34 and all odd primes divide do to an
even power. Therefore one finds that
od = det(r) is one of the following:

*The maximal even overlattices off are all isometric to D4 1 E6: Let L be
a maximal even overlattice of r. Then det(L) is one of 7, 22 ~ 7, 23 ~ 7, 3, 22 ~ 3,
or 23 - 3 and for each determinant there is only one genus of maximal even
lattices. If det(L) = 23 .7, then the Sylow 2-subgroup of IF* /IF is isometric
to the one of L*/L. But the latter does not contain an isotropic vector,
which contradicts the fact that 2x is isotropic for all x E (r*)1. Therefore

23 . 7. For the other determinants one can list all the lattices in
the genus (e.g. with [MAG]). The property that min(L*) &#x3E; 1 excludes all
possibilities except for L = D4 1 E6.
o There is a unique orbit of overlattices of index 3 of (D4 1 E6)* under the
automorphism group that consists of lattices of minimum &#x3E; 1. Let M* be
such a lattice. All the overlattices of M* one index 2 or 5 contain vectors
of length  1. Therefore r* is an overlattice of M* of index 3, and there
are only 48 such lattices of minimum &#x3E; 1. All these lattices are isometric
to 0

3.3. The case s = 135. In this section we prove the following

Theorem 3.10. Let A be a strongly perfect lattice of dimension 10 with
2 - 135 minimal vectors. Then A is similar to 
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Let A be a strongly perfect lattice of minimum 1 and dimension 10, such
that I = 2 - 135. We assume again that A is generated by its minimal
vectors. Equation (*) of the proof of Lemma 3.4 shows that

is an even lattice of minimum 6. Let d := det(r). Since min(r*) = 2/3,
one has d  (~)I°,f8  214439. Let D := r*/r.
Lemma 3.11. r(4) C r n 2r* is a sublattice of r of index 2 or 4.

Proof. Since (D13) and (D11) hold for all a2 E one finds that for all

In particular if a E r, then (x, a)3 - (x, a) is divisible by 6 and hence
(~(a, a) - 9)a E 6r*. If 4 divides (a, a) then this shows that a E 2r*, and
hence r(4) C r n 2r*. In particular (a"~) is even for all a"~ E r(4) and
r (4) is a lattice.

Let al, a2 E r - r(4). Then al - a2 E r(4) if and only if (al, a2) is even.
Since = ~ the equality (D1111) shows that for all
c~i,... ,c~4 e r

Hence ~r~r~4~ ~  4. Since r(4) and the index is a power of 2, one has

Corollary 3.12. 28 I d = det(r).

Proof. Let r(4) be as in Lemma 3.11 and a E r - r(4) . Since r(4) g 2r*, all
the scalar products in the lattice r, := (1,~4~, a) are divisible by 2. Therefore
21° divides det(r’). Since [r : r’~  2, 28 divides d. 0

Since the norms of the minimal vectors in r* are 2/3, it is clear that 3
divides d. Moreover, if 29 divides d, then also 21° divides d. If we are in
case (b) of Lemma 2.6, then the argument of Lemma 3.8 shows that also
21° divides d. Hence we have the following possibilities for d:

Lemma 3.13. I f r satisfies case (a) of Lemma 2.6, then det(r) is one of

If r satisfies case (b) of Lemma 2.6, then det(r) is one of
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If one could prove the existence of a norm 10 vector in r, then this would
exclude most of the possible determinants. But unfortunately, we did not
succeed in proving this directly.

Remark 3.14. If r contains a vector of square length 10, then 34 divides
det(r).

Proof. Let a E r with (a, a) = 10. Since 102  9, the scalar products (a, x)
with x E ~ are 0, ±1, ~2. By Lemma 2.1IN2(a)1 = 5 and ¿xEN2(a) x = a.
Calculating the norm, one finds that

since the vectors in N2 (o~) are minimal vectors in a lattice. Therefore

(x, y) = 3 + 6zy) for all x, y E N2 (a) and N2(a) generates a lattice isomor-
phic to 3 1 A5 of determinant 2 ’ 3-4. In particular one has an epimor-
phism Z3 0z h, N2 (a) ) - (Z3 ’V 3 1 A5) I (3 0z A5 ) * which contains
7~3 B29 r in its kernel. Therefore the order of the discriminant group r* /r is
divisible by 3 4 D

Lemma 3.15. There is an even overlattice r’ := (3xi, 3X2, r) isometric
to an even orthogonally decomposable lattice r’ ^--’ A2 1 L with r c r’ c
r + 3r*.

Proo f . Assume first that there are no vectors of norm 8 in r. Then the
minimum of the lattice T(4) of Lemma 3.11 is 12. Since the index of r(4) in
r is at most 4, one finds 12/ (4d) lllo  /10, hence d &#x3E; 1210/(4/10)10 &#x3E; 106.
This contradicts the fact that ( 2 )10~,10  214439. Therefore there
is a vector a E r with (a, a) = 8.
One calculates that rc2(a) = 2 and 2(xi + x2) - ~ where N2(a) -

IX1,X21- Since (zj, zj) = 2/3 and the xi are minimal vectors in r*, one
gets = 1/3. Let r’ := (3xi, 3X2, r). Then r’ is an even lattice and
L’ := (3x1- a, 3x2 - a)  r’ is a sublattice of r, isometric to A2. Moreover

- 1. So (xl, x2)  (r’)* generate the dual lattice of L’
and hence h’ ^--’ L for some 8-dimensional even lattice L. D

Lemma 3.16. The maximal even overlattice of the form A2 1 L of r is
Lo, with Lo isometric to one of

Proof. Using the fact that the rank of the Sylow-2-subgroup of the dis-
criminant group of an even lattice is congruent to the dimension modulo
2, one finds with Lemma 3.13 that the possible determinants of Lo are
1, 22, 5,2~. 5,2.4,3~, 2~. 32, 2 .4.32, 22 3, and 2.4.3. If det(Lo) = 22, then
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the discriminant group is isometric to the anisotropic group of Lemma 2.5
(1) and -/(Lo) = -1 =I (_1)8 contradicting Lemma 2.3. Similarly, there
is no maximal even 8-dimensional lattice of determinant 32. For all the
other determinants there is a unique genus of maximal even lattices Lo. If
det(Lo) = 1, then clearly Lo ^--’ E8. There is a unique even 8-dimensional
lattice of determinant 5, but its dual has minimum 2/5  2/3, therefore

5. The lattices Lo of determinant 22.51y in the genus of D41 A4.
This genus consists of 2 lattices, but only for A4, the dual lattice has
minimum &#x3E; 2/3. There are 2 lattices Lo of determinant 4 - 2, namely
Al (B D7 and J2Al Q) E7, for both of which the dual lattice has minimum
 2/3. If det(Lo) = 22.32, then Lo lies in the genus of D4. This
genus consists of 3 lattices, but only for A2 1 A2 1 D4, the dual lattice
has minimum &#x3E; 2/3. There is a unique genus of maximal even lattices Lo
with det(Lo) = 2.4.32, namely the one of A2 L Ai . It consists
of 8 lattices, of which all the dual lattices contain vectors of norm  2/3.
In the last 2 cases det(Lo) = 22 ~ 3 or 2.4.3, r satisfies the alternative (b)
of Lemma 2.6. There are in total 5 lattices in the two genera, only one of
which, D61 A2, has a dual lattice of minimum &#x3E; 2/3. D

The most complicated case is Lo ^--’ Eg. Since there is an even overlattice
A21 L of r generated by 2 vectors and the 2-rank of r* /r is at least 8, the
2-rank of the discriminant group of L is at least 4. By computer calculation
one checks:

Lemma 3.17. The sublattices L of E8 such that min(L*) &#x3E; 2/3 and the
2-rank of L*/L is at are contained in D41 D4.

Lemma 3.18. No prime p &#x3E; 7 divides det(r).

Proo f . Assume that a prime p &#x3E; 7 divides det (r) . Then det (r) is one of
2~. 3 ~ 132, 2 8.3. 112, 28 ~ 3 ~ 72, or 2~ . 3 - 72. In particular the maximal
even overlattice of Lemma 3.16 of r is E8. By Lemma 3.17 r* is an
overlattice of L* := D4 1. D4. We choose coordinates for this lattice,
such that v := (ai , ... , alp) has norm (v, v) := §(~+~i~2+~)+~~3~’
Note that the vectors with integral coordinates ly in L*. Assume that

p = ?,11, or 13 divides det(r). Then r* contains a lattice (L*, }, wherep

the coordinates of v are (al, ... , alo) E Z10 2 . Since
the Sylow-p-subgroup of r*/r is a hyperbolic plane, we may also assume
that pv is isotropic, i.e. ~2 ~ I (v, v). Since min(r*) = 2/3 we have that
(v, v) &#x3E; p2. Now 3 (al + ala2 + a2)  al + a2, because the difference is
3 (ai - 2a1 a2 + a2) = 3 (al - a2)2 &#x3E;_ 0. Therefore (v, v)  =: q+(v).
Working with this bigger quadratic form q+ we can argue as in the proof
of Lemma 3.8:  10 Ilajl I = z ~ for i = 0, ... 2 . Then
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which is a contradiction. D

Proof of Theorem 3.10. It remains to consider the sublattices of A2 1 Lo
for the lattices Lo in Lemma 3.16 that have one of the determinants not
divisible by 7, 11, or 13 that are listed in Lemma 3.13.
*We first consider the case that Lo Ef D6 1 A2. Then we are in case (b) of
Lemma 2.6 and hence 21~ divides the determinant of r. Since 
r is contained in a lattice A2 1 L with (Lo : L] = 2. One finds 3 isometry
classes of such lattices L, such that min(L*) &#x3E; 2/3. Calculating sublat-
tices of index 2 and testing isometry, one finds 22 sublattice of index 4 of
A2 1 Lo, 32 of index 8 and 8 of index 16, such that the minimum of the
dual lattices is &#x3E; 2/3. The latter 8 lattices have determinant 3~ ’ 210 and
minimum  4. Therefore r is of index 2 or 3 of one of those 8 lattices, but
one finds no such sublattices such that the minimum of the dual lattice is
&#x3E; 2/3. Therefore A2 1 D6.

In all the other cases we are in case (a) of Lemma 2.6.
.Now assume that Lo ~ D4 1 A2 1 A2. One finds 2 sublattices L of

index 2 of Lo where the dual lattice has minimum &#x3E; 2/3. A2 1 L has 13
sublattices L’ of index 2 and 4 sublattices L’ of index 4 with min((L’)*) &#x3E;
2/3. The latter 4 lattices have determinant 2833 but the Sylow-2-subgroup
of the discriminant group has only rank 6. So r is contained in one of
these lattices of index divisible by 2. One finds no sublattices M of these 4
lattices of index 2 with min(M*) &#x3E; 2/3. So also this case is impossible.
0 If Lo ~ D4 1 A4 then det(r) = 2$ ~ -3-5 3 and r is a sublattice M of

index 5 of one of the 9 sublattices L of A2 1 D4 1 A4 with min(L*) = 2/3
and L*/L ~ IFZ x IF3 x IFS. With the computer one finds no such sublat-
tices M such that M*/M has an elementary abelian Sylow 5-subgroup and
min(M*) = 2/3. Therefore 53 does not divide det(r).
0 The hardest case is that Lo = E8. By Lemma 3.17, r is contained in
A2 1 D4 1 D4 of index divisible by 4. One finds 36 isometry classes of
sublattices L of index 4 in A2 1 D4 1 D4 such that min(L*) &#x3E; 2/3, 5 of
which satisfy L* /L E£ F 8. If 28 is the highest 2-power that divides det(r),
i.e. det(r) is one of 28 ~ 3 . 5~, 2~. 3~ 52, 28 ~ 35, 2$ ~ 33, 28 - 3 then r is
contained in one of these five lattices M of index 5, 3 ~ 5, 32, 3, or 1. Since
all the lattices M have vectors of length 4, the latter case is impossible.
One finds no sublattices N of index 5 of the lattices M such that N* has
minimum &#x3E; 2/3. So the first two cases are also impossible. The lattices M
have 2 sublattices N of index 3, such that the minimum of the dual lattice
is &#x3E; 2/3. These two lattices still contain vectors of length 4. Therefore F is
a sublattice of index 3 of one of these two lattices. Up to isometry there is
a unique such lattice r such that min(r* ) &#x3E; 2/3. This lattice r is similar
to O



518

If 21° divides det(r), then r is contained in one of the (up to isom-
etry) 60 sublattices M of index 2 in the 36 lattices L above that have
min(M*) &#x3E; 2/3. Only for 8 of the 60 lattices M the Sylow 2-subgroup of
the discriminant group is of rank &#x3E; 8.

If 21° is an exact divisor of det(r), i.e. det(r) is one of 210 .3.52, 210 .33,
2~ ’ 3, then r is a sublattice of one of these 8 lattices N of index 5, 3,
or 1. Since all the lattices N contain vectors of length 4, the last case
is impossible. One finds no sublattices 0 of index 3 or 5 of N such that
min(O*) &#x3E; 2/3. Therefore this case is impossible.
The 60 lattices M above contain up to isometry 14 sublattices 0 of

index 2 such that min(O*) &#x3E; 2/3. All these lattices have vectors of length
4, and one finds no sublattices of indes 2 or 3 of these lattices such that the
minimum of the dual lattice is &#x3E; 2/3. So we finally proved Theorem 3.10.

D
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