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Modularity of an odd icosahedral representation

par ARNAUD JEHANNE et MICHAEL MÜLLER

d Jacques Martinet

RÉSUMÉ. Dans cet article, nour démontrons que la représentation
03C1 de GQ dans d’image A5 dans PGL2(A5) correspondant
à l’exemple 16 dans [B-K] est modulaire. Cette représentation est
de conducteur 5203 et de déterminant ~-43. La modularité de
cette représentation n’était pas encore prouvée ; en effet, elle ne
vérifie pas les hypothèses des théorèmes de [B-D-SB-T] et [Tay2].

ABSTRACT. In this paper, we prove that the representation p
from GQ in with image A5 in PGL2(A5) corresponding
to the example 16 in [B-K] is modular. This representation has
conductor 5203 and determinant ~-43; its modularity was not yet
proved, since this representation does not satisfy the hypothesis
of the theorems of [B-D-SB-T] and [Tay2].

1. Introduction

Consider an irreducible Galois representation

and the corresponding induced projective representation

where we denote by Q an algebraic closure of Q and by GQ =Gal(Q/Q)
the absolute Galois group over Q.

Artin has conjectured (for any nontrival irreducible representation p :
GLn((C)), that the analytic continuation of the L-series associated

to the representation p is an entire function. It is known by results of Hecke,
Langlands and Tunnel ([Lan], [Tun]) that p satisfies Artin’s conjecture, if
Im(p) is solvable. If Im(p) is isomorphic to A5, this conjecture is not yet
proved in general, but it has been proved for particular cases by Buhler
([Buh]) in 1978, and by Kiming and Wang ([K-W]) in 1994. In 1999, Buz-
zard, Dickinson, Shepherd-Baron and Taylor proved the conjecture for in-
finitely many icosahedral representations ([B-D-SB-T]). Moreover, in 2000,
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Buzzard and Stein gave eight other examples of modular representations in
[B-S] and Taylor gave another result that proves the conjecture for infinitely
many icosahedral representations ([Tay2]).

In all these examples and theorems one has to assume, that the repre-
sentation p is odd, that is, det(p)(c) = -1, where c denotes the complex
conjugation. And for odd representations, Artin’s conjecture is equiva-
lent to the fact that the L-series of this representation coincides with the
L-series L( f, s) of a weight one modular form f (see (D-S)).
We give one more example for the Artin conjecture with det(p) = X-43

and conductor 5203. With this method one can verify Artin’s conjecture for
each odd representation with quadratic determinant and conductor lower
than 10000. We prove in fact the modularity of this representation by using
the computation of its L-function ([Jeh]) and a basis of the C-vector space
S2(5203,1) of cusp forms of weight 2, conductor 5203 and nebentype 1.

Note that this representation does not satisfy the hypothesis of the main
theorem of [B-D-SB-T]. Indeed, if A and /i are the eigenvalues of the Frobe-
nius element Frobp,2 in 2, then A/p has order 5. We check too that the
representation does not satisfy the hypothesis of the theorems of [Tay2].

Acknowledgement. It is a pleasure for the authors to thank Gerhard Frey
for fruitful discussions and Kevin Buzzard for useful comments and ques-
tions.

2. Modularity of p

We consider the L-function

of our irreducible two-dimensional representation p. We want to prove that
the series deduced formally from L(p, s)

(where q = e2i1rz) is a newform of weight one and level equal to the con-
ductor of p. We make use of the following proposition (see [Frel],
proposition 1. 1).

Proposition 2.1. Assume that belongs to the space

Mk(N, X) of modular forms of level N and nebentype X, where N is an inte-
ger and X : (Z/NZ) * ---+ C* a Dirichlet character. Let J-l = N + ~)
(where p runs through the set of prime numbers dividing N). If bn = 0 for
0  n  pk/12, then g = 0.
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Let N = 8(p) be the conductor and let X be the determinant of p. Via
class field theory, we can consider X, as a Dirichlet character (7G/N7G)* -&#x3E;
C* .

Proposition 2.2. be an elements of Ml (N, X) and

If there are two elements g, and 92 in S2(N, X2) such that

and

then belongs to 81(N, X).

Proof. Since gl belongs to S2(N, X) and 0 to Ml(N, X), it is enough to
prove that the meromorphic function gi /0 is holomorphic. Moreover we

have 92g2 mod q¡.t/3. . Furthermore gi and 92g2 are both elements of
S4(N, X4), so we can apply proposition 2.1. This shows that gi = and
therefore that is holomorphic. D

Now we consider a projective representation p given by the polynomial
P(X) = X5 + 5X2 - 6X + 27. It is the example 16 of (B-K~. We consider
the lifting p of p with conductor 5203 and determinant X-43 (the character
associated to Q(V/’--4-3)) of [Jeh], example 6.

Theorem 2.3. The representations p is modular.

Proof. Let Q be the quadratic form Q(x, y) = x2 + xy + lly2; it is known
that the associated theta series

/ B

belongs to Ml(43, X_43). We recall that f is the series deduced formally
from L(p, s). For N = 5203, the element of proposition 2.2 is equal
to 1936. We shall prove in section 3 that there are two elements gl and g2
such that 

----

and

By proposition 2.2, we conclude that f is congruent to an element 9 =
gl/8Q in 81(5203,X-43) modulo As the series L(p, s) has an Euler
product, in which the term corresponding to the prime number 2 is
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it follows that g mod qlooo is an eigenvector for the Hecke operator T2 and
the associated eigenvalue is equal to i 1-2v’s. We obtain that

and then by proposition 2.1:

It proves that there exists an eigenform h in 81 (5203, X-43) with eigen-
value for T2 equal to il-2v’5. By [D-S], theorem 4, we obtain a Galois2 

*

representation

associated to h. The conductor of this representation divides 5203 = 11 ~ .43
and its determinant is equal to X_43· After [D-S] the eigenvalue of T2 is the
trace of a Frobenius endomorphism at 2. The trace i 1 2 can be obtained
neither by a tetrahedral representation (Im(ph) - A4) nor by an octahedral
one S4). Assume that ph is a dihedral representation. We know
that there is a quadratic field and a character p of the absolute
Galois group of such that ph is the induction of cp. The conductor

8(ph) is given by the formula

where Od is the discriminant of and fcp the conductor of cp. Here,
d E {-11,-43,473}.

In ~( -43) and in Q(v/’--11), the prime number 2 is inert and then if
d = -43 or -11, the trace of the image of a Frobenius at 2 is zero. Hence,
we cannot have (where Frobp,2 is the Frobenius
element of ph in 2). Because of the formula (1), the only ramified primes
for ~p are those above 11. We denote by p the only ideal above 11 in the
ring of integers of ~( 473). By [PARI], we compute that the ray class
group of p in ~( 473) has order 15. Hence, the eigenvalues of the image
of a Frobenius endomorphism at 2 are 15th roots of unity. Therefore the
trace of a Frobenius at 2 belongs to the cyclotomic field which

does not contain 21-. We conclude that if d = 473, we cannot have2 
*

Tr(FrobPh?2) = 2 - We have now proved that the representation ph is
icosahedral.

Let Kh be a quintic subfield of . The only possibilities for the
valuations of the discriminant dKh of Kh for prime numbers not dividing
60 are 2 and 4 (see [Ser2], chapter IV, § 1, 2, 3). Since the determinant
of ph is X-43, the only possibility for the valuation of dKh in 43 is 2. For
the valuation of dKh in 11, we can have the valuations 4 (if the order of
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ph(hl) is equal to 5, where III is the inertia in 11), 2 or 0. We check then
in table 1 of [B-K] that the only possibilities are dKh = 112.432, and then
ph is isomorphic to p or dKh = 114.432, that is too large for this table.

Now, we assume that dKh = 114.432. In this case, the order Ofph(Ill) is
equal to 5. Since ph is modular, all the liftings (where X runs though
the Dirichlet characters) are modular. Moreover, there exists such a lifting
p’ with quadratic nontrivial determinant and such that the order of p’ (I5 )
is 5 (see [Serl], theorem 5 p. 228). Since p’ is modular, we can assume that
Ph = p’ (but then, the trace of the Frobenius in 2 of ph is no more 1

but 1-2v’5, multiplied by an element of f 1, -1, i, -i}). We can view Ph as a2 1 
_ _

representation with image in GL2(Z) , where Z is the integral closure of Z
in Q. We choose a place v in Z above 11 and we reduce ph modulo v. We
obtain a representation

Consider the Eisenstein series E1o normalized such that its constant term
is equal to 1. Then the coefhcients of the q-expansion of Elo are 11-
integers and Elo - 1 mod 11. Moreover, the reduction 8 = E bnqn of 
modulo v is a cusp form with coefhcients in IF11 of weight 11, level 5203 and
determinant jij-43 (the reduction of X-43 modulo v), that is an eigenform
for the Hecke operators and such that

for all prime number p ~ {11,43} (see [D-S] p. 520 and 521). Then, ;5h
satisfies Serre’s conjecture (3.2.3?) of [Ser3], that is, Ph arises from a cusp
form with coefhcients in IF’11. The level of this cusp form is equal to 112.43.
In this case, we know that we can "take off" the 11-part of this level. This
representation arises from a cusp form with level 43 (see theorem (2.1)
p. 643 of [Rib]). Finally, by theorem 4.5 p. 572 of [Edi], we obtain that ;5h
arises from a cusp form with the weight predicted by Serre. We conclude
that ph satisfies Serre’s conjecture (3.2.4?), that is, with the level and weight
predicted by Serre. Then this representation arises from a cusp form with
coefhcients in Fn of level 43, character jij-43 and weight k as in [Ser3], § 2.
To compute this weight, we consider the restriction of ph to the inertia
group 7n. We denote by 0 the cyclotomic character. Since has order
5 and has a trivial determinant, then l is conjugated to

, , , , - ,

and we obtain k = 51 or 31, using the recipe of [Ser3]. By theorem 3.4
of [Edi], that we recall below (theorem 2.4), we see that we only have
to deal with the spaces of cusp forms with coefficients in Fii of level 43,
character X_43 and weight 3 (resp. 7). We compute a basis for each of
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these spaces and check that no eigenform of these spaces corresponds to -
Indeed, we know that the values of the trace of Frobenius span Q(i, J5).
And the values of the reductions modulo 11 span IF121. Now if we look
at S3(43, X-43), we see that the coefficients of an eigenform of this space
span the root field of the polynomial X6 + 20X4 + 121X2 + 214, that is
congruent modulo 11 to (X + 3) (X + 8) (X~ + 7X + 8). Then we don’t have
an eigenform in S3(43, k-43) modulo 11 such that its eigenvalues span F121 .
For S7(43, X-43), the Hecke operator T2 has the polynomial characteristic

The reduction of this polynomial modulo 11 has two factors of degree 2:
X 2 + X - 3 and X 2 - X - 3. The roots of X 2 + X - 3 are 6 (-1 + and

6(-1 - If the derivation application acts twice on the corresponding
eigenforms (see theorem 2.4 below), we obtain the eigenvalues 2(-1 + 
and 2(201312013B/2). These values cannot correspond with an eigenvalue -’+V’52

multiply by an element of f 1, -1, i, 2013z}. We solve the case of the polynomial
X 2 - X - 3 by the same way. D

In order to write theorem 2.4, we have to introduce the derivation 0.
If f = E anqn is a formal series, we define the series Of by setting Of =
E If f is a modular form with coefficients in Fp, then Of is such
a modular form too. Moreover, the application 0 does neither change the
level nor the character, but it increases the weight by p + 1 (see [Edi]).
Theorem 2.4 (Edixhoven). Let f be an eigenform in a space Sk(N, X) of
modular forms with coefficients in IE’p. Then there exists integers n and k’
with 0  n  p - 1, k’  p -f- 1, and an eigenform g in Sk’ (N, X) such that
f and have the same eigenvalues for all p).

3. Existence of gl and g2

In this section we describe very briefly (since we use only standard tech-
niques in computational number theory) how one can show, that there are
two cusp forms gl, g2 E S’2(5203,1) which satisfies

with
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and n E N as in section 2.

The method is as follows: We compute a basis (hi , ... , of S2(5203,1)
with 

- 

’

(It is enough for us to compute the first 2000 coefficients of the q-expansion
of the hm ) . Here g = dim S2 (5203,1 ) = 473 is the dimension of the space
of cusp forms of level 5203. Such a basis exists due to results of [Shi],
see also [D-D-T]. To compute the basis we use the modular Symbol method
(introduced by Birch) and the explicit knowledge of the action of the Hecke
algebra on the modular symbols. For a description of this method see for
example [Cre] or [Mer].
The rest is linear algebra. After computing such a basis we have to check,

that there exists two cuspforms gl, g2 which satisfies 2. Let

be the matrix of the coefhcients of the basis ~hl, ... , and the coefhcients
of the t2 and the Then one has to show that

rank(A) = dim s2(5203,1) = 473.

(We multiply by 2 to get a q-expansion with integral coefficients for
r~  2000.) To compute the rank we reduce the matrix A modulo differ-
ent prime numbers p and check that rank(A mod p) = 473. Hadamard’s
inequality gives us a bound for the number of primes p that guarantee that
rank(A) = 473 over Q (we need 380 prime numbers p with p &#x3E; 2 ’ 10~; it is
clear that these bounds are not good, but the computation takes only 20
hours on a PII 450MHz Linux-PC, so we did not try to improve them).
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