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The class number one problem for some
non-abelian normal CM-fields of degree 24

par F. LEMMERMEYER, S. LOUBOUTIN, et R. OKAZAKI

RÉSUMÉ. Nous déterminons tous les corps de nombres de degré
24, galoisiens mais non-abéliens, à multiplication complexe et tels
que les groupes de Galois de leurs sous-corps totalement réels
maximaux soient isomorphes à A4 (le groupe alterné de degré
4 et d’ordre 12) qui sont de nombres de classes d’idéaux égaux
à 1. Nous prouvons (i) qu’il y a deux tels corps de nombres
de groupes de Galois A4  C2 (voir Théorème 14), (ii) qu’il y
a au plus un tel corps de nombres de groupe de Galois SL2(F3)
(voir Théorème 18), et (iii) que sous l’hypothèse de Riemann
généralisée ce dernier corps candidat est effectivement de nombre
de classes d’idéaux égal à 1.

ABSTRACT. We determine all the non-abelian normal CM-fields
of degree 24 with class number one, provided that the Galois group
of their maximal real subfields is isomorphic to A4, the alternat-
ing group of degree 4 and order 12. There are two such fields with
Galois group A4  C2 (see Theorem 14) and at most one with Ga-
lois group SL2(F3) (see Theorem 18); if the Generalized Riemann
Hypothesis is true, then this last field has class number 1.

1. INTRODUCTION

Let us first fix the notation for the groups that will occur: C, is the
cyclic group of order m, V = Gz x C2 is Klein’s four group, Q8 is the

quaternion group of order 8, A4 is the alternating group of order 12 (the
normal subgroup of index 2 in the symmetric group S4), and SL2(F3) is
the group of 2 x 2-matrices with entries in the finite field of 3 elements and
determinant 1.

Let N be a normal CM-field of degree 2n and Galois group G = Gal(N/Q) .
Since the complex conjugation J is in the centre Z(G) of G, then, its maxi-
mal real subfield N+ is a normal real field of degree n and G+ = Gal(N+ /Q)
is isomorphic to the quotient group G / {Id, J}. As delineated in the intro-
duction in [22], and according to [17], [18], [19] and [23], the completion
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of the determination of all the non-abelian normal CM-fields of degree
 32 with class number one is reduced to the determination of all the non-

abelian, non-dihedral normal CM-fields of degree 24. Now, there are 15
groups G of order 24, three of them being abelian and one of them having
trivial center Z(G) (namely, the symmetric group S4 of degree 4). Hence,
there are 11 possible Galois groups for non-abelian normal CM-fields. Let
us also point out that Y. Lefeuvre proved in [16] that there is only one dihe-
dral CM-field of degree 24 with relative class number one, and this dihedral
CM-field has class number one. We will focus on two of the remaining ten
non-abelian groups: those which have the alternating group ,A4 as a quo-
tient. There are only two such groups, namely SL2(F3) and A4 x Cz (see
e.g. [30]).

Let us also point out that .A4 x G2, SL2(IE3) and S4 are the only non-
abelian groups of order 24 whose 3-Sylow subgroups are not normal. More-
over, if the 3-Sylow subgroup of the Galois group of a non-abelian normal
CM-field N of degree 24 is a normal subgroup, then N contains a normal
octic CM-subfield M and the relative class number hAt of M divides the
relative class number hN of N (see [19, Th. 5] or [14, Cor. 1]), which
makes the situation easier. For example, quaternion octic CM-fields have
even relative class numbers ([17]), hence there are no normal CM-fields
with relative class number one with Galois group C3 x Q8 or ~8.

Here is the plan of our investigation: first, we will characterize the nor-
mal CM-fields with Galois groups SL2(F3) or .~44 x C2 and odd relative class
number (see Theorems 11 and 10). Then we will reduce the determination
of all the normal CM-fields of Galois group A4 x CZ to the determination
of all the imaginary sextic cyclic fields of relative class number 4, and us-
ing results from [26] we will complete the determination of all the normal
CM-fields with Galois group .A4 x C2 with relative and absolute classs num-
bers equal to one (see Theorem 14). Next we will give lower bounds on
relative class numbers of normal CM-fields of degree 24 with Galois group
SL2(F3) and odd relative class number (see Theorem 16). Since the explicit
construction of normal CM-fields of degree 24 with Galois group SL2(F3)
and odd relative class number is far from being easy, we will focus on the
class number one problem for these fields and quote a result from [23] (see
Proposition 17) which will provide us with a list of 23 cyclic cubic fields
such that any normal CM-field of degree 24 with Galois group SL2(F3) and
class number one is the Hilbert 2-class field of a field in that list. Finally,
we will complete the determination of all the normal CM-fields of degree
24 with Galois group SL2(F3) and class number one modulo GRH (see
Theorem 18).

1.1. Diagrams of subfields. Let N+ be a normal field of degree 12 with
Galois group ,.44. This group contains four conjugacy classes: Cll = {Id},
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DIAGRAM 1

C12 = {(123), (142), (134), (243)}, Cl3 = {(132), (124), (143), (234)},
and Cl4 = {(12)(34), (13)(24), (14)(23)}. Set V = Cil U C14. Then V is a
normal subgroup of A4, the quotient group A41V is cyclic of order 3 and
V is isomorphic to Klein’s four group. Note that V is a normal 2-Sylow
subgroup of A4. Let F be the cyclic cubic subfield of N+ fixed by V. Then
N+/F is biquadratic bicyclic and F is a cyclic cubic field whose conductor
we will denote by f .

Let N be a normal CM-field of degree 24 with Galois group SL2(F3).
There are eight elements of order 3 in SL2(F3), hence four subgroups of
order 3 in SL2(F3). These four groups are pairwise conjugate. Let K
be the fixed field of any of these four subgroups. Then K is a non-normal
octic CM-subfield of N whose normal closure is N, and K+ is a non-normal
totally real primitive quartic field whose normal closure is N+. The same
holds for any of the four fields conjugate to K over Q. The (incomplete)
lattice of subfields is given in Diagram 1.

Let N be a normal CM-field of degree 24 with Galois group G = A4 x C2.
Note that Z(G) = {(I, 1), (1, -1)1 so that the complex conjugation J of
G = is equal to (1, -1). Let Tl = (12)(34), T2 = (13)(24) and
T3 = (14)(23) denote the three elements of order 2 of .A.4. Set Gi = {(l,1),
(Ti,1), (Tj7-1), (Tk, -1)~ with 1  i  3 and = {1,2,3}. Then
each Gz is a subgroup of G = A4 x CZ and is isomorphic to (7G/27G)2 and

= Cl4 being a conjugacy class in A4 the three groups Gi, 1 
i  3 are conjugate in G.
Set Go = E VI = i(l, 1)7 (rl,1), (T2,1), (T3,1)~. For 0  i  3
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DIAGRAM 2

let Ki be the fixed field of Gi, and F be the fixed field of V x CZ . The
(incomplete) lattice of subfields is given in Diagram 2.

1.2. Factorizations of Dedekind zeta functions.
For a CM-field N we let ~N denote its Dedekind zeta function, hN its

relative class number, C~N E {1~2} its Hasse unit index, WN its group of
roots of unity and zvN the order of WN. Note that WN = WA where A
denotes the maximal abelian subfield of N. We have

Let us make some more general remarks. Using [7] one can easily prove
that we have the following factorizations of Dedekind zeta functions into
products of Artin’s L-functions :

where X ranges over all the irreducible characters of G = Gal(N//) which
satisfy X(Id). In the same way, for any subfield F of N+, we have

where X ranges over all the irreducible characters of G = Gal(N/F) sat-
isfying x(Id). We also remind the reader that Artin’s L-functions
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are meromorphic and that Artin’s L-functions associated with characters
induced by linear characters of subgroups are entire.

1.3. Prerequisites.
Here we record some results that will be used later.

Proposition 1.
1. Let N be a CM-field with maximal real subfield N+ and let t denote the

number of prime ideals of N+ which ramify in the quadratic extension
N/N+. Then 2t-l divides hN. In particular, if hN is odd then at most
one prime ideal of N is rarrzified irc the quadratic extensiorc N/N+.
Moreover, if the narrow class number hN+ of N+ is odd then the
2-rank r2 (N) of the ideal class group of N is equal to t - 1.

2. Let K/L be a finite extension of number fields. If at least one prime
ideal of L is totally ramified in the K/L then the norrrt map froyn the
narrow ideal class group of K to that of L is surjective. If K/L is
quadratic, L is totally real and K is totally imaginary then the norm
map from the wide ideal class group of K to that of L is surjective.

3. Let N be a CM-field with maximal real subfield N+ and assume hN is
odd. Let H2(N), H2(N+) and Hz (N+) denote the 2-class field of N,
the 2-class field of N+ and the narrow 2-class field of N+, respectively.
(a) The 2-class group of N+ is cyclic.
(b) H2(N) = NH2(N+) and H2(N) is a CM-field with maximal real

subfield H2(N+). Hence, the 2-class group of N is cyclic, for it
is isomorphic to the 2-class group of N+.

(c) If N/N+ is unramified at all the finite places then H2 (N)
H2 (N+) and hN+ = 2hN+.

(d) If N/N+ is ramified at some finite place, then Hi(N+) = H2(N+)
hN+ = hN+ and the narrow 2-class group of N+ is cyclic.

4. Let G denote the wide or the narrow ideal class group of any cyclic
cubic field. Then, for any n &#x3E; 0 the 2-ranks of the groups G 2n
{g2n ; g E G~ are even. Moreover, the narrow class number of a
cyclic cubic field is either equal to its wide class number or equal to
four times its wide class number.

Proof. 1. follows from the ambiguous class number formula ([13, Ch. 13,
Lemma 4.1]:

2t-l(VN+ : U2N+) hN+
Here UN+ denotes the unit group of the ring of integers of N+, and VN+
its subgroup consisting of all units that are norms from N. Now, assume

h9+ is odd. Since h9+ ~ (UN+ : UN+)hN and since this index is a power
of 2, we get hN+ = h9+, UN+ = Ur,+ and VN+ = UN+, which yields

It is also well known that the 2-rank of AN/N+ and
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C1N are the same when hN+ is odd, and we find 2t-1 = #ANN+ = 2’’2r’
which is what we wanted to prove. 

NIN+

2. follows from the proof of Theorem 10.8 in [31].
3.(a): The norm map N from the ideal class group of N to that of N+ is

onto (point 2), hence its kernel has order hN. The kernel of the canonical
map j from the ideal class group of N+ to that of N has order  2 ([31,
Th. 10.3~) and No j sends an ideal class to its square. Therefore, 2’’2~~’+~-1
divides hN, where r2(N+) denotes the 2-rank of the ideal class group of
N+. Therefore, if hN is odd then the 2-class group of N+ is cyclic.
(b), (c) and (d) follow from the very definitions of these class fields, from
the inclusions N C NH2(N+) C NH2 (N+) g H2(N) and from the fact
that hN odd implies NH2(N+) = H2(N).

4. Adapt the statement and proof of [31, Th. 10.1]. D

Proposition 2. Let be an ..4¢-extension, and assume that N/N+
and M/N+ are quadratic extensions such that Gal(N/Q) rri Gal(M/Q) ri
SL2(F3). Then the quadratic subextension M’ / N+ contained in MN/N+
and different from M and N is formal over Q with ,,44 x G2.

Proof. Write M = and N = N+( f ) for some 1£, v E N+. Since
M/Q and are normal, we know that = a 2 and v 1 3a2
are squares in N+ for every (j E Gal(N+/Q). But then the (p,v)l-u are
also squares, and it follows that is normal. Let F denote the cubic
subfield of N+. Then Gal(M/F) ~ Gal(N/F) - Qs, hence 
8(v, N+ / F) = (-1, -1, -1) in the notation of Lemma 1 in [15] (the entries
in S(p, N+/F) are the elements a 1+o, as a runs through the automorphisms
# 1 of Gal(N+/F)). This implies (+1, +1, +1), hence
Gal(M’/F) - C2 x CZ x C2, and our claim follows. 0

We also recall a result on A4-extensions of local fields (see ~11~, Korollar
2.16):
Lemma 3. Let p be a prime and assume that K/Qp is a normal extension
of the p-adic field Qp with Galois group A4. Then p = 2, and K is the
unique A4 -extension of in particular, 2 is inert in the cyclic cubic
subextension F = Q2 ((7) of K and totally ramified in K/F.
Proof. The inertia subgroup T of is an invariant subgroup of ,A4 and
hence must be 1, V or ,A4. Since unramified extensions are cyclic, we have
T ~ 1. In the case of tame ramification T is cyclic, and since neither V nor
,A.4 are cyclic, the ramification must be wild, and we have p = 2 or p = 3.
If we had p = 3, then T/Vl (where Vi is the first ramification group) must
be isomorphic to the 2-Sylow subgroup V of ,A4 contradicting the fact that
T/Vl must be cyclic by Hilbert’s theory. The rest of the lemma is a well
known result of Weil [32]; for different proofs see [11] and [27]. 0
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1.4. Normal CM-fields with Galois group .A4 x C2.
The lattice of subfields is given in Subsection 1.1, Diagram 2. Let N; _

i = 1, 2, 3, denote the three quadratic subextensions of N+/F; if
we write k = Q(B/2013m) for the complex quadratic subfield of N, then the
three non-galois sextic CM-fields inside are Kj = In the

sequel, we fix one of the fields Kl, Kz, K3 and denote it by K.
There is a simple criterion that allows us to decide whether F( va.) is

contained in an ,A,4-extension of ~:
Lemma 4. Let F/E be a cyclic cubic extension, y let a generate Gal(F/E),
and let a E FBF 2. Then aa ) is an A4 -extension of E if and only
if NF/EG: = aaU au2 is a square in E.

Proof. This is an easy exercise in Galois theory. 0

Lemma 5. Let p be an odd prime whose rarraification index in the A4-
extension L/Q is even. Then p splits in the cyclic cubic subfield F of L.

Proof. Suppose not; then there is exactly on prime ideal p in F above p,
and since the ramification index of p is even, it must ramify in one of the
three quadratic extensions of F. Since these fields are conjugate over Q,
the prime ideal p ramifies in all three of them. This implies that p ramifies
completely in the V-extension L/F, but this is impossible for odd p by
Hilbert’s theory of ramification. D

We next list some useful consequences of the fact that hr, is odd:

Lemma 6. If hN is odd, then so is the narrow class number hF of F.
Moreover, each quadratic subextension of N+/F is ramified at some prime
ideal above each prime p that ramifies in k/Q.
Proof. Let (j = 1, 2, 3) denote the three quadratic subextensions
of N+/F, and let p denote any prime ramified in If Fl/F, say, is
unram.ified at p, then so are for j = 2, 3, since these extensions are
conjugate over Q. Thus N+/F is unramified at p, hence each prime above
p in N+ ramifies in N/N+. Since hN is odd, p cannot split in by
Proposition 1.1. But then the localization at p is an A4-extension
of ~, hence p = 2 by Lemma 3, and 2 is inert in and totally ramified in
N+/F: contradiction. Thus each NJIF is ramified at some prime dividing
P.
Now if h+ is even, then so is hF by [1]. By Proposition 1.4, the class

group of F contains V = C2 x G2 as a subgroup. Since, by what we just have
proved, N+/F is disjoint to the Hilbert 2-class field of F, the norm map
N : Cl(N+) 2013~ Cl(F) is onto, hence Cl(N+) has 2-rank at least 2. But
now Proposition 1.3(a) shows that hN must be even: contradiction. 0

Lemma 7. If hN is odd, then is un.ramified outside 200.
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Proof. Proposition 1.1 shows that any prime ideal p in N+ that ramifies in
N/N+ lies above a prime p that does not split in thus the localiza-
tion Nl lo has degree 12, hence is an A4-extension of ~. But Lemma 3
then gives p = 2. 0

Lemma 8. If hN is odd, then k/~ ramifies at exactly one finite prime po,
and this prime splits in F /Q.

Proof. Let p be an odd prime ramifying in k/Q. We deduce from Lemma 7
that the ramification index e+ of p in is even. Lemma 5 then shows
that p splits in F.
Now let t denote the number of odd primes ramifying in k/Q1 as we

have seen, these split in F, hence there are 3t primes ramified in A/F. By
Proposition 1.1, we find that 2 3t-1 I hA; from [24] we get that hi ) I 4hN
that is, 23t-3 1 h-. This implies t  1.

Thus there are two possibilities: t = 0 (and then is ramified only at
200), or t = 1; in the last case, there can be no ramification in at 2,
because otherwise Proposition 1.1 would show that 8 ~ 1 hA and 2 ~ 1 hN, by
[24] again.

It remains to show that, in the case t = 0, the prime 2 splits in 
To this end, we first show that the three non-normal sextic subfields Nj of
N+ are unramified outside 2. For suppose not; then there is an odd prime
p which ramifies in NJIF, and Lemma 5 shows that p splits in F. Hence
K/F is ramified at at least four primes: but then 2 hN as above.
Now assume that 2 does not split in F/Q and write Nl = We

claim that Nl/F is unramified outside 2. Since N11F only ramifies at 2
and since 2 is inert in F (clearly 2 cannot ramify in cyclic cubic extensions),
we have (a) = a2 or (a) = (2)a2 for some ideal a of F. Let /j E F be such
that (/3) = We get ahf = or ahF = 2,E,32 (actually, this last case
is impossible in view of Lemma 4) for some e E UF which must be totally
positive. This yields e = ~2 E UF (see the proof of Lemma 6), and since
hF is odd, we get Nl = F( JQ) = F( ahF) = F and N, would be abelian,
a desired contradiction. 0

""i- 
-

i=O

(use (3)); from the functional equation we get
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and using (1) we find
,

Since wK = 2 (for F is clearly the maximal abelian subfield of K), z.uN = wA
and Q,q = 1 for is cyclic (see [14, point 5 page 352]), we get

We claim that QK = 1. In fact, since wK = 2, we have QK = 2 if and
only if we are in the situation (i).2.(a) of Theorem 1 in (14~, i.e. if and only
if K = F(...!i) for some totally negative unit e E UF. But since F has odd
narrow class number (Lemma 6), every totally positive unit is a square,
and we get K = F ( yCI) contradicting the fact that is non-abelian.

Therefore, we finally get
Lemma 9. Let N be a normal. CM-field of degree 24 with Galois group
A4 x G2. odd, then 

-

Now we are ready to prove

Theorem 10. Let N be a normal CM-field of degree 24 with Galois group
A4 x C2. If hN is odd then exactly one rational prime po is ramified in
the imaginary quadratic field k, (Po) = PlP2P3 splits in F, k = 
hA - 4 (mod 8), hK is odd, QN = 2 and we may choose notation such that
pic is the only prime ideal of F which is ramified in Kif F for 1  i  3.

Proof. By Lemma 8 there is exactly one prime po ramified in k, and po
splits in F. Thus at least three finite primes split in A/F, and Proposition
1.1 gives 4 ~ 1 hA. From [24] we know that hA divides 4hN, hence we must
have h- 4 (mod 8). Now (4) implies that hi odd and that QN = 2.

Since hK is odd, there is at most one finite prime ramified in K-/F by
Proposition 1.1, and since F has odd narrow class number by Lemma 6,
it must ramify at some finite prime. Since the fields Ki (i = 1, 2, 3) are
conjugate over Q, the last claim follows.

It remains to show that k = Since po is the only ramified
prime in k/Q, this is clear if po is odd (we can even conclude that po -
3 mod 4 in this case). Ifpo = 2, however, we have to exclude the possibility
that k = Q( .J -1). This is done as follows: as in the proof of Lemma 8, we
write Nl = for some totally positive a E OF. From Lemma 4 we
know that Na is a square; suppose that a is an ideal square. Then a = ê{32
for some unit - (since F has odd class number), e is totally positive (since
a is), hence c must be a square (since F has odd narrow class number):
contradiction.
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Thus there is a prime ideal that divides a to an odd power, and since
Na is a square, there are in fact two such prime ideals (necessarily different
by what we just have proved), say p and p’. Write k = then

Ki = and if we had k = Q(H), then Ki = F(~). But
a is divisible by two prime ideals p ~ p’ (to an odd power), hence both p
and pt ramify in Kl/F: contradiction. D

1.5. Normal CM-fields with Galois group SL2(F3 ).
The lattice of subfields is given in subsection 1.1, Diagram 1. Our first

theorem shows that CM-fields N/Q with Galois group and odd
relative class number h Ñ arise as narrow Hilbert 2-class fields of their cubic
subfields F:

Theorem 11. Let N be a CM-field with Gal(N/Q) rr SL2(F3); let N+
denote its maximal real subfield and F its cyclic cubic subfield. If hN is
odd, then hp = hj m 4 mod 8, and hN+ is odd. Moreover, N+ is the
Hilbert 2-class field of F, h+(N+) = 2 mod 4, and N is the narrow Hilbert
2-class field of N+.

Conversely, if is a cyclic cubic extension with hF - hF - 4 mod 8,
let N+ denote the 2-class field of F. If hN+ is odd, then there exists a
normal. CM-field N with SL2(F3) containing N+ and with
odd class number hN¡ in particular, hN is odd.

Proof. Note that hF = h+ = 4 mod 8 if and only if C12(F) - 
C2 x GZ by Proposition 1.4.

Assume that hN is odd. We first claim that N/N+ is unramified at all
finite primes. If at least two finite primes ramify in N/N+, then hN is
even by Proposition 1.1. If exactly one finite prime P of N is ramified in
N/N+, then any automorphism of N/Q must leave P fixed (that is, we
have = 24). Thus the localization NP is an SLZ(IF3)-extension of Q§ ;
hence it contains an A4-extension of Qp, and Lemma 3 shows that p = 2.
But Weil [32] (see also [11] and [27]) has shown that Q2 does not admit
any SL2 (F3)-extension.

Thus N/N+ is unramified at all finite primes. We claim next that this
implies that N+/F is unramified at all finite primes. In fact, let P denote
a prime in N and let NT denote its inertia subfield in the extension N/F.
Then either NT = N (and P is unramified in N/F), or NT g N+ (since
each subfield 0 N of N/F is contained in N+). But the second possibility
cannot occur since N/N+ is unramified at all finite primes.

Hence N+/F is an unramified abelian V-extension, and this implies that
the class number hF is divisible by 4. We claim next that hN+ is odd;
this will imply that N+ is the Hilbert 2-class field of F and hence that
C12(F) - V. Assume therefore that hN+ is even; since C12(N+) is cyclic by
Proposition 1.3.a), there exists a unique quadratic extension M/N+ that
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is unramified everywhere. Since N is ramified at oo, we conclude that

M #’ N. Now M is normal over Q, since any Q-automorphism fixes N+
and maps M to a quadratic extension of N+ that is unramified everywhere,
i.e. to M itself.
Now either Gal(M/Q) ~ A4 x G2, or Gal(M/Q) ~ SL2(F3 ); in the

latter case, Proposition 2 shows that the third quadratic extension M’/N+
contained in MN/N+ has Galois group A4 xC2; moreover, since M/N+ and
N/N+ are unramified at the finite primes, so is M’/N+. Let M denote this
,A4 x C2-extension, and let p be a prime ramifying in the quadratic subfield
k of M/Q: since N+/F is unramified, p must ramify in M/N+, and this
yields the desired contradiction.

Finally we know from [2, Thm. 2.5] or [5] that is always even. But
the factor group Cl+(N+)/Cl(N+) is elementary abelian, and Proposition
3.3.(c) and (d) show that either hN+ = or that is cyclic; in
both cases, we conclude that 2 mod 4. This implies that N is the
narrow Hilbert 2-class field of N+ as claimed. Moreover, we find that the
narrow 2-class number of F divides 2 - (N+ : F) = 8, and Proposition 3.4
now shows that V.

For a proof of the converse we notice that hN+ is even by the results of [2]
and [5]. From [6] or [29] we know that the 2-class group of N+ is cyclic; in
particular, there is a unique quadratic extension N/N+ that is unram.ified
at the finite primes. By a standard argument, uniqueness implies that
N/Q is normal, and by group theory the Galois group of this extension is
A4 x C2 or SL2(F3). The first case cannot occur, however, since N/F would
be abelian then; thus SL2(F3 ). This gives Gal(N/F) - Q,
and now [10, Hilfssatz 2] shows that the class number of N is odd. 0

Since N+/F is unramified we must have dK+ = dF = f2 (see [12]) and
dK = = f 4 (since N/F is unramified at all the finite places, the index
of ramification in of any prime ideal of N is equal to 1 or 3, hence
is odd. Therefore, the quadratic extension K/K+ is unramified at all the
finite places). Finally, we have:

Lemma 12. Let K be one of the four non-normal octic CM-fields of N. If
1 then 1.

This will help us considerably since hK is much easier to compute than
hN. Our strategy is first to find an upper bound on f when hN = 1 (see
Theorem 16), second to determine all the non normal totally real quartic
fields K+ with normal closure of degree 12 and Galois group A4 and such
that dK+ = dF = f 2 and such that f is less than or equal to this bound,
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TABLE 1

third to compute hK for each possible K+, and fourth to compute hN
(where N = KF) for the few K’s for which hK = 1.

2. NORMAL CM-FIELDS WITH GALOIS GROUP A4 X C2 AND RELATIVE
CLASS NUMBER ONE.

The following result is proved in [26]:
Theorem 13. Let A be an imaginary cyclic sextic field. Then A is the

compositum of an imaginary quadratic number field k = and a real

cyclic cubic field F whose conductor we denote by f . Assume that exactly
one rational prime po is rarrcified in the quadratic extension k/Q and that
po splits in F. Then, h Ã = 4 if and only if we are in one of the following
ten cases:

In ddl these cases we have h+ = 1.
Gauss has shown how to find a generating polynomial for cyclic cubic

fields with prime power conductor (see e.g. [3, Theorem 6.4.6 and Corollary
6.4.12]); the results are ( f, PF(X)) _ (19, X3 - X2 - 6X + 7), (31, X3 -
X2-lOX+8), (43,X3-X2-14X-8), (61,X3-X2-20X+9), (67, X3 -
X2 - 22X - 5), (73, X3 - X2 - 24X + 27) and (9, X3 - 3X + 1).
The two cases with D = -4 are excluded by Theorem 10; for each of

the other eight possibilities for A we now find a totally positive aF E OF
such that NF/Q(aF) = Po (it follows from the proof of Theorem 10 that
such an element always exists). We then have K = F( -aF ). According
to Table 1, there are only two normal CM-fields of degree 24 with Galois
group ~44 x C2 and relative class number one.
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Note that we have hK = hK in all cases. Moreover, it would have been
sufficient to compute only the four class numbers written in bold letters
since we know that aK must be primary, i.e., congruent to the square of
an element of OF (the ring of algebraic integers of F) modulo the ideal
40F. However, the multiplicative group (OF/40F)* is isomorphic either to
(Z/2Z)3) or to (Z/7Z) x (Z/2Z)3) , according as the prime 2 splits in F or
is inert in F. In particular, g E (OF/40F)* is a square in this group if and
only if g7 = 1 in this group, i.e., -aK is primary if and only if a7 + 1 is in
40F. The reader will easily check that aK is primary if (D, f ) = (-8, 31),
(-3, 61), (-7, 73) and (-11, 43).

Theorem 14. There are exactly two normal CM-fields with Galois groups
isomorphic to .A4 x C2 and relative class number one. Moreover, both fields
have class number one.

F(7+) from which Pari GP [25] readily yields = 2 18 31g and hN+ - 1
if D = -8 and f = 31, and dN+ = 36 ~ 618 and hN+ = 1 if D = -3 and
f = 61. D

3. NORMAL CM-FIELDS WITH GALOIS GROUP SL2(F3) AND CLASS
NUMBER ONE.

From now on we assume that N is a normal CM-field of degree 24 with
Galois group isomorphic to SL2 (F3 ). We give lower bounds on its relative
class number.

3.1. Factorizations of some Dedekind zeta functions.

Let j = exp(2Jri13) = (-1 + H)/2 denote a cube root of unity; with
the notation of subsection 1.1, Table 2 gives the irreducible characters of
,,44 (see [8, page 181]):

TABLE 2
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Since X4 = 0* is induced by a linear chaxacter 0 of the abelian subgroup
V of ,A4, Artin’s L function s e L(s, X4, N+ /Q) is entire and

where X is one of the two conjugate Dirichlet characters associated to the
cyclic cubic field F. In particular, s E~O,1~ implies (F(8) = ((8 )L(8, X)L(8, X)
= ~(s)~L(s, X)~z  0. Hence, if (N+(80) &#x3E; 0 for some so E]O, 1[ then the en-
tire function s e L(s, X4, N+ /Q) has a real zero on and ’N+ has at
least three real zeros on ]so, 1[.
The special linear group SL2(F3) has order 24, contains seven conjugacy

classes, two of them (namely Cil = {Id} and Cl2 = {2013Id}) consisting of
only one element. Next Cll U C12 = = Z(SL2(IF3)), and Table 3
gives the irreducible characters of SL2(F3) (see [8, pages 403-404, solution
to exercise 27.1]).

TABLE 3

According to (2) and Table 3, if N is a normal CM-field of degree 24 and
Galois group G = SL2(F3), then

3.2. Lower bounds on residues.

Lemma 15. 1. If the absolute value of the discriminant of a number
field M other than Q satisfies
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then the Dedekind zeta function s H (M(S) of M has at most m real
zeros in the range

In particular, Cm has at most two real zeros in the range
1

2. Let M be a normal field of degree 12 with Galois group ,A4. Then,
s e]0, 1[ and Cm(s) &#x3E; 0 implies that Cm has at least three real zeros
in the range ~s,1 (. In particular, 1 - (1/ log dM)  s  1 implies

0.
3. Let N be a normal CM-field of degree 24 with Galois group isomorphic

to SL2(F3). Set

Proof. The first part of point 2 was proved in the previous subsection. The
second part of point 2 follows from point 1. The first part of Point 3 follows
from point 2 and (5), and the second part of point 2 follows from [20]. Let
us now prove point 1. Assume ~M has at least m + 1 real zeros in the range

According to the proof of [28, Lemma 3] for any s &#x3E; 1 we have

and where p ranges over all the real zeros in ]0, 1[ of ~. Setting
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and since h(ti)  h(2)  0, we have a contradiction. Indeed, let q =
0.577 - -’ denote Euler’s constant. Since h(s) &#x3E; 0 for s &#x3E; 0 we do have

3.3. Lower bounds on h-
From now on we assume that hN = 1. By Theorem 11, we see that N/F

is unramified at all the finite places, therefore dN = = EN = E f,
and according to Lemma 15.3 we have

The field N+ is totally real of degree 12 and unramified over its cyclic cubic
subfield F of conductor f ; therefore we have dN+ = Since N+/F
is an unramified abelian quartic extension, we have (see [21] or [23]):

Combining (7) and (8) gives the following Theorem:

Theorem 16. Let N be a normal CM-field of degree 24 mith Gal(N/Q)
isomorphic to SL2(F3). If hly is odd then

In particular, hN = 1 implies f  83000.

We remark that the bound of f obtained through (8) is about ten times
smaller than the bound f  106 obtained from general upper bounds on
residues of Dedekind zeta functions.

According to numerical computations of bounds on Ress=1 ((N+) for all
the F’s of prime conductors f  83000 and according to (7) we proved in
[23):

Proposition 17. (See (23)). Let N be a normal CM-field of degree 24 with
Galois group isomorphic to SLZ(IFg). Assume that the class nurraber of N
is 1. Then,
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1. The class nnmber hF and narrow class number /t~ o f F are equal to
4, which implies that the conductor f of F is a prime congruent to
1 mod 6.

2. N+ is the narrow Hilbert 2-class field of F, is 2, and N is the
second narrow Hilbert 2-class field of F.

3. Finally, f is one of the following 23 prime values: f =163, 277, 349,
397, 547, 607, 709, 853, 937,1399,1789, 2131, 2689, 2803, 3271, 4567,
5197, 6079, 8011, 10957, 11149, 14407 or 18307.

3.4. The determination.
Our first job is the construction of the 2-class fields of these 23 cubic

fields. To this end, we first construct a quadratic unramified extension of
F and then use the formulas in [12] to compute the quartic polynomial
PK+(X) with integer coefficients whose roots generate N+.
The construction of the quadratic unramified extension of F is straight-

forward from the theoretical point of view; we did our computations using
PARI, and since the latest versions of KANT and PARI (which we did
not yet have at our disposal) allow the direct computation of Hilbert class
fields, we may skip the details here. Table 4 gives the results of our com-
putations, including the class number of a quartic field K+ generated by a
root of PK+(X).
We can check that the fields with hK+ = 2 (these class numbers were

computed using PARI) in this table really have even class number by explic-
itly constructing the unramified quadratic extension. In each case where
the class number of K+ in the wide sense is odd we now compute the
quadratic extension K/ K+ which is unramified at all finite primes (since
N/N+ is unramified outside oo and N+ ~K+ is cyclic of degree 3, K/K+
must also be unramified at all finite primes) and give an octic polynomial

such that K is generated by a (suitable) root of PK (x). Note that
the fact that this construction works implies that the class number of K+ is
odd - again by [2]. Finally we compute the class number of K; the results
are collected in Table 5.

This leaves us with the problem of computing the relative class numbers
of the fields N for f =163, 349, 397, 853 and 937. Florian Hess (Berlin)
first checked that hK = 1 for these fields using KASH (see [9]) and then
computed Cl(N):

The computation for f = 163 holds under the assumption of the validity
of GRH, and for the other conductors the groups given in this table are
subgroups of Cl(N) without any assumption. It is, however, reasonable to
assume that these subgroups are actually the whole class group.
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TABLE 4

Theorem 18. There is at most one CM-field N with Gal(N/Q) - SL2 (F3)
and class number 1, namely the maximal solvable extension of the cubic field
of corcductor 163 that is unramified at all finite prirraes. It is the splitting
field of the polynomials x8 + 9x 6 + 23~ + 14X2 + 1. If GRH holds then N
has class numbers 1.

Jiirgen K13ners has called our attention to the fact that the field in
Theorem 18 is the one with minimal discriminant and Galois group SL2(IF3 )
(see [4]).
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TABLE 5

-I - I ,

Added in proof. Meanwhile, the second author succeeded in removing the
GRH condition from the result of Theorem 18. See his articles [Compu-
tation of relative class numbers of CM-fields by using Hecke L-functions,
Math. Comp. 69 (2000), 371-393] and [Computation of L(O, X) and of
relative class numbers of CM-fields, preprint Univ. Caen (1998)].
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