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The distribution of square-free numbers of the
form [nc]

par XIAODONG CAO et WENGUANG ZHAI

RÉSUMÉ. Nous montrons que pour 1  c  61/36 = 1.6944..., la
suite [nc] (n = 1,2,...) contient une infinité d’entiers sans facteur
carré ; cela améliore un résultat antérieur dû à Rieger qui obtenait
l’infinitude de ces entiers pour 1  c  1.5.

ABSTRACT. It is proved that the sequence [nc] (n = 1, 2, ...)
contains infinite squarefree integers whenever 1  c  61/36 =
1.6944..., which improves Rieger’s earlier range 1  c  1.5.

1. INTRODUCTION

A positive integer n is called squarefree if it is a product of different
primes. Following a paper of Stux [15], Rieger showed in [11] that for all
real c with 1  c  1.5, the equation

holds, which is an immediate consequence of Deshouillers [4]. Here [t]
denotes the fractional part of t and E is a positive constant small enough.
It is an easy exercise to prove that

for 0  c  1. When 1  c  2, one still expects (1.2) to hold, but if c = 2,
Inc] is always a square, so that = 0.

It is worth remarking that Stux [15] has shown that tends to infinity
for almost all positive real 1  c  2 (in the sense of Lebegue measure),
however this result provides no specific value of c.
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The aim of this paper is to further improve Rieger’s range
1  c  1.5 by the method of exponential sums.

Basic Proposition. Let 1  c  2,7 = ~, and x &#x3E; 1. Then we have

with

where 0(t) = t - [t] - 1/2 and p(n) is the well-known M6bius function.
Using the simple one-dimensional exponent pair, we can prove imme-

diately from the Basic Proposition that

Corollary. Let 1  c  1.625, then four 6 &#x3E; 0

Combining Fouvry and Iwaniec’s new method in [5] and Heath-Brown’s
new idea in [6], we can prove the following better Theorem .

Theorem. Let c be a real constant such that 1  c  61/36, then

Notations. W g(x) means that f (x) = 0(g(x)), m - M means
c1M  m  c2M for some constants cl, c2 &#x3E; 0. We also use notations
L = log(x), e(x) = exp(27rix) and = B - [0] - 1/2. To simplify writing
logarithms, we will assume that all parameters are bounded by a power of
x. Throughout the paper we allow the constants implied by ‘O’ or ‘G’ to
depend on only arbitrarily small positive number E and c when it occurs.

2. PROOFS OF BASIC PROPOSITION AND COROLLARY

Proof of Basic Proposition. It is well-known that (see [9])

and

Obviously, In’] is square-free if and only n  square-
free. Therefore
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where

¿From (2.3), (2.1) and partial summation we can get the Basic Proposition
at once.

The proof of Corollary will need the following two lemmas. Lemma 1 is
well-known (see [1]), Lemma 2 is contained in Theorem 18 of Vaaler [16].
Lemma 1. Let Ig(m) (x)1 ’" YX’-- for 1  X  ~  2X and m =

1, 2, .... . Then

where (K, A) is any exponent pair.

Lemma 2. Suppose J &#x3E; 1. There is a function 0* (x) such that

By Lemma 1 and Lemma 2 we immediately obtain

Lemma 3. Let y &#x3E; 0, X &#x3E; 1, 0  Q  1, g(n) = (n + o,)’Y. Then

8c-5

Proof of Corollary. Taking M = X 16 by (2.2) we have
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By Lemma 3 with (r~, A) = ( 7, 7 ) and simple splitting argument we have

By Lemma 3 with (~, A) = (1, 3 ) we have

Now the Corollary follows from (2.6), (2.7), (2.8) and the Basic Propo-
sition.
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3. SOME LEMMAS

Lemma 4. Let 0  a  b  2a. Let be holomorphic on an open
convex set I containing the real line segement [1, b/a~. Assume also that

(1) M on I, (2) is real when x is real, (3) f"(x)  -cM
for some c &#x3E; 0. Let f’(b) = a, f’(a) = {3. For each integer v in the range
a  v  (3, define xv by f ~(xv) = v. Then

For the proof of Lemma 4, see Heath-Brown [6], Lemma 6.

Lemma 5. Suppose Ai, Bj, ai and bj are all positive numbers. If Q1
and Q2 are real with 0  Q2, then there exists some q such that

and

This is Lemma 3 of Srinivasan [14].
Lemma 6. Let 0  M  N  AM, and let a"L be complex numbers
with 1. Then we have

See Lemma 6 of Fouvry and Iwaniec [5].
Lemma 7. Let a, be given real numbers with a(,31 - 1)/32 ~ 0 and
a ~ N. Let 1, 0 and

where (r~, A) is any exponent pair.
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Lemma 7 can be proved in the same way as the proof of Theorem 2 of
Baker [1]. The idea of the proof is due to Heath-Brown [6].
Lemma 8. Under the conditions of Lemma 7, if we further suppose that
F » M, then

Proof. This is Theorem 3 of Liu [8], which is proved essentially by the large
sieve inequality developed by Bombieri and Ivaniec [3]. But the term

in Liu’s result is superfluous, since

then

Proof. By Lemma 4 and partial summation we get

where 1, 1 and
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for some cl , c2 &#x3E; 0.

Applying Lemma 6 to the variable n, we obtain that for some (h, 1

Now we use Lemma 7 to estimate the above sum, with M, H, F/N in
place of M, Ml , M2. This completes the proof of Lemma 9. D

Lemma 10. Under the conditions of Lemma 9, we have

Proof. Applying Lemma 8 to estimate the sum in (3.3), with M, H, F/N
in place of M, Ml, M2, we can obtain the bound (3.4) if we notice

4. PROOF OF THEOREM

Taking Y = x 3 , we have
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Lemma 11. We have

where (K, A) is any exponent pair.

Proof. By Lemma 2 we get for any J &#x3E; 0

I c(h) I G 1, bl (d) « 1, S(H, M, N) is defined in Lemma 9. D

Write lllh(y) = e (h(y7 - (y -~ 1)y)) - 1. By partial summation and
Lemma 1, we have

Here we used
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Now take (K, A) = (2/7,4/7) in (4.5) we have

¿From (4.4)-(4.6) we get

where in S(H, M, N) the coefficient of d is b(d) or b1 (d).
Now use Lemma 9 to estimate the above sum and then choose a best

J E (0, +oo) by Lemma 5, we obtain the bound (4.3).
Lemma 12. We have

Proof. In the proof of Lemma 11, using Lemma 10 in place of Lemma 9 to
estimate the sum in (4.8), we can get Lemma 12. D

Lemma 13. We have

Proof. In the proof of Lemma 13, we will use M2N « x’.
To estimate we consider the following cases:
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Similar to (2.6), by Lemma 3 with (~, A) = we get

By Lemma 11 with I we obtain

By Lemma 12 we have

Combining (4.10)-(4.12) completes the proof of Lemma 13. D
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Lemma 14. We have

take By lemma 2 we have

where H runs through J, 2 , 2 , - - - , and

for some

Since e we have

So it suffices to bound T1 (H, M, N).
Now first applying Lemma 6 to the variable d and then using Lemma 8

to estimate the sum directly with (a, fli , $2) = (27,7? 1)? we get
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Using the bound M2N « x’, one has

Now we note that N  x s , by (4.16) and simple splitting argument, the
bound (4.13) could be obtained at once. D

Finally, Combining Lemma 13, Lemma 14, (4.1 ) and the basic Proposi-
tion completes the proof of Theorem .

Acknowledgement. The authors would like to thank the referee for his
kind and helpful suggestions.
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