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The Josephus Problem

par LORENZ HALBEISEN ET NORBERT HUNGERBÜHLER

RÉSUMÉ. Nous donnons des formules explicites permettant de
calculer les nombres de Josephus j (n, 2, i) and j (n, 3, i) et four-
nissant une majoration et une minoration explicites de j(n, k, i)
qui ne diffèrent que d’au plus 2k - 2 (dans le cas k = 4, ces

bornes sont même meilleures). Nous proposons aussi un nouvel
algorithme pour le calcul de ces nombres basé précisément sur ces
estimations.

ABSTRACT. We give explicit non-recursive formulas to compute
the Josephus-numbers j(n, 2, i) and j(n, 3, i) and explicit upper
and lower bounds for j(n, k, i) (where k ~ 4) which differ by
2k - 2 (for k = 4 the bounds are even better). Furthermore we

present a new fast algorithm to calculate j(n, k, i) which is based
upon the mentioned bounds.

1. Introduction

The Josephus problem in its original form goes back to the Roman historian
Flavius Josephus (see [3]). In the Romano-Jewish conflict of 67 A. D., the
Romans took the town Jotapata which Josephus was commanding. He and
40 companions escaped and were trapped in a cave. Fearing capture they
decided to kill themselves. Josephus and a friend did not agree with that
proposal but were afraid to be open in their opposition. So they suggested
that they should arrange them in a circle and that counting around the
circle in the same sense all the time, every third man should be killed
until there was only one survivor who would kill himself. By choosing the
position 31 and 16 in the circle, Josephus and his companion saved their
lives. (How Josephus became Roman historian is another interesting story.)
Let us fix some notations in order to describe this problem generally. We
number the n positions in the circle by 0,1, 2, ... , n -1 and start counting
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at number 0. Then every kth element is removed. We define

to be the number of the ith element which is removed by the process de-
scribed above (see the example in Figure 1).

FIGURE 1. The Josephus sequence for n = 5, k = 3.

Numerous aspects of the Josephus problem and properties of the function
j are treated in the literature: In [5] the structure of the permutation

is investigated. In [7] a recursion formula for j(n, k, n) is derived (there
is some difference to our notation) and also some congruence properties of
the Josephus numbers. In [2] a recursive algorithm is given to calculate the
function j and to solve the equation j(n, k, i) = I for i when n and k are

given. In [1] an interpretation of the Josephus problem is given in terms
of the representation of rational numbers over the rational base Note

that the rational number plays an important role also in this work.

However, no explicit formula for the function j is known. It is the aim of
this article to give explicit (non-recursive) upper and lower bounds for the
value of j(n, k, i). These bounds coincide in case k = 2, k = 3 (and hence
this yields an explicit formula in the mentioned cases) and in the case k = 4
at least the so called collapsing numbers are determined exactly such that
the resulting formula is exact in most cases (however it may happen, that
upper and lower bound differ by 1). For k &#x3E; 5 the upper and the lower
bound differ by 2k - 2 such that at least for circles larger than n = 2k - 2
we can say who is not the ith element to be removed.

In Section 6 we also present a new algorithm to compute j(n, k, 1) for general
n, k, I which is based upon the formulas for the mentioned bounds.

To finish this introduction we want to clarify what we mean by "explicit
formula" :
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Definition We define the set of explicit functions f : ~ --&#x3E; ae (or f : IR -+
as follows:

v f is explicit if f is a constant (complex) function or the identity,
9 if f is explicit then F(f) is explicit if F is one of the functions exp,

log (the principal branch and log(0) := 0) or (if f is a real function)
floor,

9 if f and g are explicit then f o g is explicit if o is one of the binary
functions +, -, * (multiplication), / (division, := 0 for c E
C), o (composition).

A function f (nl, ... , nk) is said to be explicit in ni if for any fixed nj,
i, the function ni H f(nl, .. , , nk) is explicit.

This definition suffices for our purposes since it contains also constructions
like f (n) = max(g(n), h(n)), f (n) = Round(g(n)) or

as one easily can see. But in general a larger class is used to treat other
types of difference equations (see e.g. [4]).
An example is the well-known explicit formula

with

for the Fibonacci numbers which are recursively given by f (0) = f (1) = 1,
f (n + 2) = f (n + 1) + f (n). Of course, for concrete calculations one has
to compute an approximation for the number A either by A z for
some large jo or by an algorithm which provides numerical approximations
of V5 (since A - 1 2 5 ). In both cases the expense increases with the index
j for which one wants to know f ( j ).

2. A recursive formula for j(n, k, i)

A special case of the following formula may be found e.g. in [7]. However
we will give a much simpler proof.
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THEOREM 1. For the josephus function the following recursion
holds

with initial value

Remark: By "a mod b" we mean the non-negative integer remainder of
the division of a by b.

Proof: The formula (2) follows directly from the definition. To see (1) we
proceed by induction. Suppose, we know the value of j (n, k, i) =: g. Hence,
if we start counting at number 0, the ith member removed is number g.
Now Because of j (n+ 1, k,1) _ 
in the first step number (k - 1) mod(n + 1) is removed and for the second
step we start counting at number k. Therefore the problem is to find the
ith member which is removed (after removing (k -1) mod(n + 1)) when
we start counting at number k. But this is (g + + 1). So, we
get (1). L7

3. A recursive formula for the collapsing numbers cm

Consider for fixed k &#x3E; 1 and 1 &#x3E; 0 and for variable n &#x3E; I the recursive

with j(n, k,1) _
(k - 1) mod n.

DEFINITION. t)  k - 2 we call n a collapsing number, other-
wise we call n regular.

The reason for this terminology is that regular numbers n are characterized
by the property that

if the right hand side exists. We claim that for the first collapsing number
cl there holds

where I, I denotes the closest integer number greater or equal the real
number y. To verify formula (3) we consider two cases.
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First case: 1 + 1 is collapsing. This means, k,1 )  k - 2, which
is equivalent to I + 1  k -1. Hence, 1 + = 1 + 1, as claimed.- k-1

Second case: I + 1 is not collapsing. In this case, j (I + 1,1k,1) = k -1. Thus,
the first collapsing number is the smallest integer cl with the property, that
k-1+k(cl-(l+1)) &#x3E; CI. Solving for cl yields 
This establishes (3).
Now let cm denote the mth collapsing number and 
For d1 we obtain the formula

To see this, we consider again the following two cases:

First case: I + 1 is a collapsing number. In this case d1 = j(l + 1, k,1) _
(x - 1) mod(l + 1) = 1) mod(l + since x -1 &#x3E; z + 1.

Second case: I + 1 is not a collapsing number. In this case k - 1  I + 1,
and di = k - 1 + = k - (1 + 1)) mod Cl =
( f ’+’ 1 - k - + rw-l) by definition of cl and by (3).
If  then by the recursive formula of Theorem 1 we obtain

Hence, to compute j(n, k, n - 1) it is sufficient to know the sequences cm
and dm .

Let us start with a recursive formula for cm and dm (for fixed k and 1).

If cm and dm are known for some m, then cm+l = cm + s where s is the
least integer such that s ~ k + dm &#x3E; cm + s and dm+l = s(l~ -1) + dm - cm.
Hence we obtain

and thus

and after a short calculation
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It will be convenient to write the formula for cm+i in the form

with um e ~-(k - 2), ... , k - 3,1~ - 2}. Rewriting the definition (8) for aim
we obtain

The following table which we need later gives the values of and ~m if

cm mod(k -1) and dm are known.

Table 1
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Summary: Starting with (3) and (4) we can recursively compute the
sequences cm, dm and am (using either Table 1 or the formulas (6)-(9)).
Then j ( n, k, n - t ) is given by (5) .

4. How does the sequence cm grow?

Also for this section let k &#x3E; 1 and I be fixed. If 7 is a real number, then
:= y + c where - 2  E  2 is such that -1 + c is an integer number.

Let us start with the following technical lemma:

LEMMA 1. Let Qo, 7i?... be a sequence of real numbers and for i = 0,1, ...
let pi(x) E,j =o Then the sets

are convex for any m.

Proof: The proof is by induction: For m = 0 the assertion is trivial. Now
suppose we have verified the convexity of the assigned sets for m  mo and

suppose that convexity (say for M+) fails to be true for the index mo and
a sequence We may assume that ~o = 0 and that there exists an

xo &#x3E; 0 with  0 and &#x3E; pi(xo)lxo where E 8M+ .
By choosing ol appropriately we may further assume that &#x3E; 0. Now
consider the family := Pi (x)/ x ( j =1, ... mo) of polynomials. For xo
there holds qi’(xo) = + 2Pi(XO)/Xg   0
which contradicts the convexity of the sets M+ for the index ma -1. 0

THEOREM 2. The limit a := t)m (depending on k and I)
exists and for all m E IN there holds

for k &#x3E; 2 and cm = a - 2m for k = 2. Hence, for k E {2,3,4} there holds
, .. . ’" m.,

and for k &#x3E; 5
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Proof: 1. Step: By induction we get from (8) that

Hence there holds

Now

defines an analytic function and the convergence radius of the power series
is &#x3E; 1. Thus, we get

2. Step: For fixed h E 11V we define c~~ := ch(1 - k and for m E
{1,2,... h} em := i.e. eh - ch . Now we will show that em
is a good approximation for cm for 1  m  h. To simplify the notation
let qk := k * 

-
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Note that by (9) there holds

for arbitrary jO,jl. Consider the polynomials We

E {-A+2,...~-2}andp,(l)=E~o~+m+i E ~-k-~
2, ... , k - 2}. Hence by Lemma 1 we obtain that E [-k + 2, k - 2]
and hence that the right hand side of (14) has a value in ~-1 + ~, 1 2013 k~.
Thus we have

The first step allows to pass to the limit h 2013~ oo in (16) and we obtain

Now suppose that for some m there holds

and hence

(by changing sign if necessary). Observe that

Hence from Lemma 1 it follows that Qm+i = k - 2. Furthermore we claim
that (7y = 0 for j &#x3E; m + 1. In fact, if Uj is the first non-zero coefficient
after then  0 by (19). We replace aj by cr~ = Uj + 1 and crj+l
by = 1 without violating (18) and (19) if k &#x3E; 2. We denote
the modified polynomials by ph. It follows that t) &#x3E; k - 2
and hence ph(1 - t) &#x3E; k - 2 for some h large enough. But this contradicts
Lemma 1 and 17i = 0 for j &#x3E; m + 1 is established. This implies that for all
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j E IN there holds E IN which is clearly impossible if
k &#x3E; 2. Thus we have (10) and (11)-(12) follow immediately. 0

Remarks: (a) Note that if the sequence (or equivalently the sequence
~dm}) would be periodic, then a would be a rational number.

(b) As we can see from the second step in the above proof we can use
the approximation ah := t)h for Of and that then the assertions of
Theorem 2 hold with ah in place of a at least for indices m  h.

As a further fact we state the following
LEMMA 2. For k = 5 the following is true: Let I be fixed and let cm be a
collapsing number which is a multiple of 4, then there holds

Proof: Essentially we repeat the proof of the previous theorem: Notice
that ~ E IN implies am = 0 by Table 1. This allows to obtain a better
estimate in (14): In fact Lemma 1 implies now that ] E ~- 5 ,15 ~
and hence the right hand side of (14) has a value in ~-25, 2~~. D

5. Some special cases

In this section we consider the cases when k equals 2, 3 or 4 and the case
when k &#x3E; 5. The case when k equals 2 is very easy and we will give different
explicit (in n and i) formulas to calculate j(n, 2, i). For k equals 3, we will
give an explicit (in n) formula to calculate j(n, 3, i). If k equals 4, although
we can calculate the collapsing numbers cm precisely, the corresponding
explicit formula gives only an approximation j(n, 4, i) having the property
that j (n, 4, i) E ~ j(n, 4, i), j(n, 4, i) + 1?. In general for k &#x3E; 5 we obtain
j (n, k, i) E fi(n, k, 2), ... , j(n, k, i) + 2k - 2}.

The case when k equals 2:

If k = 2 then equation (11) states that

and because cl = 1 + (I + 1) = 21 + 1 we get 21 + 1 = 2a, hence a = 2~
and
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Because am = = 0 for all m, j (n, 2, n - l ) = 2 - (n - c,.,.t ) where c,.,.~ 
n  So, by (21), m - 1 = and finally

If 1 = 0, then by (22), j(n, 2, n) = 2(n - 2llog2nJ). Thus we get the binary
code of j (n, 2, n) if we first write n in the binary code, cancel the leading
"1" (note that this is n - llog2 and then join to this binary number a
"0" at the end. (This interpretation of the formula 2(n - 2llog2 nJ) can be
found in [1]).
Before we continue with larger values of 1~, we need the following lemma:

LEM MA 3. For k &#x3E; 3 there holds with - (and a as in Theo-
rem 1)

Proof: From Section 4 we infer

(i) Suppose Applying Lemma 1 as in the proof of Theorem 2 we
immediately conclude e"~ - c"~ &#x3E; 0.

(ii) Analogue to (i). 0

The case when k equals 3:

If k = 3, then equation (11) states that

(23) = round(em)

with e"~ = a ~ ( 2 )’n. To compute j(n, 3, n- l) by (5) it is sufficient to know
cm satisfying  and the corresponding To find cm is easy:
For n &#x3E; 5 the appropriate m is either rn - 1 or rn where

(use (23) to decide which one is the right choice).
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Now according to Lemma 3 we find dm E {0,1} as follows:

is given by (5).

Example: Let us use the above method in the original Josephus problem
as described in the introduction, i.e. we want to calculate j (41, 3, 41). The
value of a for k = 3 and 1 = 0 is a = 0.8111 ... (see Theorem 2).
1. Step: From (24) we find m = 10 and by (23) Cm = 47 &#x3E; 41. Thus m = 9
and c9 = 31 (again by (23)).
2. Step: eg - c9 = 0.1827 ... &#x3E; 0. Hence dg = 0.

3. Step: j(41,3,41) = 3 ~ (41 - c9) + dg = 30 (i.e. position 31 if we start
numbering at 1 rather than at 0). This was in fact Josephus’ place! D

The case when k equals 4:

For k = 4 equation (11) states that

with e = Of’ ( 4 )m. To by (5) we would again needm p
to know cm satisfying  and the corresponding dm . We find
cm as above for k = 3: For n &#x3E; 7 the appropriate m is either 1 or fn

where

(use (25) to decide which one is the right choice).

Unfortunately there seems to be no (easy) way to compute dm E {0,1? 2}.
However according to Lemma 3 we find that:

Now, if we choose = 1 in the first case and d,.,.z = 0 in the second
case and define j(n,4,n -I) = 4(n - + then we have by (5) that
~4~-~)e{j(~4~-~)J(~4,~-/)+!}.
We want to emphasize that in many cases we still can decide which possi-
bility is the right one. For this purpose we give several lemmas:
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LEMMA 4. For am = 4cm there holds

Proof: The formula for follows just from definition (8). Then (i)-(iv)
follow from Table 1. 1:1

LEMMA 5. For all I there is a number k, such that for all n &#x3E; n, the
following is true:

Proof: If s = 0, then of course ~k -1) mod n is the first number which is
removed.
If s &#x3E; 0, then the first number belonging to the set {~ 2013 l, o, l, ... k - 2}
which is removed is 1~ -1- s.
For both cases if we choose ni large enough, the number k -1- s is removed
too early. 0

As an immediate consequence of this lemma we get:

COROLLARY. For fixed I and k there is an mo, such that for all m &#x3E; mo
the following is true:

Further we have

LEMMA 6. For all I there is a number n, 2:: k, such that for all n &#x3E; ni the

following is true:

Proof: Like the proof of Lemma 5. D

The case when k &#x3E; 5:

Here we can no longer compute the sequence exactly. But according to
Theorem 2 we still have that cm E It is now hard

to say anything about the dm but if we define Em := im := 0
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and j(n, k, n - I) := k(n - cm) + d,~ then we have that j(n,k,n -1) E
~ j(n, k, n -1), ... j(n, k, n - l) + 2k - 2} (the discussion of the case n = Zm
is left to the reader). Thus if n &#x3E; 2k - 2 we can say at least which is not
the ith position to be removed.

6. An algorithm to compute j(n, k, i) 4

The problem in the previous section was to compute (for 4)
the corresponding cm with  and the value of dm. Let us define
cm := := We denote d~ := j. Let be
the number that is obtained by iterating (6) and (7) h-times starting with
c~ and d1n. The idea is now that cm+h ) I grows exponentially with
h if (cm, dm). To be more precise, let us define the matrix

for i E {I? 2} and E {O, 1, ... , k-2}. Starting with h = 0 we keep iterating
this matrix until there is only one entry left which satisfies  1. Then
we may conclude that

Then again by (5) we may compute j(n, k, i).
Now we give a rough estimate for the number h of iterations of the matrix
A which need to be carried out in order to decide c~ and dm: To do this
we assume that the sequence is pseudo-random, i.e. we assume the
following hypothesis:
HYPOTHESIS. Let 6j,; be 1 if i = j and 0 otherwise. Then for all d E
{0,1,...~-2}.- /

We assume that cm = cm and d1n = (the other cases are similar).
So if we compute the Josephus number j(n, k, n - I) (n &#x3E; cm) with d1n
and compare with the 1), we see that the difference is 1.

With ( 1 ) we see that if the first time dm+r = 0 occurs then the difference
of j(n, k, n - 1) (n &#x3E; cm+r ) gets 2, and so on. Now if
the difference has grown to a value larger than 2k, we may conclude that
ICm+h - 2 and hence 1. Using the hypothesis
we easily compute that the expected value for h is estimated by E[h]  k2.
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A refined analysis gives a better bound for the expected value of h, namely
E[h]  k(2 + log k). (Notice that similar results hold under much weaker
assumptions than the Hypothesis)

Example: Let us calculate j(n, k, n - 1) for k = 7, 1 = 2001 and the prime
number

. ----- ------

By Theorem 2 we find a = 2001.41696981983172 ... and then

m = round = 280. With ei = we find round(62so) =log m -

11128552382382930685534 &#x3E; n and hence we have to choose m = m -1=
279 such that ~e279~  n  l e28oJ. After iterating the matrix A~ 19 times
we find that

Thus C279 = ~e27s~ = 9538759184899654873315 and d279 = 4. Finally we
obtain
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