JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

GUY BARAT

Sur un procédé universel d'extraction

Journal de Théorie des Nombres de Bordeaux, tome 7, n° 2 (1995), p. 435-445

http://www.numdam.org/item?id=JTNB_1995 7 2 435 0>

© Université Bordeaux 1, 1995, tous droits réservés.

L'accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Sur un procédé universel d'extraction

par Guy Barat

Résumé – On étudie ici un procédé universel d'extraction de suites – extraction en un sens élargi qui sera précisé – consistant à piquer les chiffres de l'écriture en base d des indices de la suite, cela suivant une partie E de $\mathbb N$. On s'intéresse plus particulièrement à l'action de ce procédé sur les suites périodiques, en liaison avec la régularité de la partie E, en termes de périodicité, de quasi-périodicité et d'automaticité. Ainsi (à une restriction évidente près), les procédés associés aux parties ultimement périodiques de $\mathbb N$ transforment suites périodiques en suites automatiques, mais conservent l'automaticité – ces parties de $\mathbb N$ étant les seules à posséder cette propriété. D'autre part, les parties de $\mathbb N$ inférieurement lacunaires sont les seules à transformer toute suite en une suite quasi-périodique, et celles qui sont arithmétiquement denses changent le périodique en quasi-périodique.

I. Description du procédé

Soit une application $\theta: \mathbb{N} \to \mathbb{N}$ strictement croissante, ou, de manière équivalente, une partie infinie de \mathbb{N} , soit $E = \theta(\mathbb{N})$.

d étant un entier naturel supérieur ou égal à 2 fixé et n un entier naturel, on note $n = \sum_{k=0}^{\infty} \varepsilon_k(n) d^k$ le développement de n en base d.

A la suite de [5], on définit l'application $\sigma_E(n) = \sum_{k=0}^{\infty} \varepsilon_{\theta(k)}(n) d^k$. Autrement dit, σ_E supprime dans l'écriture de n en base d les chiffres dont le numéro d'ordre n'est pas un élément de E.

Examinons comment se construit la suite $(\sigma_E(n))_n$. Les premiers termes de la suite sont nuls, ils le sont jusqu'au premier n vérifiant $\varepsilon_{\theta(0)}(n) \neq 0$, soit $d^{\theta(0)}$ termes nuls. Autant valent ensuite 1, puis 2, et ainsi de suite jusqu'à d-1. Ensuite, on reprend tous les termes déjà écrits en leur ajoutant d, puis 2d, etc, en ayant auparavant répété le procédé $d^{\theta(1)-\theta(0)-1}$ fois. On répète alors la totalité de ce qui a été fait $d^{\theta(2)-\theta(1)-1}$ fois ; puis l'on reprend en ajoutant d^2 , $2d^2$, etc. Par exemple, si $E=2\mathbb{N}$ et d=2, les premiers termes de la suite sont : 010123230101232345456767.

Remarquons que l'on peut sans inconvénient supposer $\theta(0) = 0$, la suite obtenue à partir de E étant déductible de celle obtenue à partir de $\theta' = \theta - \theta(0)$ en "bégayant", c'est-à-dire en répétant chaque terme $d^{\theta(0)}$ fois.

1. Premières propriétés

- Suivant [3], $\sigma = \sigma_E$ est d-additive : si $m < d^r$, on a $\sigma(ad^r + m) = \sigma(ad^r) + \sigma(m)$. La vérification est immédiate.
- σ n'est jamais régulière c'est-à-dire qu'il n'existe pas de partie A de $\mathbb N$ de densité asymptotique 1 telle que $\sigma_{|A}$ soit injective -, sauf si θ est l'identité : en effet, si $r \notin E$, on a $\sigma(n) = \sigma(n + d^r \alpha)$, pour $0 \le \alpha \le d 1$ et $\varepsilon_r(n) = 0$

DÉFINITION 1. Soit A une partie de \mathbb{N} . On appelle densité asymptotique de A la limite quand N tend vers l'infini, si elle existe, de la quantité $\frac{1}{N}\#\big(A\cap \llbracket 0;\; N-1 \rrbracket \big)$

• σ est "presque toujours" M-régulière, en ce sens que la série numérique de terme général $\frac{\Delta(n)}{n^3}$ est convergente, où $\Delta(N):=\#\{(n,m)<(N,N);\sigma(n)=\sigma(m)\}$ (cf.[4]).

 $N = d^r$. En base d, n < N s'écrit $\varepsilon_{r-1}(n)\varepsilon_{r-2}(n)$... $\varepsilon_0(n)$, dans la mesure où $\{n \; ; \; n < N\} = \{n \; ; \; \varepsilon_k(n) = 0, \forall k \geq r\}$.

Notons $\tau_E(r) := \#[0; r-1] \cap E$. Pour alléger l'écriture, nous noterons le plus souvent τ pour τ_E quand cela ne saura entraı̂ner d'ambiguité.

On a $\sigma(n) = \sigma(m)$ si et seulement si, pour tout k de E, $\varepsilon_k(n) = \varepsilon_k(m)$, d'où $\Delta(N) = d^{\tau(r)}(d^{r-\tau(r)})^2 = d^{2r-\tau(r)}$.

Pour N quelconque, posons $r=\lfloor \log_d N \rfloor$. Comme $d^r \leq N \leq d^{r+1}$, on peut écrire $\Delta(d^r) \leq \Delta(N) \leq \Delta(d^{r+1})$, d'où $\frac{N^2}{d^2d^{\tau(r)}} \leq \Delta(N) \leq \frac{d^2N^2}{d^{\tau(r+1)}}$ en vertu du calcul précédent. En divisant cet encadrement par N^3 et en observant que $\tau(r+1) \geq \tau(r)$, il vient :

$$\frac{1}{Nd^2d^{\tau(r)}} \leq \frac{\Delta(N)}{N^3} \leq \frac{d^2N^2}{d^{\tau(r+1)}},$$

et on peut dire que la série de terme général $\frac{\Delta(n)}{n^3}$ converge si et seulement si celle de terme général $\frac{1}{Nd^{\tau(r)}}$ est convergente. Il s'ensuit que seules les

 σ correspondant à des parties E de \mathbb{N} largement lacunaires ne sont pas M-régulières. (Ce résultat n'avait pas été complètement élucidé dans [5]).

Cette propriété de M-régularité permet de se rendre compte que si le procédé décrit n'est pas stricto sensu une extraction (σ_E n'est pas strictement croissante), il ne s'en éloigne pas de façon immodérée.

• Soit \mathcal{E} un ensemble de parties de \mathbb{N} deux à deux disjointes. Alors, $\{\sigma_E, E \in \mathcal{E}\}$ est "éparse" (ce qui signifie d'après [5] que $\{n \in \mathbb{N} : \sigma(n) = \tau(n)\}$ est de densité asymptotique nulle pour tous σ et τ dans \mathcal{E}):

En effet, si E et F sont deux parties de \mathcal{E} , prenons $N=d^r$. Alors,

$$\begin{split} \frac{1}{N} \# \big\{ n < N \ ; \ \sigma_E(n) = \sigma_F(n) \big\} &= \frac{1}{N} d^{r - (\tau_E(r) + \tau_F(r))} d^{\min(\tau_E(r), \tau_F(r))} \\ &= d^{-\max(\tau_E(r), \tau_F(r))}. \end{split}$$

Pour N quelconque, on a alors $\frac{1}{N}\#\{n < N : \sigma_E(n) = \sigma_F(n)\} \le d^{1-\max(\tau_E(r), \tau_F(r))}$, où $r = \lfloor \log_d N \rfloor$.

Or,
$$\lim_{r\to\infty} \tau_E(r) = \lim_{r\to\infty} \tau_F(r) = +\infty$$
, d'où le résultat.

Remarquons plus généralement que si E et F sont deux parties infinies de \mathbb{N} , le même calcul montre que (σ_E, σ_F) est éparse si et seulement si $E \triangle F$ est infinie.

2. Une propriété universelle

Rappelons un résultat obtenu dans [5], et qui montre qu'il s'agit là d'un procédé intéressant :

THÉORÈME. Soit (X, μ) un espace topologique compact muni d'une mesure de probabilité borélienne. Soit $u \in X^{\mathbb{N}}$. Alors, pour $E \subset \mathbb{N}$ infinie :

- i. Si u est μ -équirépartie, alors $u \circ \sigma_E$ est aussi μ -équirépartie.
- ii. Si u est μ -bien répartie (c'est-à-dire si la famille des suites obtenues à partir de u par itérations successives de l'opérateur de décalage est uniformément μ -équirépartie), il en va de même de $u \circ \sigma_E$.

II. Application aux suites périodiques

On considère maintenant une suite périodique, de période q, sur un alphabet à q éléments. Nous prenons comme modèle de cet alphabet l'anneau $(\mathbb{Z}/q\mathbb{Z}, +, *)$, cela afin de disposer d'un morphisme de \mathbb{N} sur $(\mathbb{Z}/q\mathbb{Z})$, par $n \mapsto u_n = n \mod q$. Notons que, quitte à appliquer à u une fonction de sortie, on ne se restreint pas à lui supposer la forme indiquée.

Nous allons maintenant étudier les propriétés de régularité de la suite $u \circ \sigma$.

1. Deux cas évidents

PROPOSITION 2. i. S'il existe n > 0 tel que $q|d^n$, alors $u \circ \sigma$ est périodique. ii. Si E est de complémentaire fini, $u \circ \sigma$ est également périodique.

Preuve.

i. Utilisons le caractère d-additif de σ : pour tout $m \in \mathbb{N}$, pour tout $s < d^{\theta(n)}$, on a

$$u_{\sigma(md^{\theta(n)}+s)} = u_{\sigma(md^{\theta(n)})+\sigma(s)} = \sigma(s) \bmod q = u_{\sigma(s)}$$
 car $d^n | \sigma(md^{\theta(n)})$.

ii. Posons $s = 1 + \max(\mathbb{N} \setminus E)$. Si $n < d^s$, on a :

$$\sigma(n+qd^s) = \sigma(n) + \sigma(qd^s)$$
 par d-additivité
= $\sigma(n) + qd^{\tau(s)}$,

où l'on rappelle que $\tau(s)=\#[0\,;\,s-1]\!]\cap E.$ L'entier qd^s est donc une période de σ mod q.

Après avoir éliminé ces cas d'extrême régularité, on peut se demander s'il n'arrive pas à $u \circ \sigma$ d'être quelque chose d'un peu moins fort que périodique, en l'occurrence automatique. C'est le cas si E est suffisamment régulier, comme le montrent les propositions suivantes.

2. Les cas d'automaticité

PROPOSITION 3. Sous l'hypothèse de périodicité de u, on suppose que E est ultimement périodique (c'est-à-dire que la suite caractéristique de E –

 $(\chi_E(n))_n$ – est périodique à partir d'un certain rang). Alors, la suite $u \circ \sigma_E$ est d-automatique.

Preuve. Commençons par le cas où E est périodique, de période l.

Posons $a = \tau_E(l)$. Si $r < d^l$, on a:

$$\sigma(d^l m + r) = \sigma(d^l m) + \sigma(r) = d^a \sigma(m) + \sigma(r)$$
 pour $m \in \mathbb{N}$.

La d^l -substitution sur l'alphabet $\mathbb{Z}/q\mathbb{Z}$:

$$k \longmapsto [d^a k, d^a k + \sigma(1), ..., d^a k + \sigma(d^l - 1)] \mod q \ (k \in \mathbb{Z}/q\mathbb{Z})$$
 admet $u \circ \sigma_E \mod q$ comme point fixe.

Passons maintenant au cas général : E est ultimement périodique, périodique de période l à partir du rang t. Notons F la partie périodique de $\mathbb N$ de même période que E. Pour $r < d^t$ et $n \in \mathbb N$, on a

$$\sigma_E(d^t n + r) = \sigma_E(d^t n) + \sigma_E(r) = d^b \sigma_F(n) + \sigma_E(r)$$
, où $b = \tau_E(t)$.

D'après ce qui précède, $u \circ \sigma_F$ est d^l -automatique, donc d-automatique (ces deux propriétés sont classiquement équivalentes). Si (S, s, Φ, ρ) est un d-automate reconnaissant $u \circ \sigma_F$ (rappelons que S est l'ensemble des états, s un état initial, Φ une application de $S \times \{0, 1 ..., d-1\}$ dans S, et $\rho: S \to \mathbb{Z}/q\mathbb{Z}$, une fonction de sortie), on peut construire des automates $(S^{(i)}, s^{(i)}, \Phi^{(i)}, \rho^{(i)}) \equiv (S, s, \Phi, d^b \rho + i \mod q)$ pour $i \in \sigma_E(\llbracket 0 \ ; \ d^t \rrbracket) \mod q$.

L'automate dont l'ensemble d'états est $\bigcup_i S^{(i)} \bigcup \{0, ..., d^{t-1}\}$, d'état initial 0, et tel que :

- si
$$m < d^{t-2}$$
 et $0 \le k \le d-1, \ m = \sum_{v < w} a_v d^v, \ \text{avec} \ a_{w-1} \ne 0$; alors $k.m = m + k d^w$

- si
$$m = \sum_{v < t-1} a_v d^v$$
, avec $a_{t-1} \neq 0$; alors $k.m = s^{(\sigma_E(m+kd^{t-1}))}$,

et dont les autres caractéristiques d'attribution et de sortie sont entièrement décrites par les $\Phi^{(i)}$ et $\rho^{(i)}$, ce d-automate, donc, reconnaît σ_E mod m. q.e.d.

Remarque. la deuxième partie de la démonstration montre un résultat un peu plus fort, qui servira dans la démonstration de la proposition suivante : avec les notations précédentes - et indépendamment de toute hypothèse de périodicité sur u – si $u \circ \sigma_F$ est d-automatique, alors c'est également le cas de $u \circ \sigma_E$.

La proposition 3 admet la généralisation suivante :

PROPOSITION 3bis. On suppose que E est ultimement périodique et que u est d-automatique. Alors, la suite $u \circ \sigma_E$ est d-automatique.

Preuve. D'après la remarque précédente, on peut se restreindre au cas où E est périodique ; soit l sa période, et $a = \tau_E(l)$.

Commençons par une remarque technique. On sait ([1], [2]) que la d-automaticité de u est équivalente à la finitude de $\{(u_{d^m n+r})_n : m \in \mathbb{N}, r < d^m\}$. Montrons qu'elle équivaut aussi à la finitude de $\{(u_{d^m n+r})_n : m \in \mathbb{N}, r < d^m\}$, où c est un entier naturel arbitraire fixé. En effet, le premier ensemble de sous-suites étant inclus dans le second, la finitude de celui-ci assure celle de celui-là. Réciproquement, une sous-suite du dernier n'étant pas a priori nécéssairement dans le premier doit s'écrire $(u_{d^m n+\alpha d^m+\beta})_n$, avec $0 \le \alpha \le d^c - 1$ et $\beta < d^m$.

Or, $d^m n + \alpha d^m + \beta = d^m (n + \alpha) + \beta$. Une telle suite est donc l'image d'une suite du d-noyau de u par un itéré de l'opérateur de décalage d'ordre inférieur ou égal à d^c-1 . Les nouvelles suites éventuelles sont donc obtenues à partir des suites du d-noyau par un nombre fini de procédés d'extraction, ce qui achève de démontrer cette assertion préliminaire.

On suppose que $\mathcal{U} := \{(u_{d^m n + r})_n ; m \in \mathbb{N}, r < d^{m+1}\}$ est fini.

Soit alors $m \in \mathbb{N}$ et $s < d^m$. Effectuons la division euclidienne de m par l; il vient $m = l\kappa + r$. $\sigma(d^m n + s) = \sigma(d^m n) + \sigma(s) = d^{a\kappa}\sigma(d^r n) + \sigma(s)$ par d-additivité de σ et périodicité de E, d'où $u \circ \sigma(d^m n + s) = u_{d^{a\kappa}\sigma(d^r n) + \sigma(s)}$.

Du fait que $\sigma(s) < d^{a(\kappa+1)} = d^{a\kappa+a}$, on peut conclure en observant que les suites $(u \circ \sigma(d^m n + s))_n$ sont obtenues à partir de celles de \mathcal{U} par un nombre fini d'extractions (r est major'e par la constante l), et que le d-noyau de $u \circ \sigma_E$ est donc fini.

En fait, ces propriétés de conservation sont peu ou prou caractéristiques des ensembles E décrits ci-dessus. Cette réciproque fait l'objet de la proposition 4.

PROPOSITION 4. On suppose qu'il n'existe pas de n tel que $q|d^n$, que u est périodique, et que E n'est pas ultimement périodique. Alors, la suite $u \circ \sigma_E$ n'est pas d-automatique.

Preuve. Il suffit d'exhiber une partie infinie du d-noyau : plus précisément, on va montrer que si $m \neq n$, alors $(u \circ \sigma(d^m k))_k \neq (u \circ \sigma(d^n k))_k$.

On peut supposer n < m. E n'étant pas ultimement périodique, il existe un entier i tel que $\chi_E(n+i) \neq \chi_E(m+i)$, sinon, χ_E serait (m-n)-périodique

à partir du rang n. Ainsi, si, par exemple, on a $n+i \in E$ et $m+i \notin E$, alors $\sigma(d^m.d^i)=0$ et $\sigma(d^n.d^i)=d^{n+i}$ n'est pas nul modulo q en vertu de l'hypothèse sur q.

3. La pseudo-périodicité

Une deuxième façon d'approcher la périodicité peut s'obtenir en ne raisonnant non plus, en quelque sorte, algébriquement, mais en termes de densité : la quasi-périodicité.

DÉFINITION 5. Soit X un ensemble, et $u \in X^{\mathbb{N}}$. Suivant [4], u est dite quasi-périodique si:

$$(\forall \varepsilon > 0) \ (\exists t \in \mathbb{N}) : \liminf \frac{1}{N} \# \{n < N ; u_n = u_{n+t}\} \ge 1 - \varepsilon.$$

Voyons tout d'abord deux lemmes :

LEMME 6. Soit A une partie finie de \mathbb{N} , et $\varphi: A \to [0; d]$, une application. Alors, l'ensemble $\mathcal{A} = \{n \in \mathbb{N} ; \forall a \in A, \varepsilon_a(n) = \phi(a)\}$ est de densité asymptotique $d^{-|A|}$.

Nous ne détaillons pas la preuve de ce lemme facile.

LEMME 7. Soit E une partie infinie et t un élément de \mathbb{N} . Alors, l'ensemble A défini par : $A = \{n \in \mathbb{N} : \sigma(n+t) = \sigma(n)\}$ admet une densité asymptotique.

Preuve. Pour $N \in \mathbb{N}$, posons $A_N = A \cap [0; N-1]$. Si $n < d^{r+1}$, $n = a_r d^r + n_1$ avec $n_1 < d^r$. Si $n + t < (a_r + 1)d^r$, alors

$$\sigma(n+t) = \sigma(n) \iff \sigma(a_r d^r + (n_1 + t)) = \sigma(a_r d^r + n_1)$$

$$\iff \sigma(n_1 + t) = \sigma(n_1),$$

par d-additivité de σ , du fait que $n_1 + t < d^r$.

Soit $r \geq \log_d t$. Pour $n_1 < d^r$ tel que $n_1 + t < d^r$, l'équivalence cidessus fait correspondre aux n_1 éléments de A_{d^r} d éléments de $A_{d^{r+1}}$, à savoir les $\alpha d^r + n_1$, avec $\alpha \in [0; d-1]$. Il y a t entiers strictement inférieurs à d^r qui ne sont pas dans ce cas (ce sont les $d^r - k$, $k \in [1; t]$), auxquels correspondent dt entiers strictement inférieurs à d^{r+1} . On a donc l'encadrement $d(|A_{d^r}| - t) \leq |A_{d^{r+1}}| \leq d(|A_{d^r}| - t) + dt$. Alors,

$$\left| |A_{d^{r+1}}| - d|A_{d^r}| \right| \leq dt , \text{ d'où } \left| \frac{1}{d^{r+1}} |A_{d^{r+1}}| - \frac{1}{d^r} |A_{d^r}| \right| \leq \frac{t}{d^r}.$$

Ainsi $(\frac{1}{d^r}|A_{d^r}|)_r$ est-elle une suite de Cauchy, qui converge à ce titre vers une limite, soit α .

De même, si N est un entier quelconque, N se développe en base d selon : $N=a_rd^r+\ldots+a_0$; si $N_1=N-a_rd^r,$ on a :

$$\left| |A_N| - |A_{a_rd^r}| - |A_{N_1}| \right| \le t$$
, et $\left| |A_{a_rd^r}| - a_r|A_{d^r}| \right| \le a_rt$,
 $\operatorname{d'où} \left| |A_N| - a_r|A_{d^r}| - |A_{N_1}| \right| \le t + a_rt$.

En itérant cette majoration, puis en divisant par N, il vient, où $r = \lfloor \log_d N \rfloor$:

$$\left| \frac{1}{N} |A_N| - \frac{a_r d^r}{N} \cdot \frac{1}{d^r} |A_{d^r}| - \dots - \frac{a_{r-m}}{N} \cdot \frac{1}{d^{r-m}} |A_{d^{r-m}}| \right| \\
\leq \frac{m(d+1)}{N} t + \frac{|A_{N_{m+1}}|}{N} \\
\leq \frac{rt(d+1) + d^{r-m}}{N}.$$

Soit $\varepsilon>0$. Il existe $m\in\mathbb{N}$ tel que pour tout $N>d^m$, on ait $\frac{rt(d+1)+d^{r-m}}{N}<\varepsilon$. L'entier m ainsi fixé, on fait tendre N vers l'infini.

On a alors $\frac{|A_{d^{r-k}}|}{d^{r-k}} \to \alpha$ pour tout $k \in [0; m]$ et

$$\left|\frac{a_rd^r+\cdots+a_{r-m}d^{r-m}}{N}-1\right| < \frac{d^{r-m}}{N} < \varepsilon,$$

d'où l'encadrement:

$$(1-\varepsilon)\alpha-\varepsilon \le \liminf \frac{1}{N}|A_N| \le \limsup \frac{1}{N}|A_N| \le (1+\varepsilon)\alpha+\varepsilon.$$

Cela valant pout tout $\varepsilon > 0$, on a $\lim \frac{1}{N} |A_N| = \alpha$, ce qui achève la démonstration du lemme.

Le résultat suivant caractérise les cas où la suite σ est quasi-périodique. Naturellement, quand c'est le cas, $u \circ \sigma$ l'est a fortiori pour toute suite u, périodique ou non.

PROPOSITION 8. σ_E est quasi-périodique si et seulement si E est "inférieurement lacunaire", c'est-à-dire si $\limsup (\theta(n+1) - \theta(n)) = +\infty$. On rappelle que θ est l'application strictement croissante telle que $E = \theta(\mathbb{N})$.

Preuve.

• Considérons un intervalle [i : i+s] d'intersection vide avec E.

$$\sigma(n+d^i) \neq \sigma(n)$$
 implique $\varepsilon_k(n) = d-1$ pour tout $k \in [i; i+s]$.

L'ensemble de ces n est de densité asymptotique d^{-s-1} , d'après le lemme 6. Comme, par hypothèse, on peut considérer des intervalles de la forme ci-dessus avec des s aussi grands que l'on veut, il s'ensuit que σ est quasipériodique.

 \bullet Réciproquement, supposons que E est à lacunes bornées. Par hypothèse,

$$(\exists K > 0)(\forall m \in \mathbb{N}) : [m ; m + K] \cap E \neq \emptyset.$$

Soit $t\in\mathbb{N}^*$. On va montrer que $X:=\{n\ ;\ \sigma(n+t)\neq\sigma(n)\}$ contient une partie de densité asymptotique minorée par une constante indépendante de t.

Développons t en base $d: t=\sum_k \varepsilon_k(t)d^k$, et considérons l'ensemble fini F défini par $F:=\left\{k\in\mathbb{N}\;;\;\varepsilon_k(t)\neq 0\right\}$; posons enfin $s:=\min\;F$ et distinguons deux cas :

$$1^{er}$$
 cas: $s \in E$

Pour $n \in \mathbb{N}$, si $\varepsilon_s(n) = 0$, alors $\varepsilon_s(n+t) = \varepsilon_s(t) \neq 0$, d'où $\sigma(n+t) \neq \sigma(n)$. Aussi, X contient-il $\{n \in \mathbb{N} : \varepsilon_s(n) = 0\}$, qui est de densité asymptotique d^{-1} .

$$2^{\grave{e}me}$$
 cas: $s \notin E$

Soit $r=\min\big\{l\in\mathbb{N}\;;\;s+l\in E\big\}$. L'hypothèse sur E montre que r< K. Si $\varepsilon_{s+r}(t)=0,$ et si $n\in\mathbb{N}$ vérifie

$$\begin{cases} \varepsilon_s(n) = d - \varepsilon_s(t) \\ \varepsilon_{s+k}(n) = d - \varepsilon_{s+k}(t) - 1 \text{ pour } 1 \le k < r \\ \varepsilon_{s+r}(n) = 0, \end{cases}$$

alors,
$$\varepsilon_{s+r}(n+t) = \varepsilon_{s+r}(n) + 1$$
 (et $\varepsilon_{s+k}(n+t) = 0$ pour $0 \le k < r$)
= 1
 $\neq \varepsilon_{s+r}(n)$.

Si $\varepsilon_{s+r}(n) \neq 0$, et si n est un entier naturel tel que $\varepsilon_{s+k}(n) = 0$ pour $0 \leq k \leq r$, alors $\varepsilon_{s+r}(n+t) = \varepsilon_{s+r}(t) \neq \varepsilon_{s+r}(n)$, ce qui montre que X contient une partie de \mathbb{N} de densité asymptotique d^{-K} , q.e.d.

La condition suffisante de la proposition précédente admet une forme symétrique : on a vu que si χ_E admettait des plages arbitrairement longues de 0, la suite $u \circ \sigma_E$ était quasi-périodique. Sous l'hypothèse que u est périodique, supposons que χ_E admette des plages arbitrairement longues de 1 ; alors, la suite $u \circ \sigma_E$ est quasi-périodique, comme le montre la proposition suivante :

PROPOSITION 9. Soit E une partie de $\mathbb N$ contenant des segments (de $\mathbb N$) arbitrairement longs. Supposons que u est périodique. Alors, $u \circ \sigma_E$ est quasi-périodique.

Preuve. En vertu de la proposition 1, on peut supposer que $\mathbb{N} \setminus E$ est infinie, toute suite périodique étant évidemment quasi-périodique.

Modulo q, la suite $(d^n)_n$ est ultimement périodique ; soit r le rang à partir duquel elle est périodique (r=0 si d et q sont premiers entre eux).

Soit $h \in \mathbb{N}^*$. Par hypothèse, E contient q segments $E_1 < E_2 < \ldots < E_q$ de \mathbb{N} (en ce sens que $\max E_j < \min E_{j+1}$), de longueurs supérieures à (1+h)l et tels que pour tout $j \in [1;q]$, $1+\max E_j$ n'appartienne pas à E. On peut aussi imposer $r < \min E_1$. Pour $j \in [1;q]$, on considère $s_j := \min \{k \in E_j \; ; \; d^k \equiv d^i \mod q\}$. Enfin, on pose $\delta := \sum_{1 \le j \le q} d^{s_j}$. Par construction, δ est nul modulo q.

Soit maintenant $n \in N$. Si, pour tout j appartenant à [1;q], il existe $k \in E_j$, $k \ge s_j$, tel que $\varepsilon_k(n) \ne d-1$, alors $\sigma(n+\delta) = \sigma(n) + \delta$, d'où $\sigma(n+\delta) \equiv \sigma(n) \mod q$. Il en découle que

$$\begin{split} \left\{n \in \mathbb{N} \ ; \ \sigma(n+\delta) \equiv \sigma(n) \ \mathrm{mod} \ q\right\}^c \\ \subset \ \bigcup_{1 \le j \le q} \left\{n \in \mathbb{N} \ ; \ \varepsilon_k(n) = d-1, \ \forall k \in E_j, \ k \ge s_j\right\} \end{split}$$

 $\{n\in\mathbb{N}:\sigma(n+\delta)\equiv\sigma(n)\bmod q\}^c$ est donc contenue dans une partie de \mathbb{N} de densité asymptotique inférieure à $q.d^{-hl}$ d'après le lemme 6 et le caractère sous-additif fini de la densité asymptotique. Or, h est arbitrairement grand, d'où le résultat.

Références

- [1] G. Christol, T. Kamae, M. Mendès France, G. Rauzy, Suites algébriques, automates et substitutions, *Bull. Soc. Math. France* 108 (1980), 401-419.
- [2] A. Cobham, Uniform tag sequences, Mathem. Syst. Theory 6, 1972, p.164-192.
- [3] A. O. Gel'fond, Sur les nombres qui ont des propriétés additives et multiplicatives données, *Acta Arithmetica* XIII, 1968, 259-265.
- [4] L. Kuipers, H. Niederreiter, *Uniform distribution of sequences*, Pure and applied mathematics, Wiley, New-York-NY, 1974.
- [5] P. Liardet, Some metric properties of subsequences, *Acta Arithmetica* LV, 1990, 119-135.

Guy BARAT
Dynamique Stochastique et Algorithmique
Université de Provence
3 place Victor Hugo, case 96
13331 Marseille Cedex 03, France