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Elasticity of factorizations in atomic
monoids and integral domains

par FRANZ HALTER-KOCH

RÉSUMÉ 2014 L’élasticité 03C1(R) d’un anneau d’intégrité atomique R est définie
par : p(R) = sup um = u1 ... vn pour ui et vj irréductibles
dans R]. Nous étudions ici l’élasticité des anneaux d’intégrité noethériens
au moyen des invariants plus fins 03BCm (R) définis par :
03BCm(R) = sup {n|u1 ... um = u1 ... vn pour ui et vj irréductibles dans R}
Le résultat principal que nous donnons permet de caractériser les anneaux
d’entiers des corps de nombres qui ont une élasticité finie. Chemin faisant
nous obtenons une série de résultats sur les invariants 03BCm et p des monoïdes
et des anneaux d’intégrité qui ont un intérêt propre.

ABSTRACT 2014 For an atomic domain R, its elasticity p(R) is defined by :
p(R) = sup{m/n| um = vn for irreducible uj,vi ~ R} .
We study the elasticity of one-dimensional noetherian domains by means
of the more subtle invariants 03BCm (R) defined by :
03BCm (R) = sup{n| u1 um = v1 vn for irreducible uj, vi ~ R} .
As a main result we characterize all orders in algebraic number fields having
finite elasticity. On the way, we obtain a series of results concerning the
invariants 03BCm and p for monoids and integral domains which are of
independent interest.

INTRODUCTION

An integral domain R is called atomic if every non-zero non-unit of
R possesses a factorization into a product of (finitely many) irreducible
elements of R . We are interested in the deviation of R from being
factorial. One possible measure of this deviation is the elasticity p(R) ,
defined by :

Clearly, p(R) E [1, oo] , and if R is factorial, then p(R) = 1 .
The concept of elasticity was introduced by R. J. Valenza [20] for rings

of integers in algebraic number fields. Using a different terminology, the
elasticity of Dedekind domains was investigated by J. L. Steffan [19] . In
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a systematic way, the elasticity of various classes of integral domains was
studied in [1], [2] and [3].

If R is the ring of integers of an algebraic number field, then p(R)
depends only on the class group of R (cf. Corollary 1). More generally,
if R is a Krull domain, then p(R) depends only on the pair (G, Go) ,
where G is the divisor class group of R and Go is the set of all divisor
classes which contain prime divisors (cf. the Remark after Theorem 2).

If R is an order in an algebraic number field, then p(R) = oo may
occur. A necessary and sufficient condition for p(R)  oo is given in
Corollary 5. In Theorem 5 we produce estimates for p{R) , depending on
the class group G = Pic(R) and on the "local" elasticities p{R~) for

primes p dividing the conductor of R.
Since factorization properties of a domain only depend on its multiplica-

tive structure, it suggests itself to investigate them in a purely multiplicative
context. Thus we derive and formulate our main results in the context of
commutative and cancellative monoids. This has the advantage of being
more general and - what is more important - of revealing the combinatorial
structure of factorization properties. Even though most notions and results
of the paper concern monoids, the emphasis is on their ring theoretical ap-
plications. 

,

§ 1 PRELIMINARIES; AND p

Throughout this paper, a monoid H is a multiplicatively written
commutative monoid satisfying the cancellation law, with unit element 1 ~
H . We denote by H’ the group of invertible elements of H ; H is called
red uced if H" - ~ 1 } . If Hi and H2 are monoids, we denote by Hl x HZ
their direct product, and we view Hi and H2 as submonoids of HI x H2,
so that every a E Hi x H2 has a unique decomposition a = ala2 , where
al E Hi and For a monoid H , we use the notions of divisibility
theory in H as introduced in [17; 2.14].
By a factorization of an element E we mean a representation

of the form a = ... ~ where r &#x3E; 1 and u 1, ... , Ur E H are

irreducible; we call r the length of that factorization, we denote by
C N the set of lengths of factorizations of c~ , and we set

finally, we call
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the elasticity of a (in H ). For a E H’, we set pH(a) = 1 .
A monoid H is called atomic if every a E HBH’ possesses a factor-

ization. For an atomic monoid H , we call

the elasticity of H ; we say that H has accepted elasticity if p(H) _
pH (a)  oo for some a E H .

For an integral domain R, we denote by R* = RB{0} its multiplicative 
’

monoid. We set GR = £R-, LR = = lR~, pR - pR· , and we call
p(R) = p(R8) the elasticity of R. We say that R has accepted elasticity
if R8 has.

For an atomic monid H and mEN, we set

the invariants were introduced in [12] and also investigated in [7]
and [16]. They are connected with the elasticity as follows.

PROPOSITION 1. Let H be an atomic monoid, H =1= H" .

i) For every m G N we have

if H contains a prime element, then = 

ii) We have

iii) The following assertions are equivalent:
a) H has accepted elasticity.
b) There exists some N E I~Y such that p(H) = for

ccll m E N.

c) p(H) = for some m G N .

Proof. i) By definition,
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be a factorization of a of length s  m, let us+~, ... , ~c~, E H be

any irreducible elements, and set a’ = a~cs+1 ~ ... ~ um. Then we obtain
m E Ll (a) and N  N + m - s  S JLm(H), which implies

Now let p E H be a prime element, a E H, m E LII (a) and N =

LH (a) . If 1H (a) = s  m, then 1H (apm-’) = rri, = N + m - s
and consequently 11T  N + m - s  which implies 
&#x3E;2(H) .

ii) The first equality holds by definition; i) implies = I
1  j  m~ , and therefore the second equality holds.

For the proof of the limit assertion, observe that + r

and J-Lnr(H) 2:: rpn (H) for all n, r G N . Let A  p(H) be a real number
and such that J.LN(H) &#x3E; A . N , 
where q, r E No, r  N , and obtain

which implies JLn(H)jn &#x3E; A for all sufficiently large n; thus the limit
assertion holds true. 

’

iii) It suffices to prove that a) implies b). Let a E H be such that

p(H) = pH(a) and N = Then we have 

JLmN(H) since E jC~(a~) ~ and hence

for all 0

Proposition 1 has a counterpart for minimal lengths. For an atomic
monoid .H ~ ~IX and m G N , we define the following quantities:

they are connected with the elasticity as follows.
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PROPOSITION 2. Let H be an atomic monoid, HX. Then we have

~~ t~I ~  ~~ ~~I ~ for and

Proof. By definition, we have = 1m G N) , p(R)"~ 
u’m(H)jm and ~.’",,(H)  am(H)  for all m e N . Therefore it
remains to prove the limit assertions.

For any n, r e N, we have + r and 

ran(H) . Let A &#x3E; p(H)-l be a real number and N E N such that
 A . For n E N , set n = Nq+r , where q, r E No, r  N ,

and obtain

which implies un(H)/n  A for all sufficiently large n . Thus the limit
assertion for um(H)/m follows; that for is proved in the same
way. ll

The following finiteness result is of central importance.
THEOREM 1. Let H be a rraonoid such that finitely generated.
Then H has accepted elasticity.

Proof. [3; Theorem 7].

Remark. Let H be a monoid having tame factorizations of degree N as
defined in [7]; then we have

This follows from (7~, Remark 2 on p. 688, where the more precise result

is asserted. Since every finitely generated monoid has tame factorizations
[7; Prop. 2], this implies again p(H)  oo for every finitely generated
monoid .~I.
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§ 2 DIVISOR HOMOMORPHISMS AND COPRODUCTS

Recall from [11~, Definition 2.3 that a monoid homomorphism cp; H --~

S is called a div2sor homomorphism if X, y E H and V(x) implies
If p : H - S is a divisor homomorphism, then p induces an

isomorphism ~p* : VH, and pH C S is a saturated submonoid,
i. e., a, b E WH, c E S and a = bc implies c E The factor monoid

SIVH consists of all congruence classes for the congruence -, , defined

by a , b if = bcp(y) for some x, y E H ; its quotient group
is denoted by C(p) and is called the class group of W. C(p) is an

abelian group; we usually write it additively, and for a E S we denote by
[a] E C the class of a . Since cpH C S is saturated, we have
[a] = 0 if and only if a E WH -
The class group of a divisor homomorphism admits the following group-

theoretical description. For a monoid H , let Q be a quotient group of H ,
and call = Q/Hx the group of divisibility of H (corresponding
with the notions in ring theory). Clearly, G is a functor from monoids
to abelian groups. If cp : H -~ S is a divisor homomorphism, then
G(p) : G(H) -~ G(S) is a group monomorphism, and the natural map
S - G(S) induces a functorial group isomorphism ~ 

For any set P, let be the multiplicative free abelian monoid
with basis P. Let G be an additive abelian group and Go C G a subset;
for an element S = g1 ~ ... ~ gs we call a(S) = No the size

and + ~ ~ ~ + 98 E G the content of S ; o-: 0(Go) - No and
--~ G are monoid homomorphisms. The monoid

is called the block monoid over Go ; it is a Krull monoid and was in-

vestigated in [9] and [10]. Davenport’s constante D(Go) is defined as

D(Go) = 0 if xi(Go) _ {1}, and

otherwise. If Go is finite, then D(Go)  oo ; if Go = {0} , then D(Go) =
1; if 101 and ~1~, then D(Go) &#x3E; 2. If #G = oo, then
D(G) = oo by [9; Prop. 2]. For a survey and recent results concerning
D(G) , see [13].
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THEOREM 2. Let cp : H -+ S be a divisor homomorphism of atomic
monoids, H =1= H" and G = C(cp) . Let Go be the set of all classes
g E G containing irreducible elements of S .

i) For all we have and

ii) Suppose that S = for some set P and D{Go) &#x3E; 2 . Then
we have 

11

for all with equality if m = 0 mod 2 and Go = -Go.
Moreover, we have 

..

with equality if Go = -Go .

Proof. See [12; Theorem 1] for the results concerning tLm; the results

concerning p are easy consequences. Note that the notion of a divisor

homomorphism used in [12] differs slightly from that used here. The proofs
given there are valid literally in our case. 0 

’

Remark. Theorem 2 applies for Krull monoids and hence for Krull domains;
see [10] and [14] for the corresponding background material. In particular,
we obtain the estimates given in [1; Theorem 2.2]. For convenience we
formulate our result in the most interesting case of rings of integers in
algebraic number fields, where the class group is finite and every class
contains a prime.

COROLLARY 1. Let R be the ring of integers of an algebraic number field
and G its class groups; then

COROLLARY 2. Let G be an abelian group, Go c G a subset, Bo =

B(Go) and D(Go) &#x3E; 2. Then we have
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with equality if Go = -Go .

Proof. By Theorem 1, applied for cp = (Bo ~ .~’(Go)) . D

Recall that a monoid H is called half factorial if it is atomic and any
two factorizations of an element a E HBH" have the same length; note
that H is half-factorial if and only if p(H) = 1. If H # HX , then H
is half-factorial if and only if = m for all m E N . 

PROPOSITION 3. Let H be an atomic monoid, H =1= and let F
be a half-factorial monoid. Then we have x F) = for all

and p(H x F) = p(H) .

Proof. It suffices to prove the assertion concerning JLm. For any z E
we have GH(z) = and therefore N,,.,z(H x F) .

Let a = yq E H x F be such that y E H, q E F and m E GH"F (a) .
If y E H" , then {m} and hence LHXF(a) = m  
if then m = k + l, where k E GH (y) and = which

implies + LH (y) :!5 1 + = In any
case JLm (H x F)  ~,~,(H) follows. D 

’

For a family of monoids we consider their coproduct

together with the canonical embed dings ¿À:  2013 H , defined by

If all HÀ are atomic, then H is also atomic, and the irreducible elements
of H are (up to associates) the elements of the form £À(uÀ), where A E A
and ua E H is irreducible.

PROPOSITION 4. Let (HÀ)ÀEA be a family of atomic monoids, and H =
H~ - Then we have
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if p(H) = for some A E A such that Ha has accepted elasticity,
then so has H .

Proof. Since E H is irreducible whenever xa E Ha is irreducible,
we obtain p(H~)  p(H) for all X E A (confer [3; Lemma 6]), and hence

I .~ E A}  p(H).
For the proof of the reverse inequality, we suppose that r = I

A E A}  oo . For x = E HBH’ , we obtain

and therefore pH(x)  r, which implies

Let H be a monoid and Q a quotient group of H . A family H =
(HÀ)ÀEA of submonoids is called a defining family of H, if

and, for each x E H , the set (A E A ) x g Hfi ) is finite. In this case, the

mapping 
--

defined by is a divisor homomorphism; see [11; § 3].
We call C(H) = C(cp) the class group of H . Using this terminology,
Theorem 2 and Proposition 4 immediately entail the following corollary.

COROLLARY 3. Let H be czn atomic monoid, H = (HÀ)ÀEA a defining
family of H, where all H~, are atomic, and G = C(H) . Then we have
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Remark. Corollary 3 applies in particular for atomic domains R having a
finite character representation

for some set 6 c spec(R) such that all Rp are atomic. Indeed, in this
. case the family (R;)PE6 is a defining family of R* - The ideal theory of

domains having such a finite character representation was investigated in
[5]. Perhaps the most interesting case arises if 6 = ~~1&#x3E;(R) , the set of
prime ideals of height 1 of R . Following ~1~, we call R a weakly Krull
domain if R = p E is a finite character representation;
see [14] for a description of weakly Krull domains by means of generalized
divisor theories.

Let R be a weakly Krull domain and G(R) = G(R*) is its group of

divisibility; then there is an exact sequence

identifying the t-class group Ct(R) with the class group of the family
(see [15; Theorem 4.6]. Therefore Corollary 3 implies [1;

Theorem 2.14 and Cor. 2.15]. The conjecture stated in [1] after Cor. 2.15
(on p. 231) is false; we give a counterexample at the end of this paper.

If R is a one-dimensional noetherian domain, then X(l)(R) = max(R) , R
and all Rp are atomic, and Ct(R) = Pic(R) is the usual class group. In
this case, (*) is proved in [18; Satz (12.6)~. For later use, we state Corollary
3 in this particular case.

COROLLARY 4. Let R be a one-dimensional noetherian doynain and G =

Pic(R) . Then we have

if G is trivial, then

In § 5 we shall prove substantially stronger results than Corollary 4 under
the assumption that the integral closure R of R is a finitely generated
R-module. In § 3 and § 4 we develop the necessary combinatorial tools in
the context of monoids.
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§ 3 T-BLOCK MONOIDS

We recall the concept of T-block monoids as introduced in [8]. Let

G be an (additively written) abelian group, Go C G a subset, T a

reduced monoid and t : T - G a homomorphism. We extend t to a

homomorphism

by setting

i. e., c* ~ I F(Go) is the content already considered. Then

is called the T-block monoid over Go with respect to c . If in particular
= 0 for all t E T , then 8(Go,T,I,) = B(Go) x T, where B(Go) is

the ordinary block monoid. The usefulness of T-block monoids is shown by
the following proposition.

PROPOSITION 5. Let H be an atomic monoids and cp H - S = .~’(P) xT
a divisor homomorphisrrv, where T is a reduced monoids and P is any set.
Let G = C(cp) be the class group of cp, Go = {g E Gig fl 0} , and
for t E T let t(t) E G be the class of t . Then atomic,

= T, t)) for all m e N , and p(H) = p(8(Go, T, t)) - If
Go is finite and T is finitely generated, then H has accepted elasticity.

Proof. Since cp induces an isomorphism p* : cpH onto a

saturated submonoid of S , we may assume that H C S is a saturated
submonoid and cp = (H - S) . For p E P, let 3(p) E Go be the class of
p , and define ø: S - x T by p(pl ~ ... - pnt) = !3(Pl) ... yi(p~,)t .
By [8; Prop. 4), 0 induces a surjective homomorphism

mapping irreducible elements of H onto irreducible elements of T3(Go, T, t)
(whence is atomic) and satisfying 
all This implies J,Lm(B(Go,T,t» for all m e N , and
consequently p(H) = p(8(Go, T, t)) - Moreover, H has accepted elasticity
if and only if has. If Go is finite and T is finitely generated,
then B(Go, T, t) is finitely generated by [8; Prop. 2] and hence has accepted
elasticity by Theorem 2. 0
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Remark. Proposition 2 implies in particular that Krull monoids (and hence
Krull domains) have accepted elasticity, provided that the set Go of divisor
classes containing prime divisors is finite; for this particular case see [3;
Theorem 10J .

Next we investigate the invariants um and p for T-block monoids. If
H is a monoid and E C H , then [E] denotes the submonoid generated
by E .

THEOREM 3. Let G be an abelian group, Go c G a subset, T a

reduced atomic monoid, c : T -&#x3E; G a monoid homomorphism,
U the set of irreducible elements of T and G1 = Go U ~(!7). Let

Bo = {1} be the ordinary block monoid and assume that the
T-block monoid B = B(Go, T, t) is atomic.

i) For all rrz E IY, we have and

ii) Suppose that t(U) C [-Go~ ; then we have 
for all and

Proof It is sufficient to prove the assertions concerning 
i) If bo E Bo, b G B and blbo, then b E Bo , and hence 
L (bo) ; this implies 
By [8, Proposition 1~, the injection B ~ S = 7(Go) x T is a divisor

homomorphism; its class group identifies in a natural way with a subgroup
of G . Clearly, Go U U is the set of irreducible elements of S , and
therefore G1 is the set of all classes containing irreducible elements of
S . Theorem 2 implies J.Lm(S)D(G1)., and Proposition 3 implies

= 

ii) We may assume that D(G 1 )  oo , and we must prove that n G N ,
and ul - ... vl - ... - vn implies

n  N and be given,
and Ul - - - - - Um = Vi - - - - - vn . We may suppose that there exists some

l E ~o, ... , m~ such that and For 1 

~  l , L(Uj) E t(U) C [-Go] implies the existence of 
such that 

’ ’ 
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and we may assume that di E N is minimal with this property. If 

9~,~ - - - - - then the element B is irreducible (since
dj is minimal), and

The zero sum

of elements of G1 splits into k &#x3E; 0 zero subsums each of which has at
most D(Gi) summands; This implies

where wi E B and hD~G 1 ~ &#x3E; n -~- d ~ -~- - - - -~- dt &#x3E; n . Factoring each wj
into irreducible elements of B , we obtain

where Yi are irreducible This implies

whence the assertion. 0

§ 4 FINITELY PRIMARY MONOIDS

DEFINITION. A monoid T is called finitely primary o, f rank s E N and of
exponent a E N , if it is a submonoid of a factorial monoid F containing
exactly s mutually non-associated prime elements p1, ... , pS ,

satisfying the following two conditions:

2. For (where and
u G F~ ) , the following two assertions hold true:
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The simplest examples of finitely primary monoids are finitely generated
submonoids of (No, -~-) . Indeed, if T = [d¡,..., C No and d =

gcd(d1,..., dm) , then there exists some a E N such that da + dNo C T;
we set F = dNo and see that T is finitely primary of rank 1 and exponent
a.

Every finitely primary monoid is atomic, and it is primary in the sense of
[15] . Our interest in finitely primary monoids comes from their appearance
in the theory of one-dimensional domains, which is shown by the following
proposition.

PROPOSITION 6. Let R be a one-dimensional local noetherian domain
such that its integral closure R is a finitely generated R-module. If
max(R) = ~~ 1, ... , and [R : R~ _ pft ..... p~ , then R- is finitely
primary of rank s and of exponent /3 = max{,81, ... , ,Qs } .

Proof. Being a semilocal Dedekind domain, R is principal; if max(R) =
~~1, ... , ~s } , then 

- - - 
.-

where pz R , and pi n R is the maximal ideal of R . Since R D R is

integral, we also have RX n R = R~ . ,

Now let a = p I 1 - ..... ps s u E R* be given, where cxl , ... , No and
u E R~ . If a then either at = ... = a~ = o or c~i &#x3E; 1,..., a.s ~ 1;
if ax 2 (3, ... , as &#x3E; /?then aR C [R : R] C R and hence a E R . 0

THEOREM 4. Let T be a finitely primary monoid of rank s andexponent
a, and suppose that as in the definition,

i) TIT x is finitel y generated if and onl y if s = 1 and (FX : TX)  oo .

Proof. Assume first that s &#x3E; 2. For n e N , we consider the sets
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where 0:1,..., and u E Fl . Since E T whenever

(31 2:: a, ... , (38 &#x3E; a F~ , the element zz’ factors in ~’ in the
form 

-

where t = [ ~ ] - 1; this implies

On the other hand,

and therefore [~-] ? whenever m &#x3E; 2a . Since n was arbitrary,
we obtain pm(T) = oo if m &#x3E; 2a , and consequently also p(T) = oo . By
Theorem 1, TIT’ is not finitely generated.
Now we assume s = 1. The irreducible elements of T are of the form

where 1 S; ’Y  2a -1 and W E T~ . If z E = p13u, where
then ,

and hence LT (z) ::; (2a -1)lT (z) , which implies ~c,",,(T)  (2a - l)m for
all mEN and p(T) 2a-1.

Let (Ui)iEI be a set of representatives of F’ /Tx ; then the set

generates T/y If (F" : = #I  oo , then To is finite and hence

T/T" is finitely generated. If (Fx : T" ) _ #I = oo , then To contains

infinitely many irreducible elements, and therefore TIT’ is not finitely
generated. L7

Remark.. In the context of one-dimensional (noetherian) domains, parts of
Theorem 4 are proved in [4; Theorem 2.12].
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§ 5 ONE-DIMENSIONAL DOMAINS

We start with some finiteness conditions for one-dimensional local do-
mains.

PROPOSITION 7. Let R be a one-dimensional local noetherian domain
with maximal ideal p and R its integral cl osure. Suppose that R is
a finitely generated R-module, f? 34 .R , and that R is also local, with
maximal Then the following conditions are equivalent:

Proof. We set J~ = R/p, k = and we view J~ as a subfield of
. Since R is a finitely generated R-module, we obtain [k: J~~  oo ;
therefore b) and c) are equivalent.

For the following, recall that there are (canonical) isomorphisms l~" /~1-~
for any a &#x3E; 1; see [6; ch. 1, Prop.

4~ .
c) - a): If [R : R] = PI is the conductor of R , then 1 + p" c R" ,

and consequently there is an epimorphism ,

Since k is finite, the same is true for and hence for 

- 

a) - c): The canonical induces an epimorphism
showing that is finite. If this implies

that both, k and J~ , are finite. If k = J~ , then = R ; by Nakayama’s
Lemma, we have R + and hence pR = -’ for some e &#x3E; 2. Since
R = R + ~ , we obtain f?x = R~ (1 + p) ~ and therefore

is finite. But 1 + pel + pR = 1 + pe C 1 + p , and consequently
(1 + 0)/(l + P-) is also finite, which implies that k is finite. 0

THEOREM 5. Let R be a one-dimensional noetherian domain with class

group G = Pic(R) . Suppose that the integral closure R of R is a finitely
generated R-module, and [R : R] be the conductor of R . Let

p 1, - - - , E maac(R) be the prime ideals of R lying above ~, and set
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Let Go be the set of all classes g E G containing some prime ideal
P E maac(R) different from ~1, ... , 

i) We have the estimate

iii) Suppose that G = [Go] ; then we have p* (R)  oo if and only if,
for each j E {I,..., m} , there is exactly one prime ideal Pi of R
lying above pj ; if this is the case and a =- - then

iv) Suppose that p*(R)  oo, Go is finite and (R : pj)  oc for
1  j  m . Then R has accepted elasticity.

Proof. Let 
--

be the divisor homomorphism associated with the finite character repre-
sentation 

-

We set P = Tj = and T = Ti x ... x Tm .
If pEP, then Rp is a discrete valuation ring, and we denote by 7rp E Rp
a prime element. The mapping

is an isomorphism, and

is a divisor homomorphism whose class group coincides with the class group
of R . If t : 0(P) x T -~ G is the canonical homomorphism, then
t(P) = Go . By Proposition 5,
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and if Go is finite and T is finitely generated, then R has accepted
elasticity. Now i) and ii) follow from Theorem 3, since

by Proposition 4.

For j E ( 1 , ... , m) , let s, be the number of prime ideals of R
lying above pj , and let Rp,) be the integral closure of Rp, ; then
# = sj and, by Proposition 6 is finitely primary of rank
8j. If s &#x3E; 2 for some j E {1..m} then = oo by Theorem
4 and consequently p* (R) = oo . If sj = 1, then [Rp, : [R :
R] Rpj = and Theorem 4 implies p(R~? )  2a~ -1, whence
p* ~R) 

’

It remains to prove iv) . We suppose that s 1= ~ ~ ~ = 8m =1 and that
(R :  oo for 1  j  m . Then we obtain (Rp. : (R : pj) 
0o and hence

by Proposition 7. Hence all T~ are finitely generated by Theorem 4.
Consequently, T is finitely generated and .R has accepted elasticity by
Proposition 5. 0 

COROLLARY 4. Let R be an order in an algebraic number field and R
its integral closure.

i) If for some prime of R there 2s more than one prime ideal
of R lying above p, then p(R) = oo .

ii) If for every prime ideal p of R there is exactly one prime ideal of
R lying above p, then R has accepted elasticity.

Proof. If R is an order in an algebraic number field, then its class group is
finite and every class contains infinitely many prime ideals; R is a finitely
generated R-module, and all residue fields are finite. Now the assertion
follows from Theorem 5.

EXAMPLE. We consider the ring R = (i = I). Then we have
R = 7~ [i], [R : R] = 3R , and the class group of R is of order 2 . Theorem
5 implies p*(R) =1, and consequently p(R)  2. The conjecture stated
on p. 231 in [1] would imply p(R) = 1, but this is not the case.

If Q = 1 + 2i, ~3’ = 1 - 2i , then 30, 3#’, 3 and 5 are irreducible
elements of R satisfying (3{3)(3(3’) = 3~ 5 . In fact, it is not difficult to
see that p(R) = ~ . .
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