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Mean Square of the Remainder Term
in the Dirichlet Divisor Problem

par Yuk-Kam LAU and Kai-Man TSANG

1. Introduction and Main Results

Let d(n) denote the divisor function. In this paper we shall consider a
remainder term associated with the mean square of the error term in

the Dirichlet divisor problem, which is defined as

Here q is Euler’s constant. The upper bound 4Y(z) « x 1/2 was first ob-
tained by Dirichlet in 1838. This was gradually sharpened by many authors
in the ensuing one and a half century. Iwaniec and Mozzochi [5] proved in
1988 that 4Y (z) G x7~22+E for any e &#x3E; 0, by employing intricated techniques
for the estimation of certain exponential sums. Such methods, however, do
not seem capable of proving the conjectured best bound: G 

Besides this problem, there are plenty of papers written on other inter-
esting properties of 4Y(z) . For instance, Tong [9] showed that 4Y (z) changes
sign at least once in every interval of the form [X, X + where co is
a certain positive constant. Recently Heath-Brown and Tsang [2] showed
that this is essentially best possible: - the length of the intervals cannot
be reduced to In contrast to this erratic behaviour, A (x),
when considered in the mean, has very nice asymptotic formula. A classical
result of Tong [10] says that

with F(X) C~ X log5 X. The order of the remainder term F(X) has sig-
nificant connection with that of .6(x). Indeed, Ivi6’s argument in Theorem

Manuscrit reçu le 4 Mars 1994.
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3.8 of [4] shows that 4Y(z) W for any upper bound U of F(X).
Thus from the result = we infer that

Ivi6 conjectured that F(X) y X3~4+E is true for any - &#x3E; 0. This is a

very strong bound since it implies y ~1/4+E. There are not many
results on F(X) in the literature. Tong’s bound was slightly improved to
F(X) C X log4 X by Preissmann [7] in 1988. However, the gap between
this and the S2-result (1.2) is still very wide.

In this paper we shall prove the following.

THEOREM 1. We have

THEOREM 2. For X &#x3E; 2 zue have

for a certain constant ci.

Theorem 1, which is a direct consequence of Theorem 2, disproves the above
conjecture of Ivi6. Unfortunately we are still unable to obtain a comparable
Q+-result for F(x). In fact we believe that there is an asymptotic formula
for F(x) of the form

with a certain constant c~ . In a forthcoming paper, the second author [11]
proves that 

" "

Using Preissmann’s bound we see easily that
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These two results together shows that F(x + 4k) - F(x) changes signs in
~X, 2X~ and 

-

Consequently, if (1.3) is true the (9-term on the right hand side is oscillatory
and cannot be reduced.

One of the key ingredients in our argument is an asymptotic formula for
the sum

Such a sum has been investigated by several authors in connection with
other problems in analytic number theory. In our proof we use a result of
Heath-Brown [1] which is quite sufficient for our purpose. (see (2.12)-(2.15)
below)

2. Notations and some Preparation

Throughout the paper, E denotes an arbitrary small positive number
which need not be the same at each occurrence. The, symbols co, ci, c2, ...
etc. denote certain constants. We shall also use the well-known inequality
d(n) K ne: from time to time without explicit reference. The constants

implicit in the symbols O and G depend at most on e.

A useful formula for studying problems concerning was obtained

by Voronoi [12] at the beginning of this century. The formula expresses

6.(x) as an infinite series involving the Bessel functions. In practice, the
following truncated form of the formula

for 1  N W x is quite sufficient. However, for our present problem,
the above (9-term is far too large and we shall use instead the following
approximation to 4Y (z) given by Meurman [6, Lemma 3].
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Using this we obtain

LEMMA 2. Then

Proof. Firstly,

Next, by Lemma 1, we have

Moreover, following the argument of [3, Theorem 13.5] we show that

for M ~: x’00. Thus, by Cauchy-Schwarz’s inequality and (2.1) we have

and hence our lemma.

Square out and then integrate term by term, we get
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In the first double sum the diagonal terms yield a total contribution of

Here the main term is the same as that in (1.1). Hence by Lemma 2, we
can write

where for any y &#x3E; 2,

and

From now on, we let X to be a sufficiently large number, M = X 7 and
L = log X . For any v &#x3E; 0, let

where Jk denotes the Bessel function of order 1~. It is well-known that [13,
. , "’I

for any real z. Hence,

foranyv&#x3E;0.
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LEMMA 3. We have

there I

Proof. By [8, Lemma 4,2~, for any real a and y, y &#x3E; 2 we have

We first obtain some preliminary bounds for Sl(y) and S2(y). According
to (2.3) and on applying (2.8), we have

Similarly,

Next, for x E X] we have x’ W M C x14 so that, by (2.2)
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since, by (2.9) and (2.10), . The main term on the

right hand side of (2.7) arises from ) Idx. Indeed, by (2.3),

Write 0 = for short. Then the above double integral is
equal to

By the well-known integral representation

for the Bessel functions [13, §3.3], the first two integrals on the right hand
side is equal to

by (2.5). Moreover, using integration by parts we find that

Hence
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and then

nX

The sum inside the (9-term can be treated by the argument in ~2.9), and
we then find that the 0-therm is bounded by which is smaller than
that on the right hand side of (2.7).

In view of (2.11) and (2.7), it remains to bound the two integrals

and By Preissmann’s bound, we have

which is acceptable. Next, by (2.4),

The inner integral, on applying integration by parts twice, is found to be

Thus,
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This completes the proof of Lemma 3.

For any y &#x3E; 0, let

In his work on the fourth power moment of the Riemann zeta-function on
the critical line, Heath-Brown [1] proved that

where the main term Ih(y) is of the form

for certain constants and the remainder Eh (y) satisfies

uniformly for 1  h  y5/6. In particular a20 = 67r-~, a21 = a22 = 0. We
note that roughly of order y log y. In our proof of Theorem 2 in
§3 we shall need the derivative of Ih (y) . By (2.14)

where

Foranyy&#x3E;o, Q&#x3E;3 let
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LEMMA 4. We have

Proo f. In the argument below we use the symbol c to denote a certain
constant which may not be the same at each occurrence.

Firstly, for j = 0, 1, 2 there are constants /30, (31 , #2 such that

with Bj (y) W log3 y. (Note B~(1-) _ -(3j). Indeed, by (2.17),

with

Similar argument establishes (2.19) for j = 1 and 2. Further we find that
/32 = 1.
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Next by Riemann Stieltjes integration and (2.19), we have

In the same way, we find that

and

Collecting all these in (2.18) our lemma follows.

Lastly we evaluate some integrals involving the function g (v) .

LEMMA 5. We have
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Proof. It is known that [13, §13.24]

for 0  Re s  Re k + 1/2. Hence

for -1  Re s  Re k - 1/2. Setting k = 3/2 and in view of (2.5) we have

for -I  Res  I. On putting s = 0 we get
- J

The

remaining integral is equal to 1

which can be evaluated by differentiating the right hand side of (2.20).

3. Proof of Theorem 2

We shall now complete the proof of Theorem 2 by evaluating the double
sum

in Lemma 3, where

In view of Lemma 3, we can allow errors of order up to X-1/2 in the course
of our analysis.



87

First of all, we consider those terms um,n for which m  n/2. In this

case ý1i - so that, by (2.6)

The contribution to T from these is therefore

which is acceptable.

For the remaining terms um,n in T, we vvrite rc = m ~- h with ~.  h  m.
Then - WF ,_ , _ _ _ j ,._ , _.. _, ,

For h  m, we have, so that, by (2.6)
again

and each term Um,m+h satisfies

Thus, the contribution to T from those um,m+h with h &#x3E; B/M is « X-I ME
and the error caused by extending the upper limit for the summation on m
to M is Hence we have

For simplicity let

Then we can further write
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say. Using the same bound ~3.2~, each term um,m+h in 2:1 is

since m + h = m for 1  h  m. An application of the well-known estimate

then yields

Putting this into (3.3), we have

with

Next, we transform the above inner sum over m into an integral. By
(2.12), (2.13) and Riemann Stieltjes integration we have

say. We bound W2(h) by using (2.15) and the trivial estimate g(v) C 1.
Whence
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For W3(h), by [13, §3.2] we have

since Jk(v) « vk. Hence, by g(v) W 1 and (2.15) we have

In view of (3.4) and (3.5), the contribution to T from W2 (h) and W3 (h) is
therefore

which is again acceptable. Thus,

To evaluate the inner integral, we begin by making the change of variable

Then

so that

and
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Moreover, by (2.16)

Set

(3.7)

and

Then with the help of all these estimates we find that

In obtaining the above 0-therm, we have used « 1, (3.8) and the
observation that aj (h) « log3 h « L3, The integration limits ul and u2
can be replaced by 21rhX -3 and 27rL4 respectively, since the error thus
caused is

by (3.7) and (3.8). Collecting these into (3.6), we get

Next we interchange the summation and integration. In view of (2.18) we
have
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By Lemma 4, and after some simplifications, we have

where 1
are certain constants. Finally inserting this into (3.9) we get

It remains to evaluate the integrals

for j = 0,1, 2, 3. Writing

we see, by (2.6), that the last two integrals are bounded by X-3 Lj and
L -4+j respectively. Hence, by Lemma 5 we have

and by (2.6),

When these are inserted into ~3.10~ we obtain

and Theorem 2 now follows from (3.1) and Lemma 3.
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