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Mean Square of the Remainder Term
in the Dirichlet Divisor Problem

par Yuk-Kam LAU and Kai-Man TSANG

1. Introduction and Main Results

Let d(n) denote the divisor function. In this paper we shall consider a
remainder term associated with the mean square of the error term A(z) in
the Dirichlet divisor problem, which is defined as

Az) = Z d(n) —z(logz +2y—1) .

n<lz

Here 7 is Euler’s constant. The upper bound A(z) < z'/? was first ob-
tained by Dirichlet in 1838. This was gradually sharpened by many authors
in the ensuing one and a half century. Iwaniec and Mozzochi [5] proved in
1988 that A(z) < z7/22+¢ for any € > 0, by employing intricated techniques
for the estimation of certain exponential sums. Such methods, however, do
not seem capable of proving the conjectured best bound: A(z) < z'/4+¢.

Besides this problem, there are plenty of papers written on other inter-
esting properties of A(z). For instance, Tong [9] showed that A(z) changes
sign at least once in every interval of the form [X, X + cov/X] where ¢ is
a certain positive constant. Recently Heath-Brown and Tsang [2] showed
that this is essentially best possible: — the length of the intervals cannot
be reduced to o(v/X log > X). In contrast to this erratic behaviour, A(z),
when considered in the mean, has very nice asymptotic formula. A classical
result of Tong [10] says that

(1.1) /X A(z)%dz = ((6'/r2)”1 i d(m)2m_3/2)X3/2 + F(X)
2 m=1

with F(X) < Xlog® X. The order of the remainder term F(X) has sig-
nificant connection with that of A(z). Indeed, Ivié’s argument in Theorem

Manuscrit regu le 4 Mars 1994.
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3.8 of [4] shows that A(z) < (U logx)/3 for any upper bound U of F(X).
Thus from the result A(zx) = Q(z'/4) we infer that

(1.2) F(X)=Q(X%*/log X) .

Ivié conjectured that F(X) < X3/4t¢ is true for any ¢ > 0. This is a
very strong bound since it implies A(z) <« z!/4t¢. There are not many
results on F(X) in the literature. Tong’s bound was slightly improved to
F(X) < Xlog* X by Preissmann [7] in 1988. However, the gap between
this and the Q-result (1.2) is still very wide.

In this paper we shall prove the following.

THEOREM 1. We have

F(X)=0Q_(Xlog’ X) .

THEOREM 2. For X > 2 we have
X
/ F(z)dz = —(87%) 71 X%1log? X + c; X% log X + O(X?)
2

for a certain constant c;.

Theorem 1, which is a direct consequence of Theorem 2, disproves the above
conjecture of Ivié. Unfortunately we are still unable to obtain a comparable

Q4 -result for F(z). In fact we believe that there is an asymptotic formula
for F(x) of the form

(1.3) F(z) = —(4n?)"lzlog’ z + cozlog z + O(x)

with a certain constant c;. In a forthcoming paper, the second author [11]
proves that

2X
/ (F(:lc-i—\/5(_)—F(:1:))2d:1ch‘3 .
X

Using Preissmann’s bound we see easily that

/2x (Fo+ VX Fla))ds = /2x+\/)7 ~ /x+\/f

X 2X X
< X3 ?logt X .

F(z)dz
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These two results together shows that F(z + v X) — F(z) changes signs in
[X,2X] and
F(z+ VX) - F(z) = UX) .

Consequently, if (1.3) is true the O-term on the right hand side is oscillatory
and cannot be reduced.

One of the key ingredients in our argument is an asymptotic formula for

the sum
Z d(m)d(m +h) .

m<z

Such a sum has been investigated by several authors in connection with
other problems in analytic number theory. In our proof we use a result of
Heath-Brown [1] which is quite sufficient for our purpose. (see (2.12)-(2.15)
below)

2. Notations and some Preparation

Throughout the paper, € denotes an arbitrary small positive number
which need not be the same at each occurrence. The symbols c,c,c2, ...
etc. denote certain constants. We shall also use the well-known inequality
d(n) <« n° from time to time without explicit reference. The constants
implicit in the symbols O and < depend at most on ¢.

A useful formula for studying problems concerning A(z) was obtained
by Voronoi [12] at the beginning of this century. The formula expresses
A(z) as an infinite series involving the Bessel functions. In practice, the
following truncated form of the formula

A(z) = (mv/2) " z'/4 Z d(n)n=3/% cos(4mv/nz — /4)

n<N
+ 0($£ + 1'1/2+EN—1/2)

for 1 < N < z is quite sufficient. However, for our present problem,
the above O-term is far too large and we shall use instead the following
approximation to A(z) given by Meurman [6, Lemma 3].

LEMMA 1. Forz > 1 and M > z, let

Sum(z) = (nv2) " Lgt/4 Z d(n)n=%/% cos(4rv/nz — 7/4) .

n<M
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Then A(z) = 6p(x) + R(z) where R(z) < x4 if ||z|| > 2%/2M~1/2 and
R(z) < z€ otherwise.

Using this we obtain

LEMMA 2. Let x> 2 and 27 <« M <« 2190, Then
T T
/ Afu)2du = / 6z (u)2du + O(z) .
2 2
Proof. Firstly,

/: Alu)'du= /; S (u)’du +2 /2 " Sas () R(u)du + /2 " Rw?du .

Next, by Lemma 1, we have
T [x]+1 F
(2.1) / R(u)%du < Z nSnd/2M~1/? +/ (w2 du < VT .
2 2

n=2

Moreover, following the argument of [3, Theorem 13.5] we show that
T
/ Sp (u)2du =< 2%/2
2
for M < z199, Thus, by Cauchy-Schwarz’s inequality and (2.1) we have

/z Sp(w)R(u)du K
2

and hence our lemma.

Square out éps(u) and then integrate term by term, we get

/: 61 (u)?du
= (4?71 Z d(m)d(n)(mn)~3/4 2m\/’¢_,LCOS (4n(vn — vVm)vu)du

mn<M

+ (4?1 Z d(m)d(n)(mn) 3/ /2 : Vusin (47 (v/n + vVm)v/u)du.

m,n<M
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In the first double sum the diagonal terms yield a total contribution of

_a/92
(4,”.2)——1 Z d(m)Zm 3/2§(IE3/2 _ 23/2)
m<M

= (6n2)~! Z d(m)2m"3/2:1:3/2 -+—(9(:1r:3/2ME_1/2 + 1).
m=1

Here the main term is the same as that in (1.1). Hence by Lemma 2, we
can write

(2.2) F(z) = S1(z) + Sz(z) + O(x)

where for any y > 2,

(23) Siw) = (2r)7" Y d(m)d(n)(mn) S/

m<n<M

/: Vu cos (47r(\/1_1, - \/ﬁ)\/a)du ,
and

(2.4) Sa(y) = (4n*)™ Y d(m)d(n)(mn)=*/*x

mnM

Y
/ Vasin (4n(v7 + vVim) V) du .
2
From now on, we let X to be a sufficiently large number, M = X7 and
L =logX. For any v > 0, let
(2.5) g(v) = V—3/2J3/2(V) - 4V_5/2J5/2(V) ,

where Ji denotes the Bessel function of order k. It is well-known that [13,
§§83.3, 3.4]
Ji(2) < min(|2[*, |2|71/%)

for any real z. Hence,
(2.6) g(v) < min(1,r72)

for any v > 0.
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LEMMA 3. We have
(2.7)

/X F(z)dz = v2n—3/2X5/? Z d(m)d(n)(mn)~%4g(Omn) + O(X?)
0

m<n<M
where O, n, = 4n(\/n — Vm)VX.

Proof. By [8, Lemma 4.2], for any real o and y, y > 2 we have
y .
(2.8) / Ve Vidy < yla|1 .
2

We first obtain some preliminary bounds for S;(y) and S2(y). According
to (2.3) and on applying (2.8), we have

(2.9) Sily) <y D d(m)d(n)(mn)~**(Vn - vm)™!

m<n<M

(2.9) Siy) <y Y, d(m)d(n)(mn)~*(Vn - vm)™!

m<n<M

<yM{ Y () R+ vm)(n—m)!

m<n<2m<M

+ Z m—3/4n—5/4}

2m<n<M

<<yME{ Z m~! Z (n—m)‘1+logM}<<yM€.
m<M/2 m<n<M

Similarly,

(210)  S(y) <y Y, dm)d(n)(mn) ¥4 (Vn+ vm)Tt < yM® .

mn<M

Next, for z € [VX, X] we have 27 < M < z'* so that, by (2.2)
(2.11)

X X X
/\/}_{ F(z)dz = /\/7 Si(z)dz + /\/}_{_ Sa(z)dz + O(X?)

X X
=/ Sl(:r)dm+/ So(z)dz + O(XM*® + X?) |
2 2
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vx
since, by (2.9) and (2.10), / Si(z)dz <« X M*. The main term on the
2

b's
right hand side of (2.7) arises from / S1(z)dz. Indeed, by (2.3),
2

/ Sy (x)dx = (27%)~ Z d(m)d(n)(mn)~3/*x

m<n<M

/2 /; Vucos (4n(v/n — vm)v/u)dudz .

Write 8 = 4n(y/n — +/m)vVX for short. Then the above double integral is
equal to

X
‘/; (X — u)vucos (4r(vn — vVm)v/u)du

1
= 2X5/? / (1 — v?)v? cos(fv)dv
NGYES

= 2X5/2{ /1(1 — v?) cos(fv)dv — /1(1 — v?)2 cos(fv)dv
0 0
/\/2/}(

0

(1 —v?)o? cos(Gv)dv} .
By the well-known integral representation
Jpr1(2z) = k+2 (1 kcos(zv)dv, k=0,1,2
k+31 ’C' ) =Y L.

for the Bessel functions [13, §3.3], the first two integrals on the right hand
side is equal to

V2m (0732 J3/5(0) — 4075/2J5/5(6)) = V2mg(6) ,
by (2.5). Moreover, using integration by parts we find that
2/X
/ (1 = v*)v? cos(Bv)dv <« X191
0
Hence

X
/2 (X — u)v/i cos (4n(v/ii — v/m)Vd)du = 2VZTX/2g(6) + O(X3/29Y),
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and then

/X S (z)dz = v/2r—3/2X5/? Z d(m)d(n)(mn)~3/*g(6)

m<n<M

+0(X 3 d(m)d(n)(mn)~¥/4(v/n - \/T_n)_l) .

m<niM

The sum inside the O-term can be treated by the argument in (2.9), and
we then find that the O-term is bounded by X M€, which is smaller than
that on the right hand side of (2.7).

In view of (2.11) and (2.7), it remains to bound the two integrals

X X
/ F(z)dz and / S(z)dz by X?. By Preissmann’s bound, we have
0 2

vx
/ F(z)dz < X log* X
0

which is acceptable. Next, by (2.4),

X
/; Sy(x)dz = (4n?)1 Z d(m)d(n)(mn)~3/4x

m,n<M
X
/2 (X — u)v/usin (47r(\/ﬁ + \/ﬁ)\/ﬂ)du
= (27r2)—1X5/2 Z d(m)d(n)(mn)_3/4><

mn<M
/\/2/_X(1 — v?)v?sin (47(v/n + vVm)VXv)dv .

The inner integral, on applying integration by parts twice, is found to be
< X732(n+vm)7t + X7 (Vn+ vm) 72,
Thus,

/X So(z)dr < X E d(m)d(n)(mn)~3/4n"1/24
2 m<nM
X323~ d(m)d(n)(mn) =3/ 4n"?
m<n<M

<<XME+X3/2 <<X3/2 .
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This completes the proof of Lemma 3.

For any y > 0, let
(2.12) Yn(y) = ) d(m)d(m +h) .

m<y

In his work on the fourth power moment of the Riemann zeta-function on
the critical line, Heath-Brown [1] proved that

(2.13) Yr(y) = In(y) + En(y),

where the main term I (y) is of the form

2
(2.14) In(y) =y > log'y > d~*(aio + a1 log d + cuz log® d)
i=0 dih

for certain constants o;j, and the remainder Fj(y) satisfies
(2.15) En(y) < y°/0te

uniformly for 1 < h < 9%/, In particular ag = 672, ag; = age = 0. We
note that Ij,(y) is roughly of order ylog?y. In our proof of Theorem 2 in
§3 we shall need I (y), the derivative of I5(y). By (2.14)

(2.16) It,(y) = ag(h) log y + a1 (h) logy + ao(h)
where
ap(h) =6m72) d!,
d|h

ar(h) =) d~'(1277% + a0 + o1 logd + azp log? d) |
d|h
(2.17)

2
ao(h,) = Zd—l Z(aoj + alj) logj d.
0

dlh Jj=
For any y > 0, @ > 3 let

(2.18)  &(y,Q) = h~'(4ay(h)log® Qh + 2a:(h) log Qh + aq(h)) .

h<y
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LEMMA 4. We have

4 4
£, Q) =3 log® Qy + c3log® Qy — 3 log® Q + cqlog® Q + ¢c5log Q
+ cglogy + cr + Oy~ log® ylog® Qy) .

Proof. In the argument below we use the symbol ¢ to denote a certain
constant which may not be the same at each occurrence.

Firstly, for j = 0,1, 2 there are constants (o, 51, 82 such that

(2.19) > " a;j(h) = By + B;(y)

h<y

with B;(y) < log®y. (Note Bj(1~) = —f;). Indeed, by (2.17),

2 .
D ao(h) =) dt D (ao; + ars)(log’ d)(yd ™" + O(1))

h<y d<y Jj=0
2
=y d2 (ag; +auj) log’ d+ O(Zd—l log? d)
d<y =0 d<y
oo 2
=y d2Y (ao; + 1) log’ d + O(yz d=2log? d)+
d=1 Jj=0 >y
+ O(log’ y)
= Boy + O(log’ y)
with

00 2
Bo = Zd_Q Z(aoj + o) log? d .

d=1 j=0

Similar argument establishes (2.19) for j = 1 and 2. Further we find that
Bz =1.
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Next by Riemann Stieltjes integration and (2.19), we have

> az(h)h~log? Qh

h<y

Yy
= / t 1 log? Qtdt + [t~ log? Qt Ba(t)]!_
1

- / ’ By (t)t~%(21og Qt — log? Qt)dt
1

(log® Qy — log® Q) + log® Q + O(y~* log® ylog® Qy)

Wl

Yy
- / B (t)t~2(—log? Q + 2(1 — logt)log Q + 2logt — log® t)dt
1
1 3 3 2 2
= 3(log” Qy — log” Q) +log” Q + clog” @ + clog @ + ¢

o0
+0 ( / (log3 t)t~2(log? Q + log? t)dt) + O(y~log® ylog? Qy)
v

1
g(log3 Qy — log3 Q)+ clog2 Q+clogQ+c+ (’)(y‘1 log3 ylog2 Qy) .

In the same way, we find that

Z a1 (h)h~llog Qh = %ﬂl (log® Qy — log® Q) + clog Q + c+

h<y

+ Oy~ log® ylog Qy)

and

> ao(h)h™! = fology+c+ Oy~ log’y) .
h<y

Collecting all these in (2.18) our lemma follows.

Lastly we evaluate some integrals involving the function g(v).

LEMMA 5. We have

/ " gwyav =0,

/ g(v) logvdy = —/m277/2
0
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Proof. Tt is known that [13, §13.24]
/ Je()* %ty = I‘(%)T‘k_l/l"(k - -26: +1)
0

for 0 < Res < Rek + 1/2. Hence

/oo (V—k']k(’/) -2k + 1)V—k_1z]k+1(1/))1/sdy
0

e _o08—k-1 s+1 __s_ §
= —52 M(—-)/T(k=5+3)

for —1 < Res < Rek — 1/2. Setting k = 3/2 and in view of (2.5) we have

(2.20) /0 ~ gw)vidy = —328-5/21‘(542“—1) JT(3 - %)

oo
for -1 < Res < 1. On putting s = 0 we get / g(v)dv = 0. The
0

remaining integral is equal to

a(—i.; ( /000 g(l/)l/sdl/)

which can be evaluated by differentiating the right hand side of (2.20).

8=0

3. Proof of Theorem 2

We shall now complete the proof of Theorem 2 by evaluating the double
sum

(31) T= Z Um,n

m<n<M
in Lemma 3, where
Um,n = d(m)d(n)(mn)~*/*g(4r(vn — Vm)VX) .

In view of Lemma 3, we can allow errors of order up to X ~1/2 in the course
of our analysis.
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First of all, we consider those terms umy for which m < n/2. In this

case /1 — \/m < \/n so that, by (2.6)
g(4n(vn— ym)VX) < (nX)7" .
The contribution to T" from these %y, , is therefore
< X! Z d(m)d(n)(mn)~/*n"! <« X7,
m<n<M

which is acceptable.

For the remaining terms U, n in T', we write n = m+h with1 < h <m.

Then
T= Z Z Um,m+h T+ O(X_l) .
h<M/2 h<m<M—h
For h < m, we have 4n(v/m + h— /m)vX = 2rh+/X/m so that, by (2.6)
again
(3.2) g(4r(vVm+h— vVm)VX) < mh72 X~
and each term ., m+n satisfies

Umn,m+h K MEm=32mp2X1 .

Thus, the contribution to 7" from those Umm+r With A > VM is < X -1 ME
and the error caused by extending the upper limit for the summation on m
to M is O(X~1M~1/2%¢). Hence we have

T= )Y > tmmin+OX M)
h<VM h<m<M

For simplicity let
D =h2XL7%.
Then we can further write

(3.3)

7=y 3 + 3 > +oxTIMe)

h<VvVM h<m<min{Dp,M) h<X3L4 Dp<m<M

= Zl +Zz + O(X 1 M*),



88 Yuk-Kam LAU and Kai-Man TSANG
say. Using the same bound (3.2), each term wm, m4n in Y, is
< (d(m)? + d(m + h)?) (m(m + R)) "/ *mh~2x "
< d(m)*m~2h2 X"t 4 d(m + h)}(m + h)"V/2R 72X

since m+h < m for 1 < h < m. An application of the well-known estimate

Z d(m)"’m‘l/2 < ylogdy for y>1,

m<y

then yields

Zl <X Y r7%/min(Dp, M)log? M < X71/2 .

h<vM

Putting this into (3.3), we have

T=3Y > dmydm+h)(mm+h) " gOmmen)
(3.4) h<X3L* Dh<m<M

+O(X~1/?)

With Op myn = dr(vVm + b — \/r_n‘)\/f

Next, we transform the above inner sum over m into an integral. By
(2.12), (2.13) and Riemann Stieltjes integration we have

M
(3.5) Y = [ 6 m) et

Dp<m<M

M —3/4
= [ o+ 1) o0 )y
+ [+ ) gy Baw)]

M
a / Eh(y)?zti {3y + 1) 90y 4) }y
Dy, Y

= Wi (h) + Wa(h) + Wa(h) ,

say. We bound W(h) by using (2.15) and the trivial estimate g(v) < 1.
Whence

Wa(h) < M~3/20g5/6+ 4 D32 DY/ote o p-2/3+e o p=4/3 x—2/3+c
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For W3(h), by [13, §3.2] we have
gw)= —V_3/2J5/2(V) + 41/'5/2,]7/2(1/) Lv for v>0,

since Ji(v) < v*. Hence, by g(v) < 1 and (2.15) we have
M /6 5/2 3/2 d
Wa(h) < [ 4o {2 ey | - Bl
Dy, Y

M
< {y—5/3+e + y—2/3+ehy—1/2X1/2hy—3/2X1/2}dy
Dy,

< h-Y3x-2/3+e
In view of (3.4) and (3.5), the contribution to T from W5(h) and W3(h) is

therefore
< Z h—4/3x——2/3+€ < X—2/3+€ ,
h<X3L4

which is again acceptable. Thus,

(36) T= Y / (55 + 1) ™90y n) L (5)dy + O(X-1/2) .

h<X3L4

To evaluate the inner integral, we begin by making the change of variable

w=0Oyyrn=4r(Vy+h - Vy)VX
Then
y=4m?Xw2hp? - %h+ (64n°X) " 1w? = 4’ Xw™2R? (1+ O(W* X 1h71))
so that

84 = (42 Xw2h% — (647r2X)‘1w2)_3/2

= (2rh) 3 X 3/2,8 (1+OW'X~2h™2))

(y(y + h))

and

dy _

- —87°Xw 2K (1 + O(w*X2h7?)) .
w
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Moreover, by (2.16)
7 () = daz(h) log? (2mVXw™1h) + 2a1 (k) log(27rVXw ™ h) + ag(h)
+O0(w?X 'R (Jaa(h)|L + |ax(h)))) -
Set
(3.7 w=4r(VM+h-VM)VX =2rhX 3+ O(h2X"10)
and

(3.8)  wy=4m(v/Dn+h—+/Dp)VX =2rL* + O(h~1X1L?) .

Then with the help of all these estimates we find that

M
/D (y(y+ )96y 4n) T} (v)dy

1
T VX S,
+ 2a;(h) log (27r\/)—£'w'1h) + ao(h)}dw + @(h—2X—3/2+e) .

g(w)h={4az(h)log? (2rvVXw ™ h)

In obtaining the above O-term, we have used g(w) <« 1, (3.8) and the
observation that a;(h) < log3 h < L3. The integration limits u; and us
can be replaced by 2rhX 3 and 2mL* respectively, since the error thus
caused is

< X—I/Zh—lLS(h2x—10 + h—lX—1L12) & hX—21/2L5 + h—2X—3/2L17
< h—2X—3/2+E ,

by (3.7) and (3.8). Collecting these into (3.6), we get

1 2w L4
T = / g(w)h™ {4ay(h) log? (2rvVXw 'R
W\/)_(hgxsbx 2rhX -3 ( ) { 2( ) ( )

+ 2a; (h)log (27rVXw™h) + ao(h) }dw + O(X~1/2)

Next we interchange the summation and integration. In view of (2.18) we
have

1 omL4

W\/j(_ 2rX-3

(39) T = g(W)é((2m)'wX3, 2nVXw ™ )dw + O(X 1/2) |
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By Lemma 4, and after some simplifications, we have

5((2%)"1wX3, 2%\/)—(1.;)‘1) = logwlog® X + (cslogw + co log? w) log X+
+ ci0logw + €11 log? w + ciolog® w + ®(X) + O(w™1 X 3L5)

where ®(X) = ¢;3 log® X + c14 log2 X + c15log X + c16 and cg, ¢y, ... ,C16
are certain constants. Finally inserting this into (3.9) we get

4
1 2nL

B W\/y 2r X3
+ ciplogw + c11 log2 w+ crplog®w + <I>(X)}dw + O(X_1/2) .

(3.10) T g(w){logw log® X + (cglogw + cglog® w) log X

It remains to evaluate the integrals

2n L4 .
K; = g9(w) log’ wdw
2n X3
for 5 =0,1,2,3. Writing
o0 ] 2r X3 . 00 )
K;= / g(w) log? wdw — / 9(w) log’ wdw — 9(w)log’ wdw
0 0 2rL4

we see, by (2.6), that the last two integrals are bounded by X 3L’ and
L~—**7 respectively. Hence, by Lemma 5 we have

Ko < L™, Ky = —/m27 /%2 + O(L73)

and by (2.6),
K2, K3 = constant + O(L7!).

When these are inserted into (3.10) we obtain
T = _2“3(2,".X)—1/2 log2 X+ cl7x—1/2 logX + O(x—l/Z) ’

and Theorem 2 now follows from (3.1) and Lemma 3.
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