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Polynomial mappings defined
by forms with a common factor

par F. HALTER-KOCH AND W. NARKIEWICZ

1. Introduction and Preliminaries

For a field Ii, we denote by K a fixed algebraic closure of K. For a point
x = (x1, ... , xn~ E kn, we set

A subset V C K’~ is called K-homogeneous if there exist homogeneous
polynomials Hl,..., Hr E ~~~X1, ... , Xn~ such that

For m , n e N and polynomials E .~~ ~X 1, ... , X ~ ~, we define
the polynomial mapping

and we set

We consider the following finiteness property, which a field Il may have
or not:

Manuscrit reçu le 29 novembre 1991, r6vis6 le 3 d6cembre 1992.
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An algebraically closed or real closed field clearly never has the property
(PO). As the main result of this paper, we shall prove that every finitely
generated field has the property (PO) (Theorem 3). This is well known if
Fo = 1 and additionally either global field, cf. [5], [6].

In [1] we also dealt with the case Fo = 1; there we considered a property
which is somewhat weaker than (PO) and proved it for a larger class of
fields. We also discussed the various hypotheses stated in (PO), we outlined
the history of the problem, and we gave several further references.

The case 1 was up to now only considered in a rather special case,
cf. [7]. The following example (due to the referee) shows that the inequality
in (2) cannot be weakened in a trivial way: let K be an infinite field,
m = n = 3, V = k3, F = (hence Fo = X3), G -
(XI,X2,X3) and X = I x, z E K" ~ C V; then (1), (3) and (5)
are obviously satisfied, and (4) holds since (x, y, z) = F(x-1 z, x-lz, x3z-2 );
however, deg~(F) = deg*(G) + 2deg(Fo), and X is infinite.

The main tools in proving that a field has the property (PO) are the
theory of height functions (to be explained in § 2), the theory of places
of algebraic function fields (§ 3) and the following set-theoretical Lemma,
already proved in [1].

MAIN LEMMA. Let X, 3) be sets and F, G : ~ -&#x3E; ~ mappings such that
G(~). Let J : X --t R be a mapping such that C R is discrete,

and let C &#x3E; 0 be a real constant with the property that x , y E 3C, f (x) &#x3E; C
and F(x) = G(y) implies f (y) &#x3E; f (x). If
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then D G(Xc). If moreover 3lc is finite and G is injective, then
X=Xc.

2. Heights

In this section, we collate the necessary facts from the theory of height
functions, following [8].

Let I( be a field, equipped with a family of absolute values

satisfying the product formula. We regard M¡( as a set of places such

that, for every v E is an absolute value defining v; we denote by
Iiv the completion of K at v.

For a finite extension field L of let ML be the set of all places of L
extending those of M¡(. If v E ML and w v, then

where Lw is a finite-dimensional local lev-algebra with residue field L.
We define an absolute value )’ w of L by

Then (I - satisfies the product formula.

The family M = gives rise to a height function H : f,7n --, R,
defined for every n E N, as follows: for x = (xl, ... , E l’(n, let L be a
finite extension of K such that x E Ln, and set

Thanks to the normalization this definition does not depend on the
choice of the field L. We call H = HM the height function associated with
M.

For a monic polynomial
of degree d E fi1, we set
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LEMMA 1. Let K be a field, equipped with a family of absolute values
satisfying the product formula, and let H be the associated height function.
If n e N, x E .Kn and z E then we have

assertion is equivalent with

and hence also with

Since obviously

and (by the product formula)

it is sufficient to observe that 0  a  1 and b &#x3E; 0 implies 
L~

The next Lemma gives information about the behaviour of heights under
polynomial mappings. ,

LEMMA 2. Let il be a field, equipped with a family of absolute values
satisfying the product formula, and let H be the associated height function.

Let F = (Fl , ... , Fm ) ; Î(n --~ ¡em be a polynomial mapping, defined by
homogeneous polynomials Fl,. - ., F~ E ~~~X1, ... , Xn~, d* = deg*(F) and
d* = deg*(F).
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i) There exists a constant C1 E such that, for all x E 7~~~

ii) Let V C be a I( -homogeneous set such that F1, ... , F~.,.L do not
have a common non-trivial zero in V. Then there exists a constant

C2 E such that, for all x E V,

Proof.

i) follows almost immediately from the definition of the height function,
cf. [8, 2.3].

ii) is proved in [5, Proposition 2]. 0

PROPOSITION 1. be a field, equipped with a family of absolute
values satisfying the product formula, and let H be the associated height
function.

For m, n (Fl,... 1 Fm) 7 G - (Gi Gm) : k- , Î(m
be polynomial mappings defined by homogeneous polynomials Fj , Gj E

Let Fo E be a common factor of Fl,..., 
say FOF§ where Fj E .~[Xl, ... , Xn~, and suppose that deg*(F) &#x3E;

deg*(G) + 2 deg(Fo). Let V C Pi’ be a K-homogeneous set such that
Fi, ... , F,~ do not have a common non-trivial zero in V.

i) There exists a constant Co E R&#x3E;o such that x , y E V, H(x) &#x3E; Co
and F(x) = G(y) implies H(y) &#x3E; H(x).

ii) Let Co be a constant satisfying i) , ~ C V a subset such that 
G(X), GIX is injective, and Xo = f x I H(x)  Co} is finite.
Then X is finite,.

and Lemma 1 implies
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for all x E By Lemma 2, there exist constants Cl , C2 E R&#x3E;o such
that x , y E ~ and F(x) = G(y) implies

and hence H(y) &#x3E; H(x), provided that H(x) is large enough.

ii) follows immediately from i) and the Main Lemma, applied for F , G :
~E-~~t’n and f =H:~-~I~. C7

THEOREM 1. Let il be a field, equipped with a family of absolute values
satisfying the product formula, and let H be the associated height function.
Suppose that for every C E R&#x3E;o and n E fiT, the set

is finite. Then Ii has the property (PO). In particular, every global field
has the property (PO).

Proof. The first assertion follows immediately from Proposition 1. If Il is
a global field (i. e., either an algebraic number field or an algebraic function
field in one variable over a finite field), then we use the finiteness results
from [8, 2.5]. 0

We close this section with two further Lemmas concerning heights to
be used in § 3. For simplicity, we restrict ourselves to the case of non-
archimedian absolute values.

LEMMA 3. Let I~ be a field, equipped with a family of non-archimedeall
absolute values satisfying the product formula, and let H be the associated
height function.

i) For monic polynomials f , g E we have H( fg)  H( f )H(g~.

ii) then H(x - y)  H(x)H(y).
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Proof.

i) is obvious; we even have equality, cf. [2, ch. 3, Prop. 2.4].

ii) Set x = (x1, ... , xn ), y = ( yi , ... , yn ), and let L be a finite extension
of Ii such that x, y E Ln. Then we have

LEMMA 4. be a field, equipped with a family of non-archimedean
absolute values satisfying the product formula, and let H be the associated
height function.

Let d , n E h1, and let x = (x1, ... , xn) E be such that dI~(x)  d.
For i E ~l, ... , n~, let fi E be the minimal polynomial of xi, and
f = fi -...-fn E Then we have

where E Ie are the conjugates of xi (counted with multiplicity in the
inseparable case) and di ~ d. Since H(X - = H(xi ), we
obtain, using Lemma 3,
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3. Algebraic function fields

We start with some preliminaries on height functions and places of alge-
braic function fields; for the general theory of places cf. [3, ch. I].

Let Kl = Ko(t) be a rational function field over an arbitrary field Iio ,
and let P be the set of all monic irreducible polynomials in For

p E P, we define an absolute value j’ jp as follows: If

where c E ~~ vp 6 Z and vp = 0 for almost all then

Then () ’ is a family of non-archimedean absolute values sat-
isfying the product formula. The corresponding height function will be
denoted by Ha; we call it the canonical height function for 

If x e 1(1’ then x = (al,8-I,...,an,B-I), where E 

{3 is monic and an , ,8) = 1; this implies

and hence

where

Every r E ko defines a place ~T : K, --~ ko by 0,(h) = 1~ (T ) . A
place 0: - is called a I(o- place if OIK, = §r for some 7 E -f!Co.
Obviously, every (T E Î(o) extends to a I(o-place of K(I. For a ICO-place
0 of I(l, we denote by R~ _ C the local ring associated with 0.
We extend the ring homomorphism 0: R -- to homomorphisms of the
polynomial rings 0 : (by acting on the
coefficients) and to mappings 15: (by acting on the components).
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PROPOSITION 2. Let Iio be a field which is neither algebraically closed nor
real closed, let K, = be a rational function field over and Ha the
canonical height function.

For every there exists a ~~1 -~ Pio with the

following property:
and Z C a subset satisfying

then we have Z C R’, and ~~,~ : .~ ~ injective.

Proof. Let r E I(o be an element satisfying

and let 0 : Kl 2013 ko U {oo} a place extending 0,. We assert that 0 has the
required property.

Let m e N and Z C K’’n be a subset such that Ha(z) + + m  M

for all z E .~. Putting

it is sufficient to prove that ,~* C Rm, and ~(x) ~ 0 for all 0 ~ x E ~*.

For x E Z*, we have M2, and Ha(x)  M2 by Lemma 3. For
x = (xl, ... , x."i ), we denote by Ii E the minimal polynomial of ~2,
and we set

where ao, ... , ~3 E is monic and gcd,
Lemma 4 implies  

- -

and therefore
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integral over Rp, and since Ro is integrally closed, we obtain x E 

If x # 0, then we 0 for some j m~ and 0 for

some i E (0, ... , d -1 ~. Let I E f 0,..., d -1 } be minimal such tha,t 0;
then we obtain

Dividing by x~ and multiplying with 0 yields an equation

Since ~(al ) - = 0, we obtain 0 and hence ~(x) ~
0. D

THEOREM 2. Let 1(0 be a fields, and suppose that every finite extension
field o~’ I(o has the property (PO). Then every finitely generated extension
field has the property (PO).

Proof. It is sufficient to prove that every finitely generated extension field
of transcendence degree 1 over the property (PO); the general case
follows by an obvious induction on the transcendence degree.

Let = Ilo(t) be a rational function field over and let 7~ be a finite
extension of We shall prove that K has the property (PO); obviously,
we have k = kl. Let Ho be the canonical height function associated with
~~o (t). 

,

Let F = (F1, ... , Fm ), G = (G1, ... , Gm ) : Pi,’ --~ lem be polynomial
mappings defined by homogeneous polynomials Fj, Gj E 7~[Xi,...,~].
Let Fo E .~~~X1, ... , X~~ be a common factor of say Fj =

where F~ E ~i ~X1, ... , Xn~, and suppose that deg*(F) &#x3E; deg*(G) +
2 deg(Fo). Let V C be a ]( - homogeneous set such that F1, ... , F£ do
not have a common non-trivial zero in V, and let X C V be a subset such
that and GIX is injective. By Proposition 1, there exists a
constant Co E R&#x3E;o such that x , y Ha(x) &#x3E; Co and F(x) = G(y)
implies Ha(y) &#x3E; Ha(x). Putting
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the Main Lemma yields F(%o) D G(Xo)? and according to Proposition 1 it
is sufficient to prove that Xo is finite. By Lemma 2, there exists a constant
Cl E R&#x3E;o such that

for all x ~ Xo.

Let H1, ... , Hr E ]([XI,... , Xn] be homogeneous polynomials such that
n I .~l~x~ - ... - Hrtx~ - 0~. Since Fl’,..., F., HI,...,Hr
do not have a common non-trivial zero in Pi n it follows from Hilbert’s Null-
stellensatz [9, §130] that there exist polynomials Xn
such that 

- -

for some exponent q E N and all v E {I,... , n}.
Let D be the (finite) set of all coefficients of the polynomials Fo , Fj, 

Hj , Fjv and Since has the property (PO), it is neither alge-
braically closed nor real closed, and Proposition 2 applies: there exists a

.~1’ -~ U such that D C RO, Xo C Rn, ol D U ~0~ is
injective and is injective.

There exist elements yl , ... , yk E Ro such that ICO (t, YI, Yk)
and consequently ~(~i ) = L U {oo}, where L = 1(0 ( Ø( t), 0(yl),.. - , 
L is a finite extension of Ilo, thus it has the property (PO). We use the
place 0 to shift the whole situation from K to L. We have i = the

polynomials Fo , F) , Hj , Fjv and H~v have coefficients in and

consequently their 0-images have coefficients in L.

We consider the polynomial mappings ~(F) - (~(F1 ), ... , ~(F~ )) and
; by construction one has:

then Vo C kg is a K-homogeneous set, and since

the polynomials ~(Fi ), ... , ~(F;L ) do not have a common non-trivial zero
in VO.
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Obviously, we have
contend that

and we

are both injective. Indeed, if x, y E
then 4&#x3E;(G(x)) = §(G(y)) and hence

both injective.
Since L has the property (PO), we conclude that is finite, and

hence Xo is also finite. 0

THEOREM 3. Every finitely generated field has the property (PO).

Proof. By Theorem 2, it suffices to prove that every finite extension of a
prime field has the property (PO). For finite fields, this is obvious; for
algebraic number fields, it follows from Theorem 1. 0
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