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On the period length of some
special continued fractions.

par R. A. MOLLIN AND H. C. WILLIAMS

ABSTRACT. We investigate and refine a device which we introduced in [3]
for the study of continued fractions. This allows us to more easily compute
the period lengths of certain continued fractions and it can be used to
suggest some aspects of the cycle structure (see [1]) within the period of
certain continued fractions related to underlying real quadratic fields.

1. Introduction.

Let r and s be positive integers with s &#x3E; r ; and define M(r, s) to be
the value of n in the continued fraction expansion

where qn, &#x3E; 1.

This may be interpreted as M(r, s) = T(r, s) - 2 where T(r, s~ is the
function of Knuth [2, p. 344].

Let gcd(a, q) = 1 where a and q are positive integers with a $ 1. Set

where 0  Si  q and define

where w is the order of a modulo q, and L j denotes the greatest integer
function.

Manuscrit reçu le 19 avril 1991, version r6vis6e le 27 janvier 1992 .
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In [3] we proved that if
with .

is an integer

then the continued fraction expansion of (a - 1-I- has period length
1C’ given by

when qan &#x3E; a k. Here x = n), d = gcd(n, k) and

(Note that we have made the assumption that a, while arbitrary, has been
fixed.) It seems, however, to be more appropriate to use the function
W(a, q) defined in (1.1). The reason for this is that we may always assume
that d = 1. (If d ~ 1, then replace a by ad, k by kld and n by n/d). Under
the condition that gcd(n, k) = 1 we get

Bernstein [1] noticed that for certain parametric forms of D, the con-
tinued fraction expansion of B/D has a certain cycle structure within the
period. Usually these cycles were not very long, but in some "remarkable"
cases he found cycles of length 11. In fact it is possible to develop certain
forms of N for which the cycle structure of the continued fraction expansion
of ((1’ -1 + is quite intricate. A detailed description of this will form
the subject of a future paper. For now we will content ourselves with the
following example.

Consider the case where q = a‘‘ - 1 and k = mw. As we shall see in

§2 it is possible in this case to show that W(a, q~ = 2w - 2. Therefore,
’ 

~r = 2n + 3rrlw - 2m when gcd(n, mw) = 1 and n &#x3E; mw. If we put
we get 7r = (5~ 2013 2)m + 2.

Thus for
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a square-free integer, we get cycles in the continued fraction expansion of
(u - 1 + of length 5w - 2 when w is fixed. More complicated cycle
structures can also be predicted when we have further results on W(a, q).

It is easy to show that if m  q/2 then

Hence,

Now, (in what follows all summations assume gcd(m, q) = 1),

(For the definition of T~ see Knuth [2, p. 353]). By a result of Porter [5],
we know that

Also §(q)  q-1 and so we have an upper bound on the value of W(a~, q~,
a bound which is quite good when q is a prime and a is a primitive root of
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q. For example, 2 is a primitive root of 37 and W(2, 37) = 106 by direct
calculation, whereas

The purpose of this paper is to develop methods for improving the speed
of computing W(a, q) beyond that of simply using (1.1).

2. Some Alternate Expressions for W(a, q).

We will show in this section how the work of computing W(a, q) can be
halved. We first require

LEMMA 2.1. Ifxy == 1 (mod q) with 0  x, y  q then

Proof. This can be easily proved by making use of results of Perron [4, p.
32].

D

We note that since si s,-, m 1 (mod q), we have :

Hence we can write

when w is odd and

when w is even.
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Notice that if q = a~ 2013 1, then for i  W, we have Si = ai and q =
a" - 1 = (aw-’ - I)st + ai - 1 whereas sx = a’ = l(ai - 1) + 1. Hence,

q) = 2. It follows from (1.1) that

Also, if q = al’ + 1 thenw = 2J.l and Si = ai for i  w/2. Hence M(Si,q) = 1
for i  and by (2.4)

Thus, if q = a~’~ ± 1 it is easy to evaluate W(a, q). In the next sev-

eral sections we will show how to develop formulas for determining the
value of W(a, (a~’~ ::i: 1)lq) in terms of W (a, q) when all. (mod q).
We will concentrate on the more difficult problem of finding the value of
W(a, (a~’~ + 1)/q) in terms of the value of W(a, q), but will indicate from
time to time how the simpler proof for the value of W(a, (all. - 1)/q) in
terms of W(a, q) can be developed. In fact we will show the following.

Main Results. In sections 4 and 5 we prove

THEOREM 2.1. (see 5.10).

where A is the least positive integer such that aÀ == -1 (mod q), a is define end
by ao  q  and
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with

THEOREM 2.2. (see (5.11)).
If p is the order of a modulo Q = (all. - 1)lq &#x3E; q then

In section 6 we conclude with some

Special Cases.

THEOREM 2.3. (see (6.2)).

THEOREM 2.4. (see (6.3)).
then

Finally,

THEOREM 2.5. (see (6.4)).

and

3. Soine Intermediate Results.
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Let j be an arbitrary but fixed integer such that 1 ~ j ~ úJ. Define

y a~~ (mod q) and y* = (mod q), where 0   q.
Put t-2 = t* 2 = q, t-1 = y, t* ~ _ 7* and define ti, ti by

Also, put

for i= -1,0,1,2, ...

and

where Q is as in Theorem 2.2,

Q* _ (a~’, + 1)~q &#x3E; 3 and S % a~ (mod Q), S* - aj (mod Q*).
If M(y, q) is even, then m = M(y, q), tm, = 0 and tm-l = 1. If M(y, q)

is odd then m = M(y, q) + 1. We replace the value of by that of
pm-i - 1 and put pm = 1, = 0, = 1 and = 1. We deal with
the continued fraction expansion of q/y* in the same way.

The purpose of this section is to relate the value of M to that of m and
the value of M* to that of m* . We divide the problem into 2 cases.

Case (Q* &#x3E; a~ ). Here S = S* = aj.
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Define r-2 = q and

We have that r -1, r* ~ , ro, r* 0 are integers.

Thus for i &#x3E; -2 we have that r; and r7 are integers.

Proof. The result certainly holds for i = -2, -1, 0. Also the result holds
if i is even. Now since rz is an integer we get

Thus, if i is odd and r;  0, then we can only have r* = 0. But r* = 0
only A7 . Since

we get

Thus, gcd 0 (mod whence = 1. It follows that

i - 1 = m* - 1 or i - 1 = m*-2. Since m* is even and i is odd we get
i = m* - 1, which is impossible since i  m* - 1.

LEMMA 3.2. ~f -2  i  m* - 3 then r7 &#x3E; ri+l.

Proof. The result is certainly true for 1 = -2, -1. Now if i &#x3E; 0,

thus if i is even, we get rg &#x3E; If i is odd, i  m* - 3 and 
then ri = ~+~ . ° For 

’ ’
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and

Thus

where 81, S2 are integers,

and

If I - then 81 - s2  0. Now A~ + A~_~   ~1~. = ~ ; thus,
if 81 - ~2 7~ 0, then 81 - s2  -1 and which is impossible.

Hence si = S2 r* 1. Also,

hence,

and,

Since Ai+l I  = q we = 1, and I 
= By the

same reasoning as that used in Lemma 3.1 we can now prove Lemma 3.2.
D

We use the notation to denote the fractional part of any real x;

i.e., ~x} = x - Lxj.
We are now able to prove

THEOREM 3.3. If q ~ 2 and aJ  Q* then M* = m* + 4 when aJ &#x3E; 2q and
&#x3E; 1/2, M* = m* - 2 when aJ  q/2 and &#x3E; 1~2 ; otherwise,

M* = m* + 2 when a-7 &#x3E; 2q/3 and M* = m* when a3  2q/3.

Proof. For convenience we will use the symbol k to represent m*. We
divide the proof into two cases.
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Case A. aj  q.

From (3.1) we have Ak-l 1* - 1 (mod q); hence, ~~~ (mod q)
and q - aj, since 0  Åk-l  Ak - q. It follows that Ak_2 -
q -- and pj = lq/(q - Thus pj = 1 if and only if aj  q/2.
Also, if 1, then tk_2 = 1 and Ak_2 = aj.

By definition of rk-l we get rk-l = 0, hence k &#x3E; 1. Also tk-3 = JJk-l +1
and Ak-3 = = q - aj t~_;~ . From this we can deduce that
rk_2 - 1 and ’~l-3 ~ rk-2 - Pk-2. If ~k_Z &#x3E; 1 then rk_~ &#x3E;

&#x3E; rk-l = 0. By Lemmas 3.1 and 3.2 we see that M(9~0") = k - 1: J
Since k is even we have M* = k = m*.

If JJk-2 = 1, then rk-3 = rk_2 = 1. 
and M* = m* - 2. Now

Also 1 if and only if A~_2 /A~ _;~  2, which holds if and only if

or

if li* &#x3E; 1, we get

and

Since tk-2 =1= 1, we cannot have i thus,

In this case . an d .
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Since &#x3E; we see that r~ = ~ - 1 = 1 if
and only if 2  q/(q - aj)  3 ; i.e., q/2  2q/3. Also 2 if and

only if a3 &#x3E; 2q/3.

Case &#x3E; q.

By (3.2) with i = k - 3 we must have &#x3E; rk_2. Also &#x3E; rk-~

A~ = q. Since  1, this can occur if and only iftk-2 = J-lk = 1. In this
case we get 1, and = rk-l + rg = + l)rk-l -~-1.
Hence M(,5’*, ~*) = k + 1 and = m* + 2. Now = 1 if and only
if  2. Also, since 2013~ (mod q) and  q, we get
0  Ak-l = tq - aj  q, where t = ~’ Since Ag = q we see that
tk-l = 1 if and only if  1/2.

We have seen that if &#x3E; 1 then &#x3E; rk . Also

If l~l = 2 then M(5’~~) = k + 2 and M* = m* + 2. If ri &#x3E; 2 then

r~ = 1(r~ - 1) -f- l, M(,5’*, Q*) _ ~ + 3 and M* = m* + 4. Also, r:r" = 2
if and only if aj + 2q. Since -aj (mod q), this can hold if
and only if q  aJ  2q. Collecting all of the above we get the Theorem.

D

THEOREM 3.4. If aj  Q then M = m + 2 &#x3E; q and M = m when

aJ  q.

Proof. Use similar reasoning on the r; sequence to get results similar to
Lemmas 3.1 - 3.2. The result then follows.

D

Case 2. Q (Q*  aj)
Here we define r -2 = q and

where h = /~ 2013 j. In this case /) = ~y~ = ah  q.

As before r-1, ro, r~ are integers. Also (for i &#x3E; -2)
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By using methods similar to those used above we can prove.

LEMMA 3.5. If -2  i  m" - 3 then r7 &#x3E; 0. 

LEMMA 3.6. If -2  i  m* - 5 then r7 &#x3E; r*i

THEOREM 3.7. If ai &#x3E; Q then M* = m* - 4 when Q*  a h/2 and
&#x3E; 1/2, M* = m* + 2 when Q* &#x3E; 2a h and &#x3E; 1/2 ;

otherwise, M* = m* - 2 when Q  2a~/3 and M* = m* when Q &#x3E; 2ahy3.

THEOREM 3.8. Ifa~ &#x3E; Q then M = m-2 when ah &#x3E; Q and M = m when
Q.

In the next sections we refine some of these results.

4. Some Refinements.

We will need to put Theorems 3.3 and 3.7 into forms in which we can
use them to relate W(a,Q*) to W(a,q). We do that in this section.

LEMMA 4.1. If j &#x3E; 0 and h = p - j then Lah’/Q*J.

Proof. + 1) = + a h)  

which is impossible.

It follows that = 

0

LEMMA 4.2. &#x3E; 1/2 if and only if &#x3E; 1/2

Proof. Let q = a-7m, + ri for 0  ri  al, and ah~ = Q*M2 + r2 for

By Lemma 4.1 we have that = mi = rn2 = Lah./Q*j. Also, since
ahlq*  q/aj, we see that if &#x3E; 1/2 then &#x3E;
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LEMMA 4.3. then Q*  a~/2 if and only  q/2.

Proof. If Q*  ah then (a11’+I)/q  a h /2, q &#x3E; and q &#x3E; 

If q &#x3E; 2ai, we must have ah &#x3E; 2. For if ah = 1, then p = j and Q* =
(a’ + 1)/q. Since Q* &#x3E; 1 we would have q  ai which is not possible. Also
if q &#x3E; 2a~ -~-1 = 2(a~ -~ 1/2) &#x3E; 2(a~’-h --~ a-h) &#x3E; 2a -h (a/" -E-1).
It follows that Q*  ah /2. (here gcd(Q*, a) = 1 and h &#x3E; 1). 

’

0’ 
°

LEMMA 4.4. then Q*  2ah /3 if and only if aj  2q/3.

Proof. If Q*  2ah /3 then a3’ + a-h  2q/3 and a3*  2q/3. If aj  2q/3
then a 1,,-h  2q/3 and 3a" = 2qah - k for k &#x3E; 0. Since k - 0 (mod ah )
we have k &#x3E; a h and it follows that a’"  2qah /3 - ah/3. If ah /3 &#x3E; 1, then
Q* = (all. + 1)lq  2a~/3. If ah /3  1, then h = 1, a = 2, 3. If ah = 3 then
3’"  2q - 1 and q &#x3E; (31" + 1)/2 which means that Q*  2, an impossibility.
By similar reasoning it is possible to exclude the case where ah = 2.

0

By using the same kind of reasoning as that used above we can also
prove.

LEMMA 4.5. then Q* &#x3E; 2ah if and only if a-7 &#x3E; 2q.

LEMMA 4.6. then = and &#x3E; 1/2
If and only if la3lql &#x3E; 1/2.

With these results we can now give a different version of Theorem 3. ~ .

THEOREM 4.7. &#x3E; Q then M* = m* - 4 when a~  q/2 and
iqlail &#x3E; 1/2, M* = m* -f- 2 when &#x3E; 2q and la-7 /q} &#x3E; 1/2 ; ,. otherwise,
M* = m* - 2 when a3  2q/3 and M* = m* &#x3E; 2q/3.
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We define the symbols

and

We can now combine the results of Theorems 3.3 and 4.7; (recalling the
definition of Xj given in theorem 2.1).

THEOREM 4.8. and j  p, then M~ = mj + 2x~ - 2qj + 2~j
when Q* &#x3E; q. 

Proof. We note that if e~ = 0 then qj = 0. First assume p.

Case 1. ei = 0.

In this case Q* &#x3E; q implies that aJ &#x3E; q, hence

Case 2. ej = 1. In this case aj  Q*.

Case 2a. = 0. Here aJ &#x3E; 2q/3 and M* = m* + 2 + 2Xj = m* + 

Case 2b. i7j = 1. Here a3  2q/3 and M* = m* + 2X3 = m* + 2Xj - +

2e. ..

We note that M* = 2 and m* = 0. Also in this case

and we get ai &#x3E; 2q. Hence 0, qj = 0. Furthermore

5. The formulas.

We are now in a position to derive the formulas relating W(a,Q) and
W(a, Q*) to W(a, q). If v is the order of a modulo Q* then

Thus our first problem is to determine v. To this end we give
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LEMMA 5.1. 3 and p is the least positive integer such that a’--1 -
0 (mod Q*) then v = 

Proof. Certainly 2p % 0 (mod v). If v is odd then p = 0 (mod v). In this
case -1 - (a~’)"~~’ = a" == 1 (mod Q*) and Q* divides 2 which contradicts
that Q* &#x3E; 3. Thus, v is even and (= v/2) divides p. Put A = Since

let Q* = where a" - 1 (mod and a’~ - -1 (mod Q2 ). Hence,
= 1 (mod and al’ = 1 (mod Qi) whence Q, is even. If Q1 = 1

then a’~ - -1 (mod Q*). By definition of p we must but since

p = 0 (mod ~) we p, and v = 2p.

If Qi =2 and QZ is odd, then since aK == -1 (mod 2) we get that
a’ - -1 (mod Q*); whence, v = 2~. Suppose Q1 = 2 and C~2 = 2’-’ Q’
with s - 1 &#x3E; 1. If Q* = 2.. Q’ does not divide aK + 1 then 2..-1 properly
divides a’’~ + 1 and a" = -1 + 2’-’ t for odd t. Now, -1 - a’l. = aÀIâ. _

(-1 )~‘’ -f- 2!-~ at (mod 2."). If A is even then 2.. divides 2 which is impossible.
If A is odd then 2 q divides 2.,,-1 At ; i.e. At is even which is also impossible.
Thus K = p.

D

Note that we may also assume that if Q* _ (a~’ -+-1)/q, then p is the least
positive integer such that al’ - -1 (mod Q*). For, if this is not the case,
then suppose A is the least such integer. By Lemma 5.1 we have that 2A

divides 2 or A divides J1.. Since a - -1 (mod Q*) we get q = q’ 
a -- I

for some integer q’. It follows that we can write * _ (a -+-1)/q’ for q’  q.
Thus by replacing the value of p by that of A and the value of q by that of
q’, we have the form of Q* which is desired.

In view of the above remarks we can now rewrite 5.1 as

(by 2.4). Now

Since a’l. m -1 (mod q), there is a least positive A such that a~ m -1
(mod q) and w = 2A. Also Jl == 0 (mod A), K = is odd and 7 =
-a-~~‘-~~ ~ -a-~‘a~ - a’ - Si (mod q).
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Thus

By (2.4) we have

Since ml = 0 we get

By Theorem 4.8 and (5.2) we get

We now need to evaluate each of these sums. We note that

thus
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Since we get,

whence,

It follows that

Thus, by (5.3) we get

Recall that a is defined by a°  q  a’+’. Thus we find that

Thus

Also

Thus

where

Now c- = 1 - o-* where
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However, since 3a°/4  a°  q we have = and

It remains to evaluate r Xi. We first prove
2=1

LEMMA 5.2. If j 2 A + 2 then Xx+j = 1.

Proof. We first note that since j ~&#x3E; A + 2 we have

Thus

and

Now

Thus,

the result follows.

Since

and K is odd we get

by lemma then

q = 2B +I (here a = 2). In this case xx+1 = 0 and since 2"B == -1 (mod q) we
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get 22À+1 == 2 (mod q); thus  1/2 when A &#x3E; 1 and X2p+1 = o.
Thus, 3 and a ~ 2 then when aÀ+1  2q we get X2p+1 = 0.

Since 0   2 we getlnce 0  
a’ 

 we get

Xp+1 + = 1 - L2q/aÀ+1J unless q = 3and a = 2 in which case
= 1. With the exception of this case we get

Given the definition of S(a, q) in Theorem 2.1 we see that it depends for
its value only on the values of a and q. Now {r/s} &#x3E; 1/2 implies that
L2r/sj - 2Lr/sj = 1, and  1/2 implies L2r/sj - 2Lr/sj = 0 ; thus,
we can write

The [2/aj term here occurs because = 1/2 when al = 2.

Also

If we put together the formulas (5.3)-(5.7) and (5.9) we get

(here 2, 3 and Q* &#x3E; q). This is Theorem 2.1.

By using the results of section 3 we can also derive by much simpler
methods that ,
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under the assumption that p is the order of a modulo Q, (an assumption
which can be made without loss of generality), and the assumption that
q  Q. This is Theorem 2.2.

6. Special Cases.

In this section we will develop formulas for W(a, q) for certain special
values of q. We first note that when q = aa + 1, then we can easily evaluate
S(a, q). We have that ai  q/2 for j = 1, 2 ~ ~ ~ , a - 1. For such values of
j we get 

- .

and

unless ai = 2.

Since q/2  aÀ  2q, we get

Now, when q = a~ + 1 and Q* = (all’ + 1)/(a-B + 1) is an integer larger than
2, then p m 0 (mod A) and we have

LEMMA 6.1. IfQ* is as given above, A 0 1, and a 0 2, then the least value
v such that a’ m 20131 (mod Q*) is ~.

Proof. Let K = Since 2v is the order of a modulo Q* and m 1

(mod Q*) we have 2v dividing 2AK or AK m 0 (mod v). Put v = for

&#x3E; 1. Since = -1 (mod 20132013-) wegetthata+1  (a + I) (a + 1)t &#x3E; 1. Since a’ == 1 (mod a -t- 1 
we get that a + 1 (a" + 1) (a + 1)

Since Q* &#x3E; 1 we must have &#x3E; 1 and since K is odd we must have K &#x3E; 3.

Also, v &#x3E; 1, and À  1. If then AK - v - A &#x3E; 1 and

Since a &#x3E; 2, this is impossible.
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Hence,

or

It follows that (t - l~(~c - 1~  1 +t/a. Since K &#x3E; 3, we have that 2(t - 1~ 
1 + t/A or 2t - t/A  3. If t = 3, this can only occur for A - 1. But from
(6.1) we get

whence

which means that a = 2 ; this value is excluded by hypothesis..If t = 2
then A is even and A &#x3E; 2. If A &#x3E; 2, then 2t - t/A &#x3E; 2t - t/2 &#x3E; 3t/2 &#x3E; 3,
which is impossible. If t = 2 and A = 2, then by (6.1)

and we get

a contradiction. Hence we must have t = 1 and v = AK = ~.

0

By using similar techniques it is easy to prove

LEMMA 6.2. and Q = (all. - 1) is an integer greater
than I then the order of a modulo Q is p.

From Lemma 6.2 and (5.11) with q = a~’ - 1 we get cx = cv - 1 and

By (2.5) this becomes
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which is Theorem 2.3.

we get 2q &#x3E; a’ for 1  I  A and S(a, q) = 0.

Furthermore, c~ == A,

= 1 and W(a,q) = 4A - 2 by (2.6). Hence by Lemma 6.1 and
(5.10) we get

where e is as in Theorem 2.4 which is now proved.

It should be noted that we have only proved (6.3) when aa + 1 ~ 3.

However, it can be easily shown that in this case

This holds because M*(2~,(2~’ + 1)/3) = 4 for 3  k  p - 2 and

1)/3) = 2. Thus (6.3) holds for a~ - 1 = 3.

We have also excluded the case where q = 2, but it is also easy to show
that

Thus by (2.4) we get

which is Theorem 2.5.

Undoubtedly many more results concerning this remarkable function
W (a, q) remain to be discovered. We conclude this paper with a short
table of values W (a, q).
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Table of Values for 

Parameters :
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Table of values for q) (continued)
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