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On products of singular elements

by RACHED MNEIMNÉ AND FRÉDÉRIC TESTARD

Some rings, like the ring M(n, h’) of square matrices, do not contain
irreducible elements: any singular element x can be written as the product
x = yz of two singular elements y and z. We shall call these rings S-rings.
Our first purpose in this paper is to exhibit some examples of S-rings. For
instance, we give a necessary and sufficient condition ensuring that Z/nZ
is an S-ring.

More generally, let us denote by (or just if no confusion is

possible) the set of elements of a ring R, which can be written as the product
of i singular elements; the sequence (5’t) is decreasing (we only consider rings
where left invertibility is equivalent to right invertibility) and moreover the
ring R is an S-ring if and only if _ ,5’2 . We denote by the intersection

of all the when the sequence (S;) is stationnary (S’~ = ,S’k whenever
i &#x3E; 1~), we have = ,S’k if k is the first index i such that = S;+i . There
is a natural operation of the group GL(R) of all invertible elements of the
ring R on the set S; defined by: (g, x) H gx for 9 E GL(R) and x E 
where gx is the product in R of the two elements g and x. This defines

clearly an operation of GL(R) on ,5’;, hence also on So+1 (elements of
which do not belong to Other natural operations could have been

considered: (g, x) H xg-l or (g, x) H gxg-l or the following operation of
GL(R) x GL(R) on Si given by ((gl,g2),X) ~ When the ring R
is commutative, these operations bring nothing new. This is the case of

the ring K[A] of polynomial expansions of the matrix A E M(n, h’) for
which we dispose of a particularly nice description of the orbits of GL(A)
(= 3).

In part 2, we study in an elementary way the ring K[A] by giving a
necessary and sufficient condition in order that the matrix A could be
written as P(A)Q(A), where P and Q are polynomials, with P(A) and
Q(A) two singular matrices (i.e. A E 5*2(~[~4])).

Part 4 is devoted to the solution of the following non trivial problem:
given any matrix A, what is the maximal number n(A) of singular and
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permutable matrices Ai such that A = Ay ~ ~ ~ A~" ? A simple observation
allows us to answer the same problem, for A and Ai bistochastic.

1. Examples of S-rings

We begin with an easy criterion

LEMMA 1. Let E and F be two rings and E x F be their product ring;
then E x F is an S-ring if and only E and F are S-rings. In particular,
any finite product of fields is an ,5’-rlng.

Proof Consider a singular element (x, y) in E x F. For instance, x
is not invertible. We can find Xl and x2 two singular elements in E so
that x = then (.c,2/) = y).( X2, 1) is the product of two singular
elements of E x F. Conversely, suppose that E x F is an S-ring and take
x, any singular element in E. There exist two singular couples and

(X2, Y2) so that (x, 1) _ Yl )’(X2’ Y2). Since Yl’Y2 = 1, x, and X2 are

not invertible, and E is an S-ring; the same argument works for F.

LEMMA 2. Let p be a prime and a be a positive integer. The ring R =
7l/po71 is an S-ring if and only if a = 1.

Proof If a = 1, the ring R is a field and there is no problem; otherwise
the class of p cannot be the product of two singular classes since it would
imply p - p2 ~ - cp" where k and c are integers, which is impossible if
a &#x3E; 2.

PROPOSITION 1. Z/nZ; the ring R is an S-ring if and only if
n = pi ... pk where the p; are distinct primes.

r

roof If n = the are isomorphic.1 
k

The conclusion follows easily from leinmas 1 and 2.

PROPOSITION 2. Let X be a topological space and R = C(X,R) be the
ring of all continuous mappings from X to R. Then R is an ,5‘-ring.

Proof The function f is singular if and only if it vanishes at some
point of X . When it happens, the same is true for the two continuous
mappings 11 = f’1’ and f2 = f2/’ and f = 

PROPOSITION 3. Let R be the ring of all germs of C"- real functions on a
neighbourhood of zero. Then f E Si ~ f (0) = f’ (o) _ ~ ~ ~ = f ~~-~ ~ (o) = 0.
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Proof Let us recall that a germ is an equivalence class with respect to
the relation: neighbourhood of zero. An element f
of R is singular if and only if f (0) = 0 and a straightforward application
of Leibniz’s derivation rule shows that if f = fi ... fi is the product of i
singular elements, the function f and its i - 1 first derivatives vanish at 0.
Conversely, if this is true, Taylor’s formula gives, for x small enough:

(tx)dt and the conclusion follows.

Remark 1: This result provides an exemple of a ring where the sequence
Si is not stationnary and does not "converge" to 0. Indeed the well known
C°°-function f (x~ = whenever x 0 0, clearly belongs to all
the ,S‘$ without being 0. The explanation lies in the fact that the ring R of
germs of Coo functions which is a local ring is an ideal, hence.the unique
maximal ideal) is not noetherian: indeed, in a local noetherian ring, the
intersectionn si is equal to 10} as it results trivially from Krull’s theorem
(see e.g. Atiyah-Macdonald: Introduction to Commutative Algebra p.110 -
Addison-Wesley 1969).

PROPOSITION 4. Let 7~ be a field and R = M(n, K) be the ring of square
matrices n x rl with coeflicients in Ii . Then R is an S-ring.

Proof Let A E R be a singular matrix and r  n be the rank of A. We

know that A is equivalent to the matrix Jr = Ir 0 where I denotesq ’ 

0 0-
the identity matrix of order r, i.e. there exist two invertible matrices P and
Q such that A = PJrQ. Since Jr = Jr, we get A = XY where X = PJr
and Y = JQ are singular matrices.

COROLLARY 1. The ring of bistochastic matrices of order n is an ,S‘-ring.

Proof Recall that a matrix M = (a;,j) is bistochastic if there exists d
in K such that Vi, = d and Vj, Li aij = d. It is easy to prove
that M is bistochastic if and only if M(H) C H and M(D) C D where H
denotes the hyperplane of 7~" equipped with its canonical basis le, ... , 
of equation ~~ z; = 0 and D is the one dimensional subspace generated
by Hence, there exists an invertible matrix P, independent of M,

satisfying M = P A § ) where A is an element of M ( n - 1 . )0 A "
This defines an isomorphism between the ring of bistochastic matrices and
M(~ - 1, K) x If and the conclusion follows from lemma 1.
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2. Singular polynomial decompositions of matrices

From now on, A will denote a square matrix, P and Q will be polyno-
mials.

PROPOSITION 5. The singular matrix A can be written as P(A)Q(A),
where P(A) and Q(A) are singular if and only if 0 is a simple root of
the minimal polynomial of A.

Proof Let us recall that the minimal polynomial of A is the unitary
generator 7r of the ideal of all polynomials which vanish at A. The roots of
7r in the field K are the eigenvalues of A in K. In particular, 0 is a root of
7r since A is singular.

The sufficient condition is easy to prove: one can write, 0 = ~r(A) _
aA + AQ(A) with A # 0, Q being a polynomial vanishing at 0; so that
A = (-A/A)Q(A) and the conclusion follows, since Q(A) is singular (Q(A)
admits Q(0) = 0 as an eigenvalue). Conversely, if A = P(A)Q(A), the
minimal polynomial of A divides the polynomial X - P(X)Q(X): it is

enough to prove that 0 is a simple root of X - P(X)Q(X). Let us first
remark that the equality A = P(A)Q(A) remains true for any matrix B
similar to A, so that, considering an upper triangular matrix B similar to
A, (we could need to extend the ground field) we get Ai = P(A;)Q(A;) for
any eigenvalue A. of A this implies that if 0, 0 and 0,
so necessarily, since P(A) and Q(A) are singular, P(0) _ = 0 and the

required conclusion follows easily.

Remark 2: An equivalent way to characterize such matrices is the fol-
lowing : 0 is a simple root of the minimal polynomial if and only if ker(A~ _

Remark 3: Let R be the ring it results from the proof of proposition
5 that if A E S2, then A E (once we have written A = (-A/A)Q(A),
we obtain A = and so on). We will understand the
situation much better in the following section (see Remark 8).

COROLLARY 2. For A = BI, there exist polynomials P and Q so that
A = P(A)Q(A) with P(A) and Q(A) singular matrices if and only if 0 is a
root of the minimal polynomial of B of order  k.

Proof This is an easy consequence of the fact already noticed in remark
2, that the order of 0 in the minimal polynomial of a matrix M is the first
step where the increasing sequence ker(M’) becomes stationnary: we have
ker(B’) = ker(A) C ker(B k+l) C - - - C ker(B2k) = ker(A 2).
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3. The ring K[A] for itself

In this section it will be assumed that the field ~ is algebraically closed,
although most results can be stated in a more general context; let us recall
that the ring R = K[A] I~ ~X J ~ is isomorphic to the quotient
ring where (7r) denotes the principal ideal generated by the
minimal polynomial of A. Writing 7r in the form 7r(X ) = (Ài E
K, a~ C N*) it follows from the chinese remainder theorem (or from an
adequate computation of the dimension of the underlying vector spaces)
that K[A] is isomorphic to the product ring ni so that

we obtain, as for the ring Z/nZ, a first result:

PROPOSITION 6. The ring an ,S’-ring if and only if A is diagona-
lisable.

Proof This is again a straightforward consequence of lemma-1, once we
know that a matrix A can be reduced to the diagonal form if and only if
the minimal polynomial of A has simple roots.

Remark 4: If 7~ is no more algebraically closed, we can replace the state-
ment of proposition 6 by the more general one: the ring is an S-ring
if and only if A is semisimple (i.e. diagonalisable over an extension ~~’ of
I~).

Remark 5: It is not worthless to note that an element M = P(A) of
the ring R = K[A] is invertible if and only if 0 or still, if and

only if P(X) and 7r(X) are coprime: the first criterion results for instance,
from a direct application of Cayley-Hamilton theorem; as for the second it
is, in view of the isomorphism ~[~4] ~ a consequence of Bezout

theorem.

Before we start the study of the sets ,5’x for the ring together with
their GL(A)-action, we give a general lemma which can be more easily
stated if the underlying set of the group GL(R) of a ring R is denoted by
So (R) :

LEMMA 3. Let E and F be two rings and E x F be their product ring.
1

the union being taken over i -~ j &#x3E; n.

Proof Let x = x, - - - x. be an element of Si(E) and y = yi ... yj an
element of where all the Yk) are singular unless i = 0 or j =
0. We write (.r,~/) = the element (x, y)
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belongs to x F) C since i + j &#x3E; n &#x3E; 1. Conversely, let (x, y) _
(~1~1)" Yn) be an element of sn,(E x F) where all the couples (xi, yi)
are singular. We write (x, y) _ (xy ~ ~ ~ yi ... y~) and we denote by i the
number (possibly equal to 0) of xk which are singular in E, so there are
(n-i) elements xk which are invertible; the corresponding yk are necessarily
singular, so that at least j &#x3E; n - i elements among the yk are singular and
y E Sj(F); the result then follows from the hypothesis x C S’; (E) .

Remark 6: The lemma can be easily extended by induction to the case
of a finite product of rings E~ , ... , Ef.

Remark 7: For n &#x3E; 2, the indexation in lemma 3 could be replaced by
i -1- j = n. (For n = 1, this is no more true because the factor Si x 6*1
cannot be taken into account). In the case of k rings, we get the same for

PROPOSITION 7. Let R = and 7r(X) = ITi(X - i = 1, ... , r
the minimal polynomial of A, then Sp where p = Li(ai - 1) + 1.

Proof Since the sets Si behave well under ring isomorphisms, we look
at the problem in the ring R = R;, where Ri denotes the quotient ring

Ai)-i. Let x = (x~ , ... , xr) belong to we shall prove
that one of the components of x is zero, this will imply clearly that x E 5’oo.
From lemma 3, we have xj C Siij (Rj), where Lj ¡3j ~ p, so that one of the
,Q~, say Qk is &#x3E; ak (otherwise, we would have Lj ¡3j ~ 1)  p)
which ensures xk E (Rk) = 10}. To end the proof, we notice that the
element x = ((X - ai )‘~’ -~ , ... , (X - is in but not in Sp (no
component of x is equal to zero !)

Again Lemma 3 will be of use to establish the following criterion:

PROPOSITION 8. An P(A) in the ring R = belongs to ,5‘2 if
and only if P vanishes at at least two eigenvalues not necessary distinct of
A or at an eigenvalue of order one in the minimal polynomial of A.

Proof We keep the notation introduced in the precedent proof; the iso-
morphism between the ring R = and the ring rl Rx is given by
P(A) H Pi where Pi denotes the class of the polynomial P(X) in the
quotient R~. Hence, the element P(A) belongs to ,S2 if and only if one

among the Pi belongs to S2(Ri) or at least two among the Pi, say Pt and
Pq, belong to Si (Rt) and S, (RR) respectively, the second alternative implies
clearly that the polynomial P is divisible by (X - a f) and by (X - A,q), the
first alternative means that P is divisible by (X - Ài)2 if 2 or P; = 0
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Remark 8: We understand now better the proposition 5 and the remark
3: to say that A belongs to S’2 means that the polynomial X (which cannot
vanish at two eigenvalues of A !) vanishes at an eigenvalue of order 1 in

7rA; since 0 is its only root, this means that 0 is a simple root of 7r A . The
image in the product IT R; has one of its components 0 so, belongs to S(Xj’

Remark 9: A necessary and sufficient condition in order that an element

P(A) belongs to S3 could be stated: the polynomial must vanish at at least
three roots, or must be divisible by (X - A)2 where A is a root of order 2
of or vanish at a simple root of The proof is left to the reader.

Our purpose until the end of this section will be the study of the orbits of
GL(A) on the We begin with the case (X-A)" (i.e. A = 
N nilpotent). In this case = to} C So-i C ~ ~ ~ C 81 (strict inclusions).
For i = 1, ... , a -1, an element of R = belongs to 
if and only if it can be written as (X - and 7r being mutually
prime, which means in view of remark 5, that it belongs to the orbit of
(X - A)’. This proves that the Si B ,S’x+y along with are the orbits of

GL(R) acting on Si; in particular, there are a orbits.
The following lemma will permit us to compute the number of orbits in

the general case:

LEMMA 4. Let Gi denotes the group of invertible elements of the ring
E;, i = 1, ... , k and let E be the product ring. Then GL(E) is isomorphic
to the product 11 GL(Ei). Moreover, if az is the number of orbits of Gi
acting on then the number of orbits of GL(E) on Si (E) is given
by (a, + 1)(a2 + 1) ... (ar + 1) - 1.

Proof The assertion concerning GL(E) is trivial. As for the second, we
begin with the case n = 2. Considering the action of Gl x G2 on the set
of singular elements of Ri x R2, we can divide the orbits in three kinds:
orbits of elements (x, y) where x and y are singular, orbits of elements (x, y)
where x is singular and y is invertible and finally, orbits of those elements
(x, y) where is invertible and y singular. There are clearly ai a2 orbits
of the first kind, ai of the second type a.nd cx2 of the third, which gives

= (al + 1)( a2 + 1) - 1, first and last. An induction argument
will do with the general case.

PROPOSITION 9. The action of GL(A) on the set of singular elements of
h’[A] determines ITi (a¡ + 1) - 1 orbits, i = 1, ... , r if the minimal polyno-
mial is given by ’Bi)Oî.

Proof it is an immediate consequence of lemma 4 and the discussion
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before.

COROLLARY 3. The non empty sets Si+,, along with are exactly
the orbits of GL(A) acting on if and only if the matrix A can be
written A = AI + N, where A C K and N nilpotent.

Proof We have already established the sufficient condition. Conversely,
our hypothesis implies that, in view of proposition 7 and 8,

which is possible only if r = 1, that is A = AI + N.

COROLLARY 4. Let A have r distinct eigenvalues, then A is diagonalisable
if and only if the number of orbits on the set of singular elements is 2r - 1.

Proof This is clear since the condition is equivalent to a; = 1, Vi.

PROPOSITION 10. Let 5oo = in the ring R = and suppose that

K[A] is not an S-ring (i.e. p &#x3E; 2), then the number of orbits of GL(A)
acting on the non-empty set Si S2 is exactly the number of multiple roots
of the minimal polynomial 7rA. Moreover, the non-empty set SP-1 B 5p is
exactly an orbit in the singular set.

Proof We keep use of the isomorphism R ’" ni Ri with its 

ni GL(R; ) action; an element (x~ , ... , belongs to 5*1 B 52 if and only if
all the z; but one, say xk are invertible and xk belongs to 
this set is hence non empty and a GL(Rk)-orbit. We get so a correspondence
between the orbit of the element (.ri,... , xr) and the necessary multiple
eigenvalue a. As for the second assertion, we first make use of lemma 3: the
element xr) belongs to 5p-l if z; E and Li (3¡ &#x3E; p-1
and no X is zero (cf. proof of proposition 7), that  ai - 1; since p-1 =

1), we get Q; = c~ - 1, for every i . But each (R~ ) B 
is an orbit (even if a? = 1; see our convention of notation preceding lemma
3), the conclusion follows.

Remark 10: More generally, it is not difficult to establish that there is a
one-to-one correspondence between the orbits in ,Sk B and the r-uples
(01,... , ar) for which a, -~- ~ ~ ~ + ar = k and 0  a-  a~ - 1 for every i .

This gives for example in the case of a matrix A with minimal polynomial
~rA (X ) = X ~‘~ (X -+-1 )4 (X -1 )‘~ (here p = (2 -~ 3 -f- 2) -E-1 = 8 and the number
of orbits is 79) exactly 3 orbits in ,5‘y B 62, 6 orbits in ,5‘2 B S3, 8 orbits in
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Sa B ,5’4, 8 orbits in ,S‘4 B ,5’,5 , 6 orbits in ,S’,5 B 3 orbits in B S7, one orbit
in ,S’? B 58 and 44 orbits in S’s .

Computing all the orbits in we need to know all the (ai , ... , ar)
such that Vi 0  ai , .5 ai-1 and 1  al +...+ar ~ p-1. This last inequality
is a consequence of the first r inequalities, so there are (a, - - - ar - 1) orbits
in ,5’i B and by substraction n(ai + 1) - (cx~ ~ ~ ~ ar) orbits in (result
which is valid even if p = 1). It is now easy to solve the following:

Exercise 1: Prove that if A has exactly k distinct roots with k &#x3E; 2, then
A is diagonalisable if and only if there are 2k - 1 orbits of GL(A) on 
(Compare with corollary 4).

4. Permutable decompositions of singular matrices

If A is a singular matrix, we define n(A) as the upper bound of the
numbers m of singular permutative matrices Ai such that A = Ay ~ ~ ~ 
In order to compute the number n(A) for a given matrix A, we need to
introduce a special class of operators characterized by the following:

PROPOSITION 11. For a given matrix acting on the finite dimensional vec-
tor space E = Ii ", it is equivalent to say:

a) dim = 2 dim ker(A) 
°

b~ the Jordan cells of A associated with the eigenvalue 0 are of order &#x3E; 2

c) ker(A) C im(A)

d the matrix A is similar to a matrix 0 x written with respect to10 y -
a direct decomposition of E = ker(A) E9 G where the linear operators

satisfy (a) ker( X) E9 ker(Y) = G and ({3) X is onto.

Proof The equivalence between a) and b) results from the classical Jor-
dan decomposition; the one between a) and c) is a direct consequence of the
Frobenius injection p : ker(A2)/ker(A) -+ ker(A) given by 7 1--4 A(x); thus
a) is equivalent to say that ~p is surjective, which is exactly c). We prove
now a) » d): let C, be a complementary subspace of ker(A) in ker(A2) and
C2 be a complementary subspace of ker(A2) in E and write G = Ci Q9 C2
-we have already noticed that the restriction of A to Cl is an isomorphism
between C1 and ker(A); the same is true for the restriction of X to Ci,



346

since these restrictions are equal. It follows that X is onto and that Cl and

ker(X~ are complementary in G. We need only to prove that Ci = ker(Y~;
it is clear that C, C ker(Y), moreover, if A+ denotes the restriction of

A to G, A+ is one-to-one so dim(Ci) + dim(C2) = rk(A+) = =I,,-
rk([X Y]) = + rk(Y) = + rk(Y) and we are done.

Finally let us prove d) » a): the matrix A2 is similar to L v2 and0 y2
with respect to the direct decomposition E = ker(A) E9 G, to say that the

vector column is in ker(A2) means that v E ker(y2)nker(XY) and u is
lv " 

arbitrary in ker(A); but ker(Y) = fl ker(XY) if ker(X) fl ker(Y) =
10} (easy) so that v E ker(Y). We end the proof by noting that since X is
onto and G = ker(Y), we have in fact dim ker(Y) = dim ker(A).
We are able to state the main result of this section:

PROPOSITION 12. The number n(A) is finite if and only if A satisfies
the equivalent properties given in proposition 11. In which case n(A) =
dim ker(A).

Proof The matrix A is similar to a matrix B of the form:

, the matrix Bo being invertible and each of the

L 

matrices Bi being a Jordan cell associated to the eigenvalue 0 (obviously,
I~ = dim ker(A) and moreover Bo is absent if A is nilpotent). If one of

the B is of order 0, the matrix A is similar to B = 
Bl 0 

and B =’ 

0 0-

Bi x B 2 x ... x B, with B, 1 = B, B 2 = Bp = r’ 0 (with
evident notation), all these matrices are singular and permutative, and
we can choose p as large as we want: n(A) = oo. When dim ker(A 2) =

2 dim ker(A), we have B = B’ x ... x B~ where J

L TdJ

(the blocks Bo and Bi kept unchanged and the others replaced by Id) and
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(we replace all the blocks Bj by

I d, except Bi which remains unchanged); again these matrices are singular
and permutative so n(A) &#x3E; ~ = dim ker(A).
We proceed to prove the opposite inequality (in due course we shall need

two lemmas). Suppose that M = X given by proposition 11 can be) PP 0 y ’ 
g y P P

written as a product N, Nk+,, where the Ni are permutable matrices;
we shall show that one of the N~ must be invertible.

Let us write N _ Si according to the decomposition of M. TheRi C
first remark is Ri 0. Indeed, since Ni and M commute, Ni(ker(M» C
ker(M), that is Ri = 0. It follows that the are permutative and that
Sl x S2 ... ° X = 0.

LEMMA 5. Let Si , ... , Sk+i be permutative matrices of order k satisfying
x ,5’2 x ~ .. x = 0 , then after reindexation x ,S‘2 x ~ ~ ~ X Sk = 0 .

Proof By induction. The result is trivial for k = 1; if is invertible,
the conclusion is clear since we may multiply on the right by its inverse.
We may then suppose that the dimension d of the image subspace 
is strictly smaller than n. If S’~, i = l, ... , n, denotes the restriction (ev-
erything commute with of to the subspace im(Sk+l), we have
,S’~ x ,S’2 x ... x = 0. This last expression can be thought (by grouping
if necessary some operators toghether) as the null product of d + 1 com-
muting operators in a d-dimensional space. By induction hypothesis, we
get (after possible reindexation, and reinserting of some possible operators)

x ,S’2 x ~ ~ ~ x S’k = 0, and conclude that at the level of the hole space
s, x ,S2 X ... X X Sk+1 = 0.

Accordingly, we may suppose that Si x ... x = 0 and that, denoting
the product N = N N by 0 S 0,P , y 10 U- k+’ y 0 T ’

(i)
(ii), since M = = Nk+l N.

The last step of the proof will consist of proving that R and T are
invertible.
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(i) and (ii) imply that ker(T) C ker(X) and ker(T) C ker(Y) so that
ker(T) = {0} : T is invertible. Now since T is invertible, again (ii) shows
that ker(U) = ker(Y) and (i) shows that rk(H) = rk(X).

Keeping the notations of proposition 11, we assert that G = 

ker(U) and G = ker( H) E9 ker(U); the first equality is now clear, the second
will be established {0}, but this is easy since ker(H) n
ker(U) g ker(U) = ker(Y) and by (i) ker(H) n ker(U) C ker(X). We get
now the invertibility of R from the following lemma:

LEMMA 6. Consider the diagram:

and suppose that x = r o h -~- s o u together with ker(h) and ker(x) in direct
summand with ker(u) in G, then r induces an isomorphism between the
images of h and x.

Proof This is immediate as soon as we consider the restrictions to ker(u~
of the mappings given on G.

COROLLARY 5. If n(A k) is finite then n(Ak) = k.n(A).

Proof Write 101 C ker(A) C ker(A2) C ~ ~ ~ C ker(Ak) C ker(Ak+l) C
... C Since dimker(A2k) = 2dimker(A k), the Frobenius

inequalities:

dim ker(A+ ) - dim ker(Ak)  dim ker(Ak) - dimker(Ak-l) are in fact
equalities so dimker(Ak) _ k. dim ker(A).

Remark 11: The preceding corollary shows in particular that if n(A) is
odd, the matrix A has no square root.

PROPOSITION 13. Suppose n(A)  oo, and let A = X~ ~ ~ ~ Xm, a permuta-
tive singular maximal decomposition ofA (m, = n(A)), then Vi, n(J’Yi)  00

andis= 1.

Proof We have ker(X-) C ker(A) C im(A) C im(X.), since the X;,
commute. So is finite. We proceed, for proving n(Xi) = 1, by
induction on m = dim ker(A); the case m = 1 is trivial. Write A = Xl.B
where B = X2 ... X,; as for X;,, we prove that n(B) is finite, but B is
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already written as m-1 permutative singular matrices, hence n(B) &#x3E; m-1.
Remember now that ker(B) C ker(A) so either dim ker(B) = m - 1 or m;
we prove that it is not m: otherwise, the inclusion im(A) C im(B) would in
fact be an equality. Write now: im(B) = im(A~ = X, (im(B)). This means
that X~ leaves im(B) invariant, and its restriction to im(B) is surjective,
and hence ker(Xl)nim(B) = f 0~. But ker(Xi) C ker(A) C im(A) = im(B),
so X, is bijective which is false. We have in fact dim ker(B) = m - 1, and
n(Xj) = 1 2 by induction hypothesis. Since we could have chosen
B = Xi ... X.,,,-,, the fact n(Xi) = 1 is clear.

The next result is a simple application of proposition 12 to permutative
decomposition of singular bistochastic matrices: if A is such a matrix we
define n.,(A) as the upper bound of the number m of singular permutative
bistochastic matrices Ax such that A = j4~ ’’’ Am, .

PROPOSITION 14. For a bistochastic matrix, n,,(A) = n(A).

Proof We make again use of the isomorphism between the ring of bis-
tochastic matrices and the product ring M",_y (K) x K, and may suppose
A = A, 0 (see the proof of corollary 1); if A = 0, nq(A) = n(A) = oo;° A °

and if n(A)  oo the scalar A is different from 0 (proposition 11 b)) and
n(A) = the conclusion follows easily.
We look in this final paragraph to the upper bound rn(A) of numbers k

such that A = A~ ~ ~ ~ Ak where the Ai are singular and quasi-commutative
(i.e. is nilpotent).

PROPOSITION 15. m(A) = 

Proof The problem behaves well under base change, and a simple argu-
ment similar to the one given at the beginning of the proof of proposition
12, shows that we only need to consider the case when A is a Jordan cell

- . -

J. associated to the zero eigenvalue. But if we have

for every m, Bm’Jn = BJ~ = Jn,; we get the result by noting that two
triangular matrices are quasi-commutative.

Exercises: 2 - Given an arbitrary matrix A, prove that there exists an
invertible matrix P, such that n(PA)  oo.

3 - Prove that if n (A 0 B)  oo, where A 0 B is the tensor
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product of A and B, then either A or B is invertible.

4 - Prove that if p &#x3E; 2, then n(APA) = oo. (We have denoted
by AnA the p" exterior power of A).

5 - Prove that the ring of upper triangular matrices is an S-ring.
Use this fact to give another proof of proposition 15.
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