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On the Galois structure of the
square root of the codifferent.

par D. BURNS

Résumé — Soit L une extension abélienne finie de ), et O son anneau
des entiers. Nous poursuivons 'étude du seul idéal fractionnaire de Oy qui
(s"l existe) est unimodulaire pour la forme trace de L/Q.

Abstract — Let L be a finite abelian extension of (), with Oy, the ring of
algebraic integers of L. We investigate the Galois structure of the unique
fractional Oy, -ideal which (if it exists) is unimodular with respect to the
trace form of L{Q.

Introduction

Let L be a finite Galois extension of the field of rationals Q, and let G,
denote the Galois group Gal(L/Q). Letting O, denote the ring of algebraic
integers of L we henceforth assume that there exists a fractional (;-ideal
Ay, the square of which is the codifferent of the extension L/Q. (This is a
mild condition on the ramification of L/Q which is certainly satisfied if, for
example, L/Q has odd degree.) This ideal Ay, is therefore ambiguous, i.e.
it admits an action of Z[G1], and is in fact the unique fractional Oy -ideal
which is unimodular with respect to the Gy-equivariant Z-bilinear form
Try : A;, x A; — Z which is given by

Trr, : (z,y) = Jtrace|r q(zy)-

There is by now a considerable literature dedicated to the problem of deter-
mining the structure of the Hermitian-Galois module (A, T'r) over Z[G].
Most notably, this structure (inter alia) has been explicitly described by
Erez and Taylor [9] in the case that L/Q is at most tamely ramified, and
by Bachoc and Erez [3] and Bachoc [1] under certain less restrictive ramifi-
cation hypotheses but with the condition that G be abelian. In this note
we are not concerned with Hermitian structure and shall only study the
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structure of A;, as Galois module in the case GG;, abelian but without any
ramification hypotheses on L/Q (other than that A; exists). In fact Bachoc
has recently shown that the description of Galois structure which we shall
give here is for a large class of abelian extensions L/Q actually sufficient to
determine uniquely the full Hermitian-Galois structure of (A, Trr) over
Z[G1] (her results are to appear in [2]). Henceforth therefore Gy, is abelian.
In this case Ay, is known to be locally-free as a module over an explicitly
described Z-order A; C Q[G]([8], Theorem 3.1) and so it defines a class
(Ar) in the locally-free class group Cl(A;) of Ar-modules. Letting My,
denote the maximal Z-order in Q[G}] we shall here explicitly describe the
image of (A7) under the natural surjective map

w1, : CLAL) — ClMy)
which is induced by the map defined on each locally-free A; - module X by
X—>XQ@AMp=2XM;.

Our description of m7,(As,) will be given in terms of the standard Hom-
description of C¢(M7) (to be recalled in §1). As a particular consequence
we shall prove that, given any rational integer N, there are infinitely many
fields L as above for which the order of the class m;(A;) (and hence also
that of the class (A)) exceeds N. This is a striking result given the
strong analogies between the Hermitian-Galois structures of (A;,,Tr;) and
(Or.,Try,) which are valid under the hypothesis of tameness (c.f. [8], Theo-
rem 1.3) together with the fact that, without any ramification hypotheses,
Oy, is always free over an explicitly described Z-order in Q[G;] (this is
the famous Hauptsatz of Leopoldt [12] (for a simple proof of which see
Lettl [13])). Specifically therefore it follows that the (techniques and) re-
sults of [1] and [3] are no longer valid after any weakening of the ramifi-
cation hypotheses imposed there. Nevertheless our description does give a
uniformity-type result more general (but weaker) than that of Théoréme

0.3 of [3)].

Acknowledgements : The author would like to thank Christine Ba-
choc and Boas Erez for many stimulating conversations. Also, the final
version of this note was written whilst he benefitted from the generosity
and warm hospitality of the Institut fiir Mathematik der Universitat Augs-
burg, Germany.

Notations : We fix an algebraic closure Q° of Q, and for each rational
prime p, an algebraic closure Qj of the field of p-adic rationals Q,. We
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let g (respectively Qq,) denote the absolute Galois group Gal(Q°/Q) (re-
spectively Gal(Q;/Q,)). For any finite extension L of Q (respectively Q,)
which is contained in Q° (respectively Q) we let O denote the ring of
algebraic integers (respectively valuation ring) of L, Z;, the group of frac-
tional Or.-ideals, Pr; the subgroup of Z; consisting of principal fractional
Or-ideals, and C?¢;. the ideal class group Z; /Pr;. of L. For any such fields
K C L we shall often identify the group Zx with a subgroup of Z; in the

usual way (i.e. via inflation of ideals).

1 - The ‘Hom-description’ of C¢(M ).

Our description of the class 77, (A1) uses the characterisation of C¢(M7,)
in terms of {2g-equivariant homomorphisms defined on the set of irreducible
Q°-valued characters of GG;,. For the reader’s convenience we shall in this
section briefly recall this ‘Hom-description’ of C¢(M7). (For a thorough
discussion of this description as applied to the locally-free class group C¢(.A)
of any Z-order A of Q[G;] the reader is referred to Chapters 1 and 2 of
[10].)

We now let I denote an arbitrary finite abelian group, with T't its mul-
tiplicative character group Hom(T', Q°*). A division of I'! is then an equiv-
alence class of characters under the relation of Qg-conjugacy. For each
character 8 € T't we let Q(6) denote the field extension of @ generated by
the set {8(y) : ¥ € I'}. This field only depends upon the division D to
which 6 belongs and accordingly we shall frequently denote it Q(D), with
Z|D) = Og(p)(= Z[f]). For each character § € 't we define an idempotent
eq of the Q(6)-algebra Q(#)[I'] by

L
€ = 2T > 6(v "),

~€T

and for each division D of 't we then define an idempotent ey of Q[I'] by

en = Zeg‘

fen

The maximal Z-order of Q[I'] is then

(1) Mr = Pzllen
n
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with the sum taken over all divisions D of I'f. Corresponding to the de-
composition (1) there is a direct sum decomposition of any Mp-module X

as
X =P Xen,
D

and hence we need only describe the structure of lattices over each of the
rings Mp := Z[llep. Now for each division D the ring Mp naturally
identifies with the Dedekind domain Z[D]. The structure of each finitely
generated M- lattice is thus determined up to isomorphism by its rank
and Steinitz class (c.f. Theorem (4.13) of [14]). The Steinitz class (Xp)p
of an M p-lattice X is the element of the ideal class group C/¢p of the
ring Mp which is characterised by

(2)(1) (Yn)n=1 if Ypis afree Mp — lattice

and, if Xp and Yy, are Mp-lattices which span the same Q[I']e p-space,
then

(2)(i1) (Xn)n(Yn)5,' is the element of C2p
' generated by the ideal [Yp : Xplm,,

where here []a¢,, denotes the M p-module index as defined for any two
M p-lattices which span the same Q[I'lep-space. Next, we introduce the
character functions which will describe the locally-free class group C4(M p)
of the ring M p. We consider functions g on D with values in the group
Ip of Z[D]-fractional ideals, and such that

9(6“) = g(6)“,

for each character § € 't and each element w € Qg. Such functions form a
multiplicative group Ig . We let Iy denote the group of fractional M p-
ideals. There is then an isomorphism

(3) Ir) IQ,

To describe this isomorphism note that any character 8 € D extends by
Q-linearity to give an isomorphism Q[Ilep = Q(D) which we shall denote
by 6. Then for any ideal b € Ip, the function R(b) is defined at each
character 8§ € D by

R(b)(8) = 6(b).
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To give an example, for any character § € I't and any Z[6]-lattice Z, we let
Z% denote the #-isotypic component of Z which is defined by

2 =7NZe,.

LEmMMA 4. If Xpp and Yp are any My, lattices (which span the same
Q[T]ep-space) then, at each character § € D, one has

R(Xp : Yy )(0) = [(Xp ® 2Z[D))’ : (Yn ® 2ZID)) )7y

Proof : Exercise.

Now;, if Prg,p denotes the subgroup of Ig,p consisting of those functions
g which only take values in Prg(p), then the isomorphism (3) induces an
isomorphism

(3) ClMp) = Ig,n/Prq,n

which we shall denote by R. It is thus natural to say that an element
C € C¢Mp) is ‘represented by’ a function g € Ig p if the class of ¢
modulo Prg,p corresponds to C under the isomorphism R.

2 - Some reduction steps

In this section we shall reduce the explicit description of the Galois
structure of A; M to a local computation. We here fix L and set G =
Gr,M = My, and C¢L) = C¢(M). For any (right) Z[G]-lattice X we
shall let X* denote the Z-linear dual-lattice Homgz(X,Z) considered as a
(right) Z[G]-lattice in the usual fashion. For any such lattice X we write
XM for the maximal sublattice of X which admits an action of M.

LEMMA 6 ([3], ProposiTiON 2.1 (1)). The M-lattices A, M and (AM)A
are naturally identified by means of the trace form of L/Q.

Thus to describe the structure of A;M it suffices to describe that of
AM. Note further that, since M? is M- isomorphic to M, the classes of
the lattices A;, M and A',f" in C¢(L) have the same order. In the remainder

of this note we are therefore content to give an explicit description of the
class of A in C(L).
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LEMMA 7 (c.f. [6], THEOREM 2.1 and LEMMA 2.3) OM = M.

Therefore, by using (2), Lemma 4, and the isomorphism R of (5), to
describe the class of A in C¢(L) it suffices to explicitly describe the

function defined on Gt by
g9:0— (01 ©22[0)" : (A1, @ 2Z[0))")zya).
For each rational prime p we define a function g(,) on G' by

d(p) : 0 — the p — primary part of the ideal g(f)

9=[] 9w
r

and we shall compute each function g(,) seperately. For this we need to
know the localisation properties of the Z[G]-lattices A;, and Q. Thus we
now fix a rational prime p and let I,, (or simply I whenever the prime p is
clear from context) denote the inertia subgroup of G corresponding to p.
We set K = L’. We fix a prime O;-ideal P of residue characteristic p, and
we set p =P N K. We let F' (respectively E) denote the local completion
of L (respectively K) at the place corresponding to P (respectively p),
and we set O = Of, A = Ap/q,, and O = Op. We let D denote the
decomposition subgroup of p in G and, in the usual fashion, we identify

this with Gal(#/Q,).
Now, as is well known, there is a canonical Q,[G]-module isomorphism
a: L®qQ, = F®q,mQlG]

which restricts to give both

(O ® Zp) = O & 7,12 [G]

so that

and
a(Ar ® 2Zy) = A® 7,1 Zp[G]-

(Concerning Aj, see for example Proposition 7, Chapter 3 of [11].) Fur-
thermore, since D is abelian, in [5] Bergé has described an E[D]-module
isomorphism

B:F®q,E=FQ®pnE[D]
which restricts to give

B(0®7,0)=0 ®aorn O[D]
and also (although not explicitly mentioned in [5])

BA®z,0)=A® i)m@[D]~

Thus one has
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LemMA 8. The E[G]-module isomorphism
Yy=Poa:LQE=ZFQ® ]:;[I]E[G]
restricts to give both

1(01.© 20) = 0 @ O[G]

and _ _
(A1 ®20)=A ®arn O[G].
To proceed we now set Iﬁm = Hom(I,Qy"). We define a function g, on
I, by

95(8) = (0 ®4 O[4])” : (A @5 Ol8) 1614
for each character ¢ € I,‘;C.

LEMMA 9. For each rational prime p, each embedding 3 : Q° . Q;, and

each character 0 € G{ one has
98 = gp(resf, (6))
(where here the bar indicates closure with respect to the p-adic topology).
Proof : One has
9 (0)7 = [(Or. @2 Z[0)” : (A1, ©2 ZI8)) )z0) © 749,52 6]

(where here ®z(q),, indicates that the tensor product is taken with Zp[67]
considered as a Z[f]-module via the embedding j : Z[f] — Z,[6"]). Now if
X (respectively X') denotes either O;, or A; (respectively either O or A)
then

(X 2 Z[6))° ®zp01,, O10°] = (X @2 0) ®p OB

and, via the isomorphism 5 of Lemma 8, this is @[6?][G}- isomorphic to
(X' ® 6n0IG) ®6 o[e)”.
Thus, setting ¢ = res $(0) (= res §(67) one has
9)(0)7 = (01, ®z Z[0])" : (A1, ® 2Z[6)) 1216 @ 7(61,,Zp[67]
= [((0 ®opn OG)) ®5 O16])” : (A @y OIG)) ®4 016D 16(my
=[(0® 60[#)* : (A© 5008) Iy
= g,(8)-
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LEMMA 10. If res (,1(0) has p-power order then g(,)(6) € Prgs)-

Proof : If ¢ = res‘,-i () has p-power order then, for any embeddings
1,72+ Q° &= Q there exists an automorphism 7 € (g, such that ¢ =
¢72°", Hence, by using Lemma 9,

9 (0)" = gp(¢”7")
= gp(47°")
= gp(¢7)"
= gp(¢”*)
= g(p)(B)J"’.

Hence g,(0) is inflated from a p-primary ideal in a cyclotomic field of p-
power conductor and is therefore an element of Prgg.

Note that I is a 2-group and so in particular Lemma 10 implies that
(11) 9(2)(0) € Preyg) for each character 8 € G;.

Thus we need only describe g(,) for an odd prime p. In this case [ is a cyclic
group of order p"r say, with n > 0 and r an odd divisor of p — 1 (r must
be odd in order that A exists). We let P denote the Sylow p-subgroup
of I with C the unique subgroup of I of order r. The direct product
decomposition I = P x C leads to a corresponding decomposition of the
local character groups I = P! x C! . For each character ¢ € Z1

loc loc loc loc

we set ¢p = @|p € P} and ¢o = ¢|c € CY__ so that ¢ = ¢p x ¢¢. For

loc

eachyp € Pl and )¢ C‘;OC we define idempotents

loc

o= = 3 W) € Q)IP]

pEDP

and )
- -1
ex==2 MxT)r € Z,[C).
KEC
For each non-negative integer ¢ < n we let P; denote the subgroup of P of
order p*, so that in particular P, = P. For each such integer i we let e;
denote the idempotent

ei:—l—.Z'y: Z ey € QplP]

1
p YED; et

loc

©w()=1
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and for convenience we also set e,+7 = 0. For any (right) Z[I]-lattice X
and subgroup H < I we let X" denote the sublattice of X consisting
of those elements which are invariant under the action of each element of
H. We let A denote the maximal @-order of the E-algebra E[I]. Finally,
for any integer n we let ®(n) denote the order of the multiplicative group
R, = (Z/nZ)*.

LEmMMA 12. If¢ € ILC has order p*r' with i < n and r'|r then, setting
A =¢¢c and j = n — i, one has

sy O er: (M) el
gp(¢) Pl = [(C)N)Pf+‘eA : (AN)P”‘EA]@

where here we set

[(ONY 416y (AN) 41655 = O.

Proof : Since E/Q, is unramified one has ENQ,(#) = Q, and so letting
Dy denote the division of B!_ to which ¢ belongs then

gp(¢)¢(”i) = Normpg(g),r(9p(9))

= H gp(d’)n

n€Gal(F(d)/ F)

H 9p(8")

n€Gal(F(4)/F)

= [I o x

€Ny

= JI (0 &6 O¥])¥ex : (A®g Ol¥) erlopy
©LEDy

_ [ON(P’"—P’"“)G,\ :AN(""_ﬁj"")e)‘]@.

(13)

But for any (right) O[I]-lattice X and any character A € C',‘:w one has a
short exact sequence of (J-lattices

0— XN("J'_"J""‘)eA — XNeje)‘ .C-{f XNej.He,\ —0

with the third arrow indicating multiplication by e;j4. Thus the expression
(13) is equal to
[(ON)ejer: (AN)ejerls  _ _[(OM)Tes : (AV)Tiero
[(ON)ejrren : (AN)ejpaenls — [(OV)Tivren: (AV)l+1es]s




82 D. BURNS

3 - The local calculation

In order to describe the class of A; M in C#(L) it suffices, by using
the work of §2, to determine the behaviour of each of the lattices ANe,
and O¥e, under fixing by the subgroups P; for all non-negative integers
¢ < n, and for all characters A € Cltw Since E/Q, is unramified we can
here use the techniques of Bergé developed in [4]. For each non-negative
integer i < n we set F; = F™ 0; = OF;, and we let v; denote the valuation
of the field F;. To be more precise concerning the character group C’,tm we
fix a uniformising parameter 7 for F'. The map defined on I by v — 7y/7
induces an isomorphism 8 (which is independent of the choice of 7) between
C and a subgroup of the roots of unity of the residue class field of E. We
let x 7/r denote the (unique) element of C"LC which induces by passage to
the residue class field the isomorphism ;. Then xp,r is a generator of
C]‘;C, and hence to each character y € C;Lr one can associate an integer

uy € {1,2,...,7} defined by

(14) x=xr/r) "

Given the above definition of x ;g the following lemma is not difficult to
prove.

LEmMA 15 (c.f. [4], ProposiTiON 1). Let x be an element of C; . For
any (non-zero) element x € F one has

vﬂ(xex) > UO(x):

with equality here if and only if vo(z) = —u, modulo (r). In particular,
for each integer i € {0,1,2,...,n} if ze,e; is non-zero then

vi(zeye;) = —u, modulo(r).

LEMMA 16. For each integer i € {0,1,...,n} one has (OV)™ = O™ = ;.
Proof : This is obvious since OV = @ ([4], Théoréme 1).

Since E/Q, is unramified the complete ramification filtration of I is
known and so, by means of Hilbert’s formula ([15], Chapitre IV.1, Propo-
sition 4), one can explicitly compute the valuation vg(A). The techniques
of Bergé ([4],§2.2) then easily prove



Square root of the codifferent 83

LemMA 17. (i) If X € G} is not trivial then AN ey = Ae,.
(i) : If i € {0,1,..,n} is even then Ae; = A™.

Remark : Lemma 17(ii) is also a consequence of Proposition 2.3(4) of
(3.

For each integer i € {0, 1,..n} the lattice A™ identifies with a fractional
O;-ideal which can also be explicitly computed. However, for our purposes
it is sufficient to note the following.

LEMMA 18. For each i € {0,1,..,n — 1} one has

vi(A™) = { %(1 + r) modulo (pr), ifiiseven ;
1 modulo (r), if i is odd.

One also has

(A" { 2(1+r) modulo (r), ifn iseven ;
vp(A'™) = .
1 modulo (r), if n is odd.

Proof : If i = 25 + 1 < n then the claimed result for ¢ follows easily
from that for 2j. On the other hand if i = 2j < n then Ae; = A™ (Lemma
17 (ii)), and using the characterisation of Ap,q, as the unique fractional
0;- ideal which is unimodular with respect to the trace form of F;/Q, this
implies that AT = p—jAF‘,./Q". (By an induction on n) it therefore suffices
to prove the claimed results only for the case i = 0, and in this special case
the result is easily verified using the explicit formula of Hilbert mentioned
above.

LEMMA 19. Let X € C’ltm be non-trivial. If i € {0,1,..n} is odd then
[OP;B/\ IAP"G,\]@ — pm'

for an explicitly computable integer a; which is independent of A\. Ifi €
{0,1, ..n} is even then

[OP"BA :Ar’ie/\]@ — pﬂ-.'+5(/\)
where a; is an explicitly computable integer which is independent of A, and

1, if2uy > r

5(\) = {

0, otherwise.
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Proof : For each non-negative integer ¢ < n we let P; denote the max-
imal ideal of the valuation ring O;, and we let x; be any uniformising pa-
rameter of the subfield K; = F. By Lemma 18 there exists an (explicitly
computable) integer a; such that

Py __ aipri
A" = kTP,

with

i_

_ { 3(1+r), ifiiseven;
1, otherwise.

Thus, if A € C’ﬁoc is non-trivial then from Lemma 15 one has

k;0;ex, if1is even and 2uy > r;

I — L 0iDTi —_ 0
A'tey = k;'Pfer = Kk X .
O.ea, otherwise.

Thus, if 7 is odd or if 2u) < r then one has

[07’;6)‘ : AP‘C,\]@ = Norm;(l./,:;([(’),-e,\ . R?'.O,‘e)‘](),‘,i)
= Normg,/r(ki*Ok;)
= p"".

But on the other hand if ¢ is even and 2uy > r then

[0y : A ez Normg,,r([Oiex : n:~""+1('),~ex]o,\,‘,)

NOI'm]('./F;(K?i-H OK.-)

pa.'+1

4 - The explicit description

By Lemmata 9,12,16,17(i) and 19 we have now computed each fractional
ideal g(,)(#). To state this result explicitly we must label the p-primary
prime ideals of Z[f]. For each positive integer n we now let Q(n) denote
the splitting field (in Q) of the polynomial X™ — 1 € Q[X]. For each
character 6 € G’;} we set 0, = resg 9) € I;{, and we denote the order of
0p by p™ g for integers ny < n and ry|r. Lemma 9 implies that g, (6) is
inflated from an ideal of Z[f,]. Since p splits completely in Q(ry)/Q and
totally ramifies in Q(8,)/Q(rs) the p-primary prime ideals of Z[f,] are in
bijective correspondence with the elements of the group R,,. We use the
labelling {P(6,). : u € R,,} for the p-primary prime ideals of Z[f,] where
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here for each class u € R,, the prime ideal P(8,), corresponds to a field
embedding j: Q° — Qp for which

—rr; '
0, = (xF/E)™7 "

We also define a function h(,) on the character group I]‘: by

(20) hay (@)= [ P € Taw

un€ R,¢
2>y

where here, for each element u € R,,, we write U for the least strictly posi-
tive integer with residue u. In terms of this labelling Lemmata 9,12,16,17(i)
and 19 together give the following explicit description of each function g(,).
(For convenience we shall now also set a,+1 = 0.)

THEOREM 1. For each character § € G’;‘, and for each rational prime p
which ramifies in L/Q, if §, = res?; (0) has order p™rq with ptrg then

Ong —0ng 41

9 (8) = H P(6p)u h(p)(ep)(q)n—nﬂ € Zga)-
uGR,.e

Note that
]___[ P(0p)u € Progs,)

u€ R”o

for each character 8 € G;_, and so the class of A7'" in C£(L) is in fact repre-
sented by the function on G};, which has p-primary parts ¢ — h(,,)(ﬁp)("”"-"" .

COROLLARY 1. For any character 8 € G‘;‘,, if res?;'_ (6) has order coprime to
p then g,)(0) € Prog)-

Proof : In this case h(p)(res(,i (6)) € Prges) as an easy consequence of

the factorisation properties of Jacobi sums (c.f. [11], Chapter IV, Theorem
11) as first used in this context by Erez in [7].

Following Erez [7] a rational prime p is said to be weakly ramified (peu
ramifiée) in L/Q if either #I, = p or p{ #1I,, and is otherwise said to be
very wildly ramified in L/Q. From Lemma 10, (11), and Corollary 1 we
now need only consider functions g(,) for odd rational primes p which are
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very wildly ramified in L/Q. To consider this case more carefully we shall
assume for simplicity that p is totally ramified in L/Q and that all other
rational primes are weakly ramified in L/Q.

If now L/Q has degree p™r with n > 1 then, defining a natural number
¢(p,n,r) by

c(p, n,r) = £em{order of the class of h(,)(¢) in Clgepnr,)
1¢ € G}, p{order(¢")}

(this is indeed dependent only upon p,n and r and not on the particular
field L within the stated conditions), one has

COROLLARY 2. If p is totally ramified in the extension L/Q and all other
rational primes are weakly ramified in L/Q then the order of the class of
A;M; in CUL) is p"e(p,n,r).

Remarks (0) : Recall that the classes of A; M7, and A?"" have the
same order in C¢(L) (c.f. Lemma 6 and the remarks which follow it).

(1) : If n = 1 then A; M/ may or may not be free over M. Indeed
it is certainly possible that Cfg,,) is trivial so that necessarilly A7 M is
free, but on the other hand for example the unique subfield L of Q(169)
which has absolute degree 39 satisfies the conditions of Corollary 2 with
p=13,n =1, and r = 3 and yet ¢(13,1,3) = 2 ([8], Theorem B.3).

(ii) : From Corollary 2 it follows immediately that given any rational
integer NV there are infinitely many absolutely cyclic fields L for which the
order of the class of AL M, in C¢(L) exceeds N. (This result was first
stated as Theorem 3.6 in [8].)

Proof : We shall first prove a preliminary lemma concerning the be-
haviour of certain ideal classes. For each integer n > —1 and for each

integer d > 3 we set kq(n) = Q(p"*'d) (but we shall henceforth not ex-
plicitly indicate the dependence on d). For each such integer we let C(n)
denote the ideal class group of k(n) with A(n) its p-primary subgroup. We
let J denote the automorphism of k(n) (and hence of C(n) etc...) which is
induced by the action of complex conjugation. We also define an integer
s = ®(d)/2.

LEMMA 21. For each integer n > —1 the prime ideals of Oy, lying
above p are of the form py(n),p1(n)’, ..., p.(n), pa(n)” for distinct prime
ideals p1(n), ..., ps(n). Furthermore the subgroup of A(n) generated by the
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classes of the ideals py(n)'~7, ..., p,(n)' =7 contains a subgroup isomorphic
to (Z/p"Z)*.

Proof : Only the remark concerning the subgroup of A(n) which is
generated by the classes of the ideals p;(n)'~7,...,p,(n)" =7 is not obvious.
Thus suppose that for some integers a; one has

.H(m(n)“")“‘ = (a)

for some element o of k(n) - we must show that p™|a; for each ¢ with
1 <i<s Let B =a' 7 sothat (8) = (). Let n = 7' for o a
generator of Gal(k(n)/k(0)). Then 7 is a unit of k(n) all of whose conju-
gates have absolute value equal to 1, and hence is a root of unity. Also
Normk(n)/k(o)(n) = 1 and hence by Hilbert’s Theorem 90 there exists an
element ¢ of k(n) such that n = ("~'. It is easy to check that in fact { must
also be a root of unity. But B¢~ € k(0) and therefore ()2 = (8) = (8¢™")
is in fact an element of Z;(g). Hence p™|a; for 1 < i < s, as required.

Now to prove Corollary 2 by using Theorem 1 we need only consider the
ideals h,)(0) for those characters 6 € G‘;, for which both ng > 1and ry # 1

(c.f. Lemma 10 and Corollary 1). If 8 € G} is any such character we let ag
denote the order of the class of h,)(8) in Cfg) so that in particular

(22) (h(p)(9)1_'7)“” € 'PTQ(()).

But on the other hand, if P is any p-primary prime ideal of Z[f] then
P|h(p)(8) if and only if P { h(,) () (cf. (20) for the definition of h(,)) and
so, using the notation of Lemma 21 (with d = r4), one has

S

(23) h(p)(6)1"’ - H(pi(ne — 1)1y

=1

with d; € {+1,—1} for each 7 € {1, ...s}. Thus by Lemma 21 the conditions
(22) and (23) together imply that ap = p™ ~'aj for some natural number
aj,. But setting 8" = 97" " then

hp)(0)™ = hep(0")™
and so the order of the class of A; M7 in C¢(L) is equal to

£em{p™~".(order of class of h,)(6") in Clg)) : 0 € Gl ,ong> 1}
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By a straightforward exercise this last expression is indeed equal to
p* c(p, n,r).

5 - A uniformity result

We are grateful to Christine Bachoc for helpful remarks concerning the
material of this section.

Let L and L' be finite abelian Galois extensions of Q of groups G and G’
respectively. For each rational prime p we let I, (respectively II',) denote
the inertia subgroup of G (respectively G') at the prime p. We shall say
that G and G’ are inertia isomorphic if there exists a group isomorphism 8 :
G — G' which is inertia-preserving, i.e. such that 8(1,) = I, for all rational
primes p. In this final section we shall briefly remark on implications of
Theorem 1 concerning the question

24. If L/Q and L'/Q are odd degree abelian Galois extensions with
inertia-isomorphic Galois groups is there necessarilly an inertia-preserving
isomorphism between G and G' with respect to which there exists a Galois
equivariant isomorphism between the lattices A M and Aj. My, ?

Under certain restrictive ramification hypotheses the answer to (24) is
already known to be affirmative. Indeed, even more strongly, from Bachoc-
Erez [3] and Bachoc [1] one has

THEOREM 2 (BacHoc-EREZ, BACHOC). Assume that L/Q is abelian of
odd degree and that, for each rational prime p, the inertia subgroup I, has
order which is either a power of p or is coprime to p. Then there exists a
G.-equivariant isometry between (Ar,,Trr) and (A5, ng, ) for an explicitly
described Gr,-equivariant Q-bilinear form n¢;, on Q[G}]. Moreover if L' /Q
is any other Galois extension for which G, and G are inertia isomorphic
then any inertia-preserving isomorphism between Gj, and Gy, induces a
Galois equivariant isometry between (Ar,, ng,) and (A7, ng,,)-

Theorem 2 also implies that if L/Q and L'/Q are any odd degree abelian
extensions with inertia-isomorphic Galois groups then, at each rational
prime p, there is a Galois-equivariant isometry between the localised Galois-
Hermitian modules (A, Tr;) ® zZ, and (Ass, Trr/)®zZ, ([8], Theorem
3.3). Thus, since there are no local obstructions, question 24 is the first
problem one encounters when attempting to generalise the result of Theo-
rem 2 to the case in which there are wildly ramified rational primes p for
which #1,, is not a p-power.

To be more precise we shall now fix an abstract finite abelian group T’
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of odd order, and for each rational prime p, we fix a subgroup A, < T' such
that #A, = 1 for almost all p. We let £ denote the set of Galois extensions
L of Q for which there exists an isomorphism

(25)(1) A:Gr —-T
such that, for all rational primes p,
(25)(i1) A7'(A,) is the inertia subgroup of p in G7.

For each L € £ we let A denote the set of isomorphisms A as in (25). We
now let M denote the maximal Z-order in the Q-algebra Q[I']. For each
L € & and X € Aj, we let [L, )] denote the element of the locally-free class
group C¥4(M) which corresponds to A; M. under the isomorphism A. For
each L € £ we then set

cr. ={[L,\]:Le&AEAL} ECK(.M).

The question (24) is then

(26)(1)
For any two fields L, L' € £ is it necessarilly true that ¢, Ny # 07

or equivalently
(26)(ii) For any two fields L, L' € € is it necessarilly true that ¢; = ¢7/?

We shall now show how the description of Theorem 1 easily implies a uni-
formity result similar to (but still considerably weaker than) an affirmative
answer to (26). For this result we pass from L to its absolute genus field
L. To be more precise here, if L € £ then for each rational prime p which is
ramified in the extension L/Q we let L, denote the unique abelian exten-
sion of Q which is ramified only at p and is of order #A,, and we then let L
denote the compositum of all such fields L, (so that in particular L C I:)
We also set G = G;.

CoRrOLLARY 3. If L and L' are any elements of £ then there exists an
inertia- preserving isomorphism ¢ : G — Gp, which induces a natural
bijection ~

{ch E€EE<LYo{cwm:E €& E <L}
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Proof : We let {p, : 1 < i <t} (respectively {p; : 1 <1 < s}) be the set
of rational primes which are ramified (respectively very wildly ramified) in
the extensions L/Q and L'/Q. For each i € {1,...t} we set I; = I,, and
I' =1, so that

(27)(i) Gr=@r
and
(27)(ii) G =EPrI.

1

..
I

For each i € {1,...s} we fix a prime ideal p; of O; lying over p; and then
let F; (respectively E;) denote the local complection of L (respectively L'%)
at the place corresponding to p;. We similarly define local fields F! and
E! coming from L'. Since each subgroup I; is cyclic the existence of an
inertia-preserving isomorphism between Gy, and G+ implies the existence

of isomorphisms

(28)(i) ¢ I; > I, fori=1,..1
such that
(28)(ii) XF! RO ®i = XF/R: fori=1,..5.

(c.f. the remarks preceeding (14) for the definition of the characters x /Fi J)

Let now I' denote an abstract abelian group which is isomorphic to G,
and let M then denote the maximal Z-order in Q[[]. By (27), (28), the
description of Theorem 1, and the result of Lemma 6 the inertia-preserving

isomorphism ) f )
s=P¢ : PL-Pr
i=1 i=1 i=1
induces an equality of sets
(29) ¢i, = ¢y C CUM).

But now if £ C L and E € € (so that E = L) then L/E is unramified and

so, setting H = Gal(I:/E) < G and ty = 26€H5 (i.e. ty is the field-
theoretic map trace; ,; : L— E), one has A; = AgOj and O;ty = Og
and therefore

(30)(i) (AiMi)ty = ApME.
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But if E' = L'*(F) then E' € £ and L'/E’ is unramified so that again one
has

(30)(ii) (Ap Moy = A Mps.

But given (29) and (30) the map E — E' now gives the bijection of Corol-
lary 3.

Of course if L = L' then the assertion of Corollary 3 is trivially satisfied.
It is however possible that a stronger uniformity result is true -for example,
Théoréme 0.3 of [3] does not seem to be a special case of Corollary 3.
Nevertheless, given the description of Theorem 1 (and in particular the
dependence of the function h(,y on the field L (c.f. (20)), it seems to us
very unlikely indeed that the answer to (26) is always affirmative. However
to decide this would at some stage involve an analysis of the behaviour of
certain ideal classes and we do not consider this any further here.
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