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Decomposition of primes in number fields
defined by trinomials.

par P. LLORENTE, E. NART AND N. VILA

Abstract 2014 In this paper we deal with the problem of finding the prime-
ideal decomposition of a prime integer in a number field K defined by an
irreducible trinomial of the type Xpm + AX + B ~ Z[X], in terms of A and
B. We also compute effectively the discriminant of K.

1. Introduction

Let K be the number field defined by an irreducible trinomial of the
type : 

-

In this paper we study the prime-ideal decomposition of the rational
primes in K. Our results extend those of Velez in [6], where he deals
with the decomposition of p in the case A = 0. However, the methods are
different, ours being based on Newton’s polygon techniques. The results are
essentially complete except for a few special cases which can be handled by
an specific treatment (see section 2.3). This is done explicitely for p"’ = 4 or
5, so that there are no exceptions at all for quartic and quintic trinomials.

Let us remark that the main aim of the paper is to give a complete
answer in the case /B (Theorems 3 and 4). The results concerning
the other cases are easily obtained applying the ideas of [2], where we dealt
with the computation of the discriminant of Ii , whereas the case piA, p ÁB
was not even considered. We give also the p-valuation of the discriminant
of K in all cases including those not covered by (2~.

Mots clefs: Decomposition of primes, Discriminant, Trinomials..
Manuscrit reçu Ie 20 juillet 1990 .
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2. Results

Let K = Q(O), where 0 is a root of an irreducible polynomial of the
type :

where n, A, B E Z,n &#x3E; 3. For the case n = 3 see ~1~ . Let us denote by d
and

the respective discriminants of 7~ and 0. For simplicity we shall write in
the sequel N for the ideal norm 

For any prime q e Z and integer u E Z (or q-adic integer u E Zq) we
shall denote by the greatest exponent s such that and we shall

write u := .

It is well-known that we can assume that the conditions :

are not satisfied simultaneously for any prime integer q. We shall make this
assumption throughout the paper.

Let F(X) E Z[X] be a polynomial, q E Z a prime integer and let

be the decomposition of F(X ) as a product of irreducible factors (mod q).
An integer ideal a of any number field L will be called "q analogous to the
polynomial F(X)" if the decomposition of a into a product of prime ideals
of L is of the type :

2.1. Decomposition of the primes q not dividing n.

THEOREM 1. Let q be a prime number such that q In. Let us denote
a = (n - and b = (n, v,(B)). The decomposition of q into a
product of prime ideals of li is a ~follows :

If vq(B) &#x3E; vq(A) and q la,
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If q JAB and the decomposition of f (X ) into a product of irreducible
factors (mod q) is of the type :

and we have

where

If q JABD, q is q-analogous to f (X ).

2.2. Decomposition of the primes p dividing n

THEOREM 2. If p then p is p-analogous to f (X ) and vp(d) = 0.

From now on we assume that n = pm, &#x3E; 3 for some prime p e Z and

integer m &#x3E; 1.
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THEOREM 3. Suppose that p &#x3E; 2, piA and p Let us denote :

Then we h ave :

where

Moreover I = J in cases (2.2.2) and (2.2.4), 1 = J + 1 in case (2.2.3) and
I = J + [(so - rn.)/2~ + 1 in the rest of the cases.

THEOREM 4. Suppose that 2~A, 2 ~’B and let ro, ri , r, so, e, ek (1  k 
m), J and I be as in Theorem 3. Let u = [(so - m + 1)/2]. Then we have
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where

Moreover I = J in cases (2.2.8), 1 = J + 1 in cases (2.2.9), 1 = J + u - 1
in cases (2.2.10) and I = J + u in cases (2.2.11).

2.3. Quartic and quintic trinomials

In this section we complete the general theorems above in the cases n = 4
and 5. Let n = p"‘. Theorems 2, 3 and 4 give the decomposition of p in all
cases except for the following :

For the primes p the only case not covered by Theorem 1 is :

Equations satisfying (2.3.1) or (2.3.2) can be handled by an specific treat-
ment but the results are too disperse to fit them into a reasonable theorem.
For instance, for n = 4, (2.3.2) is not possible and (2.3.1) occurs only for
p = 2 and equations :

For n = 5, (2.3.1) is not possible and (2.3.2) occurs only for q = 2 and
equations :
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THEOREM 5. The decomposition of 2 in the number field defined by (2.3.3)
or (2.3.4) is 

- 
. I- 1

where a is an integer ideal having the following decomposition :

For e &#x3E; 2 and B - 1(mod 4) :

lvhereas for e &#x3E; 2 and B - 3(mod 4) :

In all cases N(p) = = 2 and N(~2 ) = 4. Moreover, v2 (d) = 4 when
e = 0 and in the cases (2.3.5), (2.3.6) and v2(d) = 6 in the rest of the cases.

3. Proofs

The proofs of the Theorems of Section 2 are essentially based on an old
technique developed by Ore concerning Newton’s polygon of the trinomial
f (X ) (cf. [3] and [4]). For commodity of the reader we sum up the results
we need of [3] and [4] in Theorem 6 below.

We recall first some definitions about Newton’s polygon. Let F(X) =
X" + a,Xn.-’ +... + an. E Z[X] and p E ~ be a prime number. The lower
convex envelope r of the set of points n}(ao = 1) in
the euclidean 2-space determines the so-called "Newton’s polygon of F(X)
with respect to p" . Let ~1,..., ~ be the sides of the polygon and .~;, hi the
lenght of the projections of 5’z to the X-axis and Y-axis respectively. Let
ea = and li = ~~..1~ for all i. If Si begins at the point (s, vp(a.,» let
Sj = and :
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for all 0  j  êi. The polynomial :

is called the "associated polynomial of S". We define F(X) to be "Si-
regular" if p does not divide the discriminant of F(X) will be
called ,r-regular" if it is Si-regular for all i .

THEOREM 6. (Ore [4], Theorems 6 and 8). Let F(X) E Z[X] be a monic
irreducible polynomial and let L = Q(a), a a root of F(X). Let p be a

prime ; with the above notations about Newton’s polygon r with

respecto to p, we have the following decomposition of p into a product of
integer ideals of L : 

"

For each i, the ideal ax is p-analogous to Fi(Y) if F(X) is Si-regular.
Moeover, if F(X) is r-regular we have :

where i(a) denotes the index of a. This expression for vp(i(a)) also coin-
cides with the number of points with integer coordinates below the polygon
except for the points on the X -axis and on the last ordinate.

For the proof of theorem 1 we need a well-known lemma (cf.[5]) :

LEMMA 1. Let L be a number field of degree [L : Q] = n. Let q be a prime
integer unramified in L and let s be the number of prime ideals of L lying
over q. Then, the discriminant d of L satisfies

Proof of theorerrc 1. The assertions (2.1.1) and (2.1.2) are a straightforward
application of Theorem 6. For (2.1.3) see the proof of [2 Theorem 2].
(2.1.4) is consequence of Lemma 1 and the fact that in this case = 1

if q ramifies [2, Theorem 2]. (2.1.5) is obvious and the assertions concerning
the computation of are contained in [2, Theorem 1].
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Theorem 2 follows from Theorem 6 and [2, Theorem 1]. We shall deal
with the proof of Theorems 3’and 4 altogether. The proof of Theorem 5 is
similar to those of the general theorems.

Proof of Theorem 3 and 4. Since piA and p /B, we have f (X ) - (X + B)"
(mod p). Let r be the Newton’s polygon of the polynomial :

It is easy to see that :

Let us determine first which would be the partial shape of r if the two
final points (n -1,r1),(n,ro) where omitted. By (3.2.1) we find that in
that case r would have m - 1 sides S’~ , ... , if p = 2 and one more
side if p &#x3E; 2, each side Sk ending at the point (ek, k) (see figure 1). In
fact, i = ek is the greatest subindex with vp(A¡) = k and the slope of Sk
is 1/ek so that these slopes are stictly increasing. Now, when we consider
the two final points of r we find that we can always assure that F contains
the sides ,S~ , ... , if r &#x3E; m, the sides Sl,..., S,._y if r  m and p &#x3E; 2,
and the sides so , ... , S’r-2 if r  m and p = 2.

Fture 1
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Let r’ denote, in each case, the rest of the sides of r. By Theorem 6,
the assertions (2.2.1) and (2.2.7) are proved. In order to find the further

decomposition of the respective ideals a and b of Theorem 3 and 4 we shall
study the shape and associated polynomials of 1~’. We must distinguish
several cases. Before, note that for each 1 ~ k  m, the number of points
with integer coordinates below the sides Si U ... U ,S’k except for the points
on the X-axis and on the last ordinate is

and

Case r  m, ro  r, : r’ has only one side with lengths of the projections
to the axis : i = = e, h = I if p &#x3E; 2 and É = 2e , h = 2 if p = 2 (see

. fig. 2). Therefore - := (~, h) = 1 or 2 according to p &#x3E; 2 or p = 2. In the

latter case the associated polynomial is congruent (mod 2) to y2 + Y + 1,
which is irreducible. By Theorem 6, (2.2.2) and (2.2.8) are proved. Since
F(X) is r-regular we have :

hence, I = J in both cases, as desired.

f.’igure 2
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Case r  m, ro &#x3E; r, : If p &#x3E; 2, r’ has two sides ,5’, ,S’’ with projections
to the axis .~ = e - 1, h = 1 and É’ = 1, h’ = ro - ri respectively (see fig.
3). If p = 2, r’ contains the side and two more sides with the same

dimensions of S and S’ above, except for the case ri = m, ro = m + 1

in which besides Sm-i there is only one side with projections to the axis
i = h = 2 and associated polynomial congruent (mod 2) to Y’ + Y + 1,
which is irreducible (see fig. 3). By Theorem 6, (2.2.3) and (2.2.9) are
proved. Since is r-regular in any case, we have :

otherwise ,

hence I = J + 1 in both cases, as desired.

Figure 3

This ends the discusion of the case r  m.

Assume from now on that r = m + 1. If we study r’ in this case as
above, we are led to many p-irregular cases. For this reason, instead of the
polynomial f (X - B) we seek an opportune substitute providing a much
more regular situation.
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Let Q = -nB/(n - 1)A. Since = 0, ,C3 is a p-adic integer and it is

clear that Theorem 6 is also applicable to the polynomial :

Computation leads to :

hence,
easy to check that :

hence, by (3.2.2) :

so that so = &#x3E; m. Thus, Newton’s polygon r~3 of C(X) with
respect to p can be also expressed as :

and we need only to study in order to find the prime-ideal decomposition
of the respective ideals b of Theorems 3 and 4. Again, we have to distinguish
several cases :

Case r = m + 1, p &#x3E; 3 or p = 3 and so &#x3E; m + 2 : I", contains and

one more side of dimensions ~=2,~=~o2013m (see fig. 4). For this latter
side, - = (é, h) = 1 or 2 according to so - m odd or even. In the latter case
the associated polynomial is :
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and its discriminant is congruent to (_l)n(n-l)/2 2Dp. Since vp(D) == so-m
(mod 2), (2.2.6) is proved by Theorem 6, Moreover, since we are in a regular
case we have : .

as desired.

Figure 4

Case r = m -f-1, p = 3 m+2 : rfi has only one side with é = 3
and h = 2 or 3 according to so = m + 1 or m + 2 (see fig. 4). In the latter
case - = 3 and the associated polynomials is

Since (-1)~+~)/2 = (_1)"~-~ in this case, multiplying by B2 we get the
polynomial .1~(y) = y3 - which is irreducible (mod
3) if Da m (-1)"‘-~ (mod 3) and factorizes :
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if Da m (-1)’"~ (mod 3). By Theorem 6, (2.2.5) is proved. Since we are in
a regular case we have :

Case r = m -f-1, p = 2 : r’ has only one side with t= 2 and h = so.- m + I
(see fig.5), hence - = 1 or 2 according to so - m + 1 odd or even, or
equivalently according to v2(D) - m even or odd. In the latter case, the
associated polynomial is congruent (mod 2) to y2 + 1, hence, it is an

irregular case. In the former case Theorem 6 proves (2.2.10) and :

as desired.

Figure 5

Finally, in order to deal with the case v2(D) - m odd it is necessary to
change again Newton’s polygon. Let 2u = so - m + 1 and
6 = (2" - B)/(n - 1)A2. Computation leads to :
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where Do = D/n" = B~’-~ - (n - 1)"-~A2. Since = so = 2u +
and there are exactly two summands in (3.2.3) with v2

minimum and equal to 2u + m - 1, hence, v2( f(ô)) &#x3E; 2u + m. From the
relation :

and being v2((n-1)A6+nB) = v+m, we conclude that v2(f’(6» = 
Thus Newton’s polygon F5 with respect to p of the polynomial f (X + 6)
is again expressible as : rh = 51 U ~ ~ ~ U U F§. "’7e have now three

possibilities (see fig.5) :
a) V2 (f (6)) = 2u + m. IP’ 6 has only one side with i = 2, h = 2u + 1

hence E = (é, h) = 1 and a=p 2, N(p) = 2. Moreover I = +

2(m-l)+u=J+u-1.
b) v2(f(b)) = 2u+m+l. has only one side with associated polyno-

mial congruent (mod 2) to y2 + Y + 1, which is irreducible, hence
a = p, = 4. Moreover I = + 2(m - 1) ~- ~ + 1 = J + u.

c) v2( f (b)) &#x3E; 2u + m + 1. IF’ 6 has two sides and a = p-pl, N(p) _
= 2, 1 = J + u like in case b).

Taking congruence (mod 22"’+"’.+2~ of (3.2.3) we shall be able to decide
in which case falls our polynomial. All summands of (3.2.3) vanish (mod
~.+~+2~ except for the following :

Dividing by 22"~+"’+~ and taking congruence (mod 8) we obtain :

From (3.2.2) we get , hence (3.2.4) is equal to :

which is equal to -1 - D2 (mod 8) if u &#x3E; 1 and to 2"’ -~ 1 - D2
if u = 1. Therefore cases a) b) and c) are equivalent to the following
respective conditions :
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This ends the proof of (2.2.10) and (2.2.11).

REFERENCES

[1] P. Llorente - E. Nart, Effective determination of the decomposition of the rational
primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), 579-585.

[2] P. Llorente - E. Nart - N. Vila, Discriminants of number fields defined by trinomials,
Acta Arith. 43 (1984), 367-373.

[3] Ö. Ore, Zur Theorie der algebraischen Körper, Acta Math. 44 (1923), 219-314.

[4] Ö. Ore, Newtonsche Polygone in der Theorie des algebraischen Körper, math. Ann.
99 (1928), 84-117.

[5] R. G. Swan, Factorization of polynomials over finite fields, Pacific J. Math. 12

(1962), 1099-1106.

[6] W. Y. Vélez, The factorization of p in Q(a1/pk ) and the genus field of Q(a1/n),
Tokyo J. Math. 11 (1988), 1-19.

Dept. Matematiques
Univ. Autonoma de Barcelona
08193 Bellaterra, Barcelona
Spain.

Dept. Algebra i Geometria
Facultat de Matematiques
Univ. de Barcelona
Gran Via, 585
08007 Barcelona

Spain.


