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THE NONCOMMUTATIVE FACTOR THEOREM FOR

LATTICES IN PRODUCT GROUPS

by Rémi Boutonnet & Cyril Houdayer

Abstract. — We prove a noncommutative Bader-Shalom factor theorem for lattices with dense
projections in product groups. As an application of this result and our previous works, we
obtain a noncommutative Margulis factor theorem for all irreducible lattices Γ < G in higher
rank semisimple algebraic groups. Namely, we give a complete description of all intermediate
von Neumann subalgebras L(Γ) ⊂ M ⊂ L(Γ ↷ G/P ) sitting between the group von Neumann
algebra and the group measure space von Neumann algebra associated with the action on the
Furstenberg-Poisson boundary.

Résumé (Le théorème du facteur non commutatif pour des réseaux dans des groupes produits)
Nous montrons un théorème du facteur de Bader-Shalom non commutatif pour les réseaux

avec des projections denses dans les groupes produits. Comme application de ce résultat et de
nos travaux précédents, nous obtenons un théorème du facteur de Margulis non commutatif
pour tous les réseaux irréductibles Γ < G dans les groupes algébriques semi-simples de rang
supérieur. En particulier, nous donnons une description complète de toutes les sous-algèbres de
von Neumann intermédiaires L(Γ) ⊂ M ⊂ L(Γ ↷ G/P ) situées entre l’algèbre de von Neumann
de groupe et l’algèbre de von Neumann d’espace de mesure de groupe associée à l’action sur le
bord de Furstenberg-Poisson.
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1. Introduction and statement of the main results

Let H be a locally compact second countable (lcsc) group. A Borel probability
measure µ ∈ Prob(H) is said to be admissible if µ is absolutely continuous with respect
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514 R. Boutonnet & C. Houdayer

to the Haar measure, supp(µ) generates H as a semigroup, and supp(µ) contains a
neighborhood of the identity element e ∈ H. A standard probability space (X, ν) is
said to be a (H,µ)-space if it is endowed with a nonsingular action H ↷ (X, ν) for
which the probability measure ν is µ-stationary, that is, ν = µ ∗ ν.

Following [Fur63b, Fur63a], for every admissible Borel probability measure µ ∈
Prob(H), we denote by (B, νB) the (H,µ)-Furstenberg-Poisson boundary. Recall that
(B, νB) is the unique (H,µ)-space for which the H-equivariant Poisson transform

L∞(B, νB) −→ Har∞(H,µ) : f 7−→
(
h 7→

∫
B

f(hb) dνB(b)

)
is isometric and surjective. Here, Har∞(H,µ) denotes the space of bounded (right)
µ-harmonic functions on H. A (H,µ)-boundary (C, νC) is a H-equivariant measurable
factor of (B, νB). In that sense, (B, νB) is the maximal (H,µ)-boundary. For every
(H,µ)-boundary (C, νC), we regard L∞(C) ⊂ L∞(B) as a H-invariant von Neumann
subalgebra. Note that the center Z (H) acts trivially on (B, νB). We refer to [Fur02,
BS06] for further details on the Furstenberg-Poisson boundary.

Definition. — We say that the pair (H,µ) satisfies the boundary freeness condition
if for every nontrivial (H,µ)-boundary (C, νC) and every h ∈ H ∖ Z (H), we have
νC(FixC(h)) = 0 where FixC(h) = {c ∈ C | hc = c}.

Example. — Let k be a local field, H a k-isotropic almost k-simple linear algebraic
k-group and µ ∈ Prob(H(k)) an admissible Borel probability measure. A combination
of [BS06, Cor. 5.2] and [BBHP22, Lem. 6.2] shows that the pair (H(k), µ) satisfies the
boundary freeness condition.

Recall that the quasi-center QZ (H) is the (not necessarily closed) subgroup of
all elements h ∈ H for which the centralizer ZH(h) is open in H. We have Z (H) <

QZ (H).
In order to state our main result, we introduce the following notation. Let d ⩾ 2.

For every i ∈ {1, . . . , d}, let Gi be a lcsc group and µi ∈ Prob(Gi) an admissible Borel
probability measure. Denote by (Bi, νBi

) the (Gi, µi)-Furstenberg-Poisson boundary.
Set (G,µ) =

∏d
i=1(Gi, µi) and (B, νB) =

∏d
i=1(Bi, νBi

). Then (B, νB) is the (G,µ)-
Furstenberg-Poisson boundary (see [BS06, Cor. 3.2]). For every i ∈ {1, . . . , d}, denote
by pi : G→ Gi and by p̂i : G→

∏
j ̸=iGj the canonical homomorphisms.

Definition. — Let Γ < G be a lattice, that is, Γ < G is a discrete subgroup with
finite covolume. We say that Γ < G is embedded with dense projections if for every
i ∈ {1, . . . , d}, the restriction pi|Γ : Γ → Gi is injective and p̂i(Γ) <

∏
j ̸=iGj is dense.

Let Γ < G be a lattice embedded with dense projections and assume that its center
Z (Γ) is finite. Note that Z (Γ) <

∏d
i=1 Z (Gi) and so Z (Γ) acts trivially on (B, νB).

Set Λ = Γ/Z (Γ). Consider the well-defined ergodic action Λ ↷ (B, νB) and denote
by L(Λ ↷ B) its associated group measure space von Neumann algebra. Whenever
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The noncommutative factor theorem for lattices in product groups 515

(C, νC) is a (G,µ)-boundary, we regard L(Λ ↷ C) ⊂ L(Λ ↷ B) as a von Neumann
subalgebra.

Our main result is the following noncommutative analogue of Bader-Shalom’s factor
theorem for lattices in product groups (see [BS06, Th. 1.7]). We call such a result a
Noncommutative Factor Theorem (NFT).

Theorem A (NFT for lattices in products). — Keep the same notation as above. For
every i ∈ {1, . . . , d}, assume that QZ (Gi) = Z (Gi) and that the pair (Gi, µi) satisfies
the boundary freeness condition. Let L(Λ) ⊂ M ⊂ L(Λ ↷ B) be an intermediate von
Neumann subalgebra.

Then for every i ∈ {1, . . . , d}, there exists a unique (Gi, µi)-boundary (Ci, νCi
) such

that with (C, νC) =
∏d

i=1(Ci, νCi
), we have M = L(Λ ↷ C).

We point out that unlike the proof of the recent NFT for lattices in higher rank
simple algebraic k-groups obtained in [BBH21] (see also [Hou21]), we cannot rely
on the noncommutative Nevo-Zimmer theorem from [BH21, BBH21]. The proof of
Theorem A consists of two steps. Firstly, we show that when L(Λ) ⊂M ⊂ L(Λ ↷ B)

and L(Λ) ̸=M , there exist i ∈ {1, . . . , d} and a nontrivial (Gi, µi)-boundary (Ci, νCi
)

such that L(Λ ↷ Ci) ⊂M . To do this, we consider the conjugation action Λ ↷M , we
exploit the assumption that QZ (Gi) = Z (Gi) and we use the dichotomy theorem
for boundary structures [BBHP22, Th. 5.8] (in lieu of the noncommutative Nevo-
Zimmer theorem [BH21, BBH21]). Secondly, we exploit the assumption that the pair
(Gi, µi) satisfies the boundary freeness condition and we combine Bader-Shalom’s
factor theorem [BS06] and Suzuki’s result [Suz20] to show that there exists a unique
(G,µ)-boundary (C, νC) such that M = L(Λ ↷ C).

Next, we apply Theorem A to the setting of higher rank lattices. We introduce
the following notation. Let d ⩾ 1. For every i ∈ {1, . . . , d}, let ki be a local field,
Gi a simply connected ki-isotropic almost ki-simple linear algebraic ki-group and set
Gi = Gi(ki).

Definition. — Set G =
∏d

i=1Gi. We say that Γ < G is a higher rank lattice if the
following conditions are satisfied:

(i) Γ < G is a discrete subgroup with finite covolume;
(ii) If d ⩾ 2, then Γ < G is embedded with dense projections;
(iii)

∑d
i=1 rkki(Gi) ⩾ 2.

Observe that the higher rank assumption
∑d

i=1 rkki
(Gi) ⩾ 2 implies that exactly

one of the following two situations happens.
– Either d = 1 (simple case). Then k1 = k and G1 = G is an almost k-simple

algebraic k-group such that rkk(G) ⩾ 2.
– Or d ⩾ 2 (semisimple or product case).
Let Γ < G be a higher rank lattice. For every i ∈ {1, . . . , d}, choose a minimal

parabolic ki-subgroup P i < Gi and set Pi = P i(ki). Set P =
∏d

i=1 Pi and endow
the homogeneous space G/P with its unique G-invariant measure class. Note that
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516 R. Boutonnet & C. Houdayer

Z (Γ) < Z (G) < P . Set Λ = Γ/Z (Γ). Consider the well-defined ergodic action
Λ ↷ G/P and its associated group measure space von Neumann algebra L(Λ ↷ G/P ).

As an application of Theorem A and [BBH21, Th. D], we obtain the following
noncommutative analogue of Margulis’ factor theorem for all higher rank lattices (see
[Mar91, Th. IV.2.11]).

Theorem B (NFT for higher rank lattices). — Keep the same notation as above. Let
L(Λ) ⊂M ⊂ L(Λ ↷ G/P ) be an intermediate von Neumann subalgebra.

Then for every i ∈ {1, . . . , d}, there exists a unique parabolic ki-subgroup P i <

Qi < Gi such that with Q =
∏d

i=1 Qi(ki), we have M = L(Λ ↷ G/Q). In particular,
the rank

∑d
i=1 rkki

(Gi) is an invariant of the inclusion L(Λ) ⊂ L(Λ ↷ G/P ).

We actually prove in Theorem 3.3 a more general version of Theorem B where the
algebraic ki-group Gi may not be simply connected and the lattice Γ < G may not
be embedded with dense projections. We refer to [BBH21, §6] and [Hou21, §5] for a
discussion of the relevance of Theorem B regarding Connes’ rigidity conjecture for the
group von Neumann algebras of higher rank lattices.

Finally, we apply Theorem A to the setting of lattices in products of trees. We intro-
duce the following notation. Let d ⩾ 2. For every i ∈ {1, . . . , d}, let Ti be a bi-regular
tree and denote by Aut+(Ti) the group of bi-coloring preserving automorphisms of Ti.
Let Γ <

∏d
i=1 Aut+(Ti) be a uniform lattice. Denote by Gi the closure of the image

of Γ in Aut+(Ti) and assume that Gi is 2-transitive on the boundary ∂Ti. Assume
that Γ <

∏d
i=1Gi is embedded with dense projections. Endow ∂Ti with its unique

Gi-invariant measure class and B =
∏d

i=1 ∂Ti with the product measure class.
As an application of Theorem A, we obtain the following noncommutative analogue

of Burger-Mozes’factor theorem for lattices in product of trees (see [BM00b, Th. 4.6]).

Theorem C (NFT for lattices in products of trees). — Keep the same notation as
above. Let L(Γ) ⊂M ⊂ L(Γ ↷ B) be an intermediate von Neumann subalgebra.

Then there exists a unique subset J ⊂ {1, . . . , d} such that with BJ =
∏

j∈J ∂Tj,
we have M = L(Γ ↷ BJ).

2. Continuous elements in noncommutative boundaries

Let H be a lcsc group and M a von Neumann algebra. We say that M is a H-von
Neumann algebra if it is endowed with a continuous action H ↷ M . Let M and N

be H-von Neumann algebras. We say that a unital normal mapping Ψ :M → N is a
H-map if Ψ is H-equivariant with respect to the actions H ↷M and H ↷ N .

For i ∈ {1, 2}, let Gi be a lcsc group and µi ∈ Prob(Gi) an admissible Borel
probability measure. Denote by (Bi, νBi) the (Gi, µi)-Furstenberg-Poisson boundary.
Set (G,µ) = (G1 × G2, µ1 ⊗ µ2) and (B, νB) = (B1 × B2, νB1 ⊗ νB2). Denote by
pi : G → Gi the canonical homomorphism. Let Γ < G be a lattice embedded with
dense projections.
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The noncommutative factor theorem for lattices in product groups 517

Let M be a Γ-von Neumann algebra endowed with a faithful normal ucp Γ-map
Φ : M → L∞(B). Denote by σ : Γ ↷ M the action by automorphisms. Following
[BBHP22, Def. 5.3], an element x ∈M is said to beG1-continuous if for every sequence
(γn)n in Γ such that p1(γn) → e in G1, we have σγn

(x) → x ∗-strongly in M . The
subset M1 ⊂M of all G1-continuous elements in M forms a Γ-invariant von Neumann
subalgebra for which the action Γ ↷M1 extends to a continuous action G↷M such
that G2 acts trivially (see [BBHP22, Th. 5.5]).

Our main result relies on the explicit computation of the subalgebra of continuous
elements in the specific context of noncommutative boundaries. More precisely, we
regard L(Γ ↷ B) as a Γ-von Neumann algebra via the conjugation action Γ ↷
L(Γ ↷ B). The canonical conditional expectation E : L(Γ ↷ B) → L∞(B) is a
faithful normal ucp Γ-map. We denote by uγ ∈ L(Γ) ⊂ L(Γ ↷ B) for γ ∈ Γ the
unitaries implementing the action Γ ↷ (B, νB).

Theorem 2.1. — For every i ∈ {1, 2}, the von Neumann subalgebra of Gi-continuous
elements in L(Γ ↷ B) is equal to L(Γi ↷ Bi), where Γi = p−1

i (QZ (Gi)) ∩ Γ < Γ.

Note that this theorem extends [BBHP22, Lem. 5.4] to the whole group measure
space von Neumann algebra L(Γ ↷ B). The general approach is similar to [BBHP22,
Lem. 5.4] and relies on the following refinement of Peterson’s result [Pet14, Lem. 5.1].
We essentially follow his proof, with a little more care to ensure our extra conditions.

Lemma 2.2. — As in the statement of Theorem 2.1, set Γ1 = p−1
1 (QZ (G1)) ∩ Γ. Let

γ ∈ Γ∖Γ1 and E ⊂ B2 be a nonnull measurable subset. Then there exists a sequence
(γn)n in Γ such that νB2

(p2(γn)E) → 1, p1(γn) → e and (γnγγ
−1
n )n are pairwise

distinct in Γ.

Proof. — Set g = p1(γ) ∈ G1 ∖ QZ (G1). Then the closed subgroup ZG1
(g) has

empty interior in G1. Since G1 is a lcsc group, we may choose a compatible proper
right invariant metric d : G1 ×G1 → R+ (see e.g. [Str74]).

Set γ0 = e. We construct by induction a sequence (γn)n∈N∗ in Γ such that for every
n ∈ N∗, the element γn ∈ Γ satisfies the following three conditions:

(i) 1− νB2
(p2(γn)E) ⩽ 1/n,

(ii) d(p1(γn), e) ⩽ 1/n and
(iii) p1(γn) /∈

⋃n−1
j=0 p1(γj)ZG1(g).

Let n ⩾ 0 and assume that we have constructed γ0, . . . , γn ∈ Γ satisfying the
above three conditions. Let us construct γn+1 ∈ Γ that satisfies the above three
conditions. Since the action G2 ↷ (B2, νB2

) is nonsingular, we may choose a compact
neighborhood K2 ⊂ G2 of e ∈ G2 such that

∀k ∈ K2, ∥k∗νB2
− νB2

∥1 ⩽
1

2(n+ 1)
.

Set F =
⋃n

j=0 p1(γj)ZG1
(g) and note that F is a closed set with empty interior

in G1. Consider the open ball BG1
(e, 1/2(n+ 1)) of center e and radius 1/2(n+ 1)

in G1. Since BG1
(e, 1/2(n+ 1))∩F c is a nonempty open set, we may choose a closed
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518 R. Boutonnet & C. Houdayer

ball C = BG1
(o, r) ⊂ BG1

(e, 1/2(n+ 1)) ∩ F c of center o ∈ G1 and radius 0 < r ⩽
1/2(n+ 1) in G1. Since C is compact and since F is closed, we have α = d(C ,F ) > 0.
Note that α ⩽ d(C , e) ⩽ 1/2(n+ 1). Next, define K1 = BG1(e, α/2) to be the closed
ball of center e ∈ G1 and radius α/2 in G1. For every y ∈ F , every c ∈ C and every
k ∈ K1, we have

d(kc, y) ⩾ d(c, y)− d(kc, c) = d(c, y)− d(k, e) ⩾ α− α

2
=
α

2
> 0.

Thus, we have K1C ⊂ F c. Moreover, for every k ∈ K1 and every c ∈ C , we have

d(kc, e) ⩽ d(kc, c) + d(c, e) = d(k, e) + d(c, e) ⩽
α

2
+

1

2(n+ 1)
⩽

1

n+ 1
.

Denote by m ∈ Prob(G/Γ) the unique G-invariant Borel probability measure. Fol-
lowing the proof of [Pet14, Lem. 5.1], since the pmp action G2 ↷ (G/Γ,m) is ergodic,
Kakutani’s random ergodic theorem implies that for µ⊗N

2 -almost every (ωj)j ∈ GN
2

and m-almost every zΓ ∈ G/Γ, we have

lim
N

1

N + 1

N∑
j=0

1(K1×K2)Γ(ω
−1
j · · ·ω−1

0 z) = m((K1 × K2)Γ) > 0.

Since m((C ×K2)Γ) > 0, we may choose z ∈ C ×K2 such that for µ⊗N
2 -almost every

(ωj)j ∈ GN
2 , the intersection {ω−1

j · · ·ω−1
0 | j ∈ N} ∩ (K1 × K2)Γz

−1 is infinite. Since
(B2, νB2

) is the (G2, µ2)-Furstenberg-Poisson boundary, for µ⊗N
2 -almost every ω =

(ωj)j ∈ GN
2 , the limit measure (νB2)ω is a Dirac mass (see [BS06, Th. 2.14]). Moreover,

we have νB2 =
∫
GN

2
(νB2)ω dµ⊗N

2 (ω) (see [BS06, Th. 2.10]). Therefore, we have

µ⊗N
2 ({(ωj)j ∈ GN

2 | lim
j
νB2(ω

−1
j · · ·ω−1

0 p2(z)E) = 1}) = νB2(p2(z)E) > 0.

We may choose (ωj)j ∈ GN
2 such that the intersection {ω−1

j · · ·ω−1
0 | j ∈ N} ∩

(K1 ×K2)Γz
−1 is infinite and limj νB2

(ω−1
j · · ·ω−1

0 p2(z)E) = 1. We may then choose
j ∈ N, h ∈ K1 × K2 and γn+1 ∈ Γ such that ω−1

j · · ·ω−1
0 = hγn+1z

−1 and

1− νB2(ω
−1
j · · ·ω−1

0 p2(z)E) ⩽
1

2(n+ 1)
.

Then p1(γn+1) = p1(h
−1)p1(z) ∈ K1C and so p1(γn+1) /∈

⋃n
j=0 p1(γj)ZG1(g) and

d(p1(γn+1), e) ⩽ 1/n+ 1. Moreover, we have

1− νB2
(p2(γn+1)E) = 1− νB2

(p2(h
−1)ω−1

j · · ·ω−1
0 p2(z)E)

= 1− νB2
(ω−1

j · · ·ω−1
0 p2(z)E) + ∥p2(h)∗νB2 − νB2∥1

⩽
1

2(n+ 1)
+

1

2(n+ 1)
=

1

n+ 1
.

Thus, the element γn+1 ∈ Γ satisfies the above three conditions.
The sequence (γn)n that we have constructed by induction satisfies the conclusion

of the lemma. □
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The noncommutative factor theorem for lattices in product groups 519

Let (X, ν) be a standard probability space. For every measurable function
f : X → C, we set

∥f∥ν =

(∫
X

|f(x)|2 dν(x)
)1/2

.

Proof of Theorem 2.1. — We may assume that i = 1. Set B = L(Γ ↷ B) and denote
by B1 ⊂ B the von Neumann subalgebra of all G1-continuous elements in B. Set
φ = νB ◦ E ∈ B∗.

Observe that L(Γ1 ↷ B1) ⊂ B1. Indeed, it is obvious that L∞(B1) ⊂ B1. Let now
γ ∈ Γ1 so that p1(γ) ∈ QZ (G1). Let (γn)n be a sequence in Γ such that p1(γn) → e.
Since ZG1

(p1(γ)) < G1 is open, there exists n0 ∈ N such that p1(γn) ∈ ZG1
(p1(γ))

for every n ⩾ n0. Since p1|Γ : Γ → G1 is injective, we have γn ∈ ZΓ(γ) for every
n ⩾ n0. This implies that uγ ∈ B1. Altogether, we obtain L(Γ1 ↷ B1) ⊂ B1.

Next, we prove that B1 ⊂ L(Γ1 ↷ B1). Firstly, we show that B1 ⊂ L(Γ1 ↷ B).
By contraposition, let x ∈ B ∖ L(Γ1 ↷ B). Write x =

∑
γ∈Γ xγuγ for the Fourier

expansion of x ∈ B where xγ = E(xu∗γ) for every γ ∈ Γ. Since x ̸∈ L(Γ1 ↷ B), there
exists γ ∈ Γ∖ Γ1 such that xγ ̸= 0. We may regard xγ ∈ L∞(B) = L∞(B2,L

∞(B1))

as a measurable function f : B2 → L∞(B1). Since xγ ̸= 0, the measurable function
f : B2 → L∞(B1) possesses a nonzero essential value y∈L∞(B1). Set ε=∥y∥νB1

/2>0.
Then the measurable subset E = {b ∈ B2 | ∥f(b) − y∥νB1

< ε} is nonnull. Choose a
sequence (γn)n in Γ that satisfies the conclusion of Lemma 2.2 for γ ∈ Γ ∖ Γ1 and
E ⊂ B2. Then

∀n ∈ N, ∥uγnxu
∗
γn

− x∥2φ =
∑
h∈Γ

∥σγn(xh)− xγnhγ
−1
n

∥2νB

⩾ ∥σγn
(xγ)− xγnγγ

−1
n

∥2νB
.

On the one hand, since the elements (γnγγ
−1
n )n are pairwise distinct in Γ and since

∥x∥2φ =
∑

h∈Γ ∥xh∥2νB
⩾

∑
n∈N ∥xγnγγ

−1
n

∥2νB
, we have

lim
n

∥xγnγγ
−1
n

∥2νB
= 0.

On the other hand, since p1(γn) → e, since νB2
(p2(γn)E) → 1 and since ∥f(b)∥νB1

⩾
∥y∥νB1

− ∥f(b)− y∥νB1
⩾ ε for every b ∈ E, we have

lim inf
n

∥σγn(xγ)∥2νB
= lim inf

n

∫
B2

∥σp1(γn)(f(p2(γn)
−1b))∥2νB1

dνB2
(b)

= lim inf
n

∫
B2

∥f(p2(γn)−1b)∥2νB1
◦p1(γn)

dνB2(b)

⩾ lim inf
n

∫
p2(γn)E

∥f(p2(γn)−1b)∥2νB1
◦p1(γn)

dνB2(b) ⩾ ε2.

Altogether, this implies that lim infn ∥uγnxu
∗
γn

−x∥2φ ⩾ ε2 and so x ̸∈ B1. This shows
that B1 ⊂ L(Γ1 ↷ B).

Secondly, we show that B1 ⊂ L(Γ1 ↷ B1). Indeed, let x ∈ B1. The previous
paragraph shows that x ∈ L(Γ1 ↷ B) and so we may write x =

∑
γ∈Γ1

xγuγ , where
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520 R. Boutonnet & C. Houdayer

xγ = E(xu∗γ) for every γ ∈ Γ1. Since the faithful normal conditional expectation
E : B → L∞(B) is Γ-equivariant, we have that E(B1) is contained in the von Neu-
mann subalgebra of G1-continuous elements in L∞(B), which is equal to L∞(B1) by
[BBHP22, Lem. 5.4]. Since L(Γ1) ⊂ B1, we have xγ = E(xu∗γ) ∈ L∞(B1) for every
γ ∈ Γ1. Then [Suz20, Cor. 3.4] further implies that B1 ⊂ L(Γ1 ↷ B1). Thus, we have
B1 = L(Γ1 ↷ B1). □

Next, we further assume that QZ (Gi) = Z (Gi) for every i ∈ {1, 2} and that Z (Γ)

is finite. Set Λ = Γ/Z (Γ) and denote by π : Γ → Λ the quotient homomorphism.
Consider the well-defined ergodic action Λ ↷ (B, νB). We may regard L(Λ ↷ B)

as a Γ-von Neumann algebra via the quotient homomorphism π : Γ → Λ and the
conjugation action Λ ↷ L(Λ ↷ B). Moreover, the canonical conditional expectation
E : L(Λ ↷ B) → L∞(B) is a faithful normal ucp Γ-map. We derive the following
result that will be used in the proof of Theorem A.

Corollary 2.3. — For every i ∈ {1, 2}, the von Neumann subalgebra of Gi-continuous
elements in L(Λ ↷ B) is equal to L∞(Bi). Moreover, the action Γ ↷ L(Λ ↷ B) is
ergodic.

Proof. — The second assertion follows from the first one since a Γ-invariant element
in L(Λ ↷ B) is both G1-continuous and G2-continuous, hence must be contained in
L∞(B1) ∩ L∞(B2) = C1.

To prove the first assertion, we observe that with the above notation, L(Λ ↷ B) ∼=
z L(Γ ↷ B), where z = 1

|Z (Γ)|
∑

h∈Z (Γ) uh ∈ Z (L(Γ ↷ B)). Let us be more explicit
about this identification. Since Z (Γ) acts trivially on B, the projection z is indeed
central in L(Γ ↷ B). Given g ∈ Γ, the element zug only depends on π(g) ∈ Λ. Then
the map

L(Λ ↷ B) −→ z L(Γ ↷ B) : auπ(g) 7−→ zaug, a ∈ L∞(B), g ∈ Γ,

is easily seen to extend to the desired von Neumann algebra isomorphism

Θ : L(Λ ↷ B) −→ z L(Γ ↷ B).

Note that Θ is Γ-equivariant.
Let i ∈ {1, 2}. Since QZ (Gi) = Z (Gi) and since pi|Γ : Γ → Gi is injective, we have

Γi = p−1
i (Z (Gi)) = Z (Γ). It is obvious that all the elements of L∞(Bi) are Gi-con-

tinuous in L(Λ ↷ B). Conversely, let x ∈ L(Λ ↷ B) be a Gi-continuous element.
Then Θ(x) ∈ z L(Γ ↷ B) is Gi-continuous in L(Γ ↷ B). Applying Theorem 2.1,
we obtain that Θ(x) ∈ L(Z (Γ) ↷ Bi) ∩ z L(Γ ↷ B) = z L∞(Bi). Thus, we have
x ∈ L∞(Bi). This finishes the proof of the corollary. □

3. Proofs of the main results

Proof of Theorem A. — Regard B = L(Λ ↷ B) as a Γ-von Neumann algebra and
denote by E : B → L∞(B) the canonical Γ-equivariant faithful normal conditional
expectation. By Corollary 2.3, the action Γ ↷ B is ergodic. Let L(Λ) ⊂M ⊂ B be an
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intermediate von Neumann subalgebra. Then M ⊂ B is a Γ-invariant von Neumann
subalgebra and the action Γ ↷M is ergodic. Consider the faithful normal ucp Γ-map
Φ = E |M : M → L∞(B). If Φ : M → L∞(B) is invariant, then for every x ∈ M and
every λ ∈ Λ, we have E(xu∗λ) ∈ C1. Then we infer that M = L(Λ) (see e.g. [Suz20,
Cor. 3.4]).

Next, assume that Φ : M → L∞(B) is not invariant. Then [BBHP22, Th. 5.8]
implies that there exists i ∈ {1, . . . , d} such that the Γ-invariant von Neumann
subalgebra Mi ⊂ M of all Gi-continuous elements in M is nontrivial. Moreover,
the action Γ ↷ Mi extends to a continuous action Gi ↷ Mi and the ucp map
Φ|Mi

: Mi → L∞(Bi) is Gi-equivariant and not invariant. Since M ⊂ B is Γ-invari-
ant, we have Mi ⊂ Bi where Bi ⊂ B is the Γ-invariant von Neumann subalgebra
of all Gi-continuous elements in B. Corollary 2.3 implies that Mi ⊂ L∞(Bi). Then
Mi ⊂ L∞(Bi) is a nontrivial Gi-invariant von Neumann subalgebra and so there
exists a nontrivial (Gi, µi)-boundary (Di, νDi

) such that Mi = L∞(Di). Then we
have L(Λ ↷ Di) ⊂ M ⊂ B. Since the pair (Gi, µi) satisfies the boundary freeness
condition and since the restriction pi|Γ : Γ → Gi is injective, it follows that the nonsin-
gular action Λ ↷ (Di, νDi

) is essentially free. Then a combination of Bader-Shalom’s
factor theorem [BS06, Th. 1.7] and Suzuki’s result [Suz20, Th. 3.6] implies that for
every j ∈ {1, . . . , d}, there exists a unique (Gj , µj)-boundary (Cj , νj) such that with
(C, νC) =

∏d
j=1(Cj , νCj ), we have M = L(Λ ↷ C). □

Remark 3.1. — We point out that the analogous statement of Theorem A for
L(Γ ↷ B) is false in the case when Z (Γ) is nontrivial. Indeed, the presence of
the central projection z ∈ Z (L(Γ ↷ B)) as defined in the proof of Corollary 2.3
produces pathological intermediate subalgebras such as z L(Γ) ⊕ (1 − z) L(Γ ↷ B).
Nevertheless, our strategy still allows to classify intermediate subalgebras in this case.

Next, we prove a general noncommutative factor theorem for higher rank lattices
that will imply Theorem B.

We introduce the following notation. Let d ⩾ 1. For every i ∈ {1, . . . , d}, let ki be
a local field and Gi a ki-isotropic almost ki-simple linear algebraic ki-group and set
Gi = Gi(ki). Denote by G+

i < Gi the subgroup generated by the subgroups U(ki)

where U runs through the set of unipotent ki-split subgroups of Gi (see [Mar91,
Prop. I.5.4(i)]). Choose a minimal parabolic ki-subgroup P i < Gi and set Pi = P i(ki).
Set G =

∏d
i=1Gi, G+ =

∏d
i=1G

+
i , P =

∏d
i=1 Pi and endow the homogeneous space

G/P with its unique G-invariant measure class. Observe that we have G = G+ · P
and so the action G+ ↷ G/P is transitive (see [Mar91, Prop. I.5.4(vi)]). For every
i ∈ {1, . . . , d}, denote by pi : G → Gi and by p̂i : G →

∏
j ̸=iGj the canonical

homomorphisms.
Let Γ < G be a lattice such that for every i ∈ {1, . . . , d}, we have

∏
j ̸=iG

+
j < p̂i(Γ)

and pi|Γ : Γ → Gi is injective. We point out that Γ < G need not be embedded with
dense projections. Note that Z (Γ) < Z (G) < P (see [Mar91, Lem. II.6.3(I)]). Set
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Λ = Γ/Z (Γ) and denote by π : Γ → Λ the quotient homomorphism. Consider the well-
defined ergodic action Λ ↷ G/P and its associated group measure space von Neumann
algebra L(Λ ↷ G/P ). We may regard L(Λ ↷ G/P ) as a Γ-von Neumann algebra via
the quotient homomorphism π : Γ → Λ and the conjugation action Λ ↷ L(Λ ↷ G/P ).

Lemma 3.2. — The action Γ ↷ L(Λ ↷ G/P ) is ergodic.

Proof. — Choose a Borel probability measure µ ∈ Prob(G) of the form µ = ψ ·mG,
where mG is a Haar measure on G and ψ : G → R+ is a compactly supported
continuous function such that the set {g ∈ G | ψ(g) > 0 and ψ(g−1) > 0} generates G.
Since G/P is compact, there exists a Borel probability measure ν ∈ Prob(G/P ) such
that (G/P, ν) is a (G,µ)-space. Moreover, ν ∈ Prob(G/P ) belongs to the unique
G-invariant measure class (see e.g. [NZ99, Lem. 1.1]).

By [Mar91, Prop. VI.4.1], there exists a fully supported probability measure µΓ ∈
Prob(Γ) such that (G/P, ν) is a (Γ, µΓ)-space. Denote by µΛ ∈ Prob(Λ) the pushfor-
ward measure of µΓ under the quotient homomorphism π : Γ → Λ. Then (G/P, ν) is a
(Λ, µΛ)-space. Since Λ has infinite conjugacy classes, [KP22, Lem. 2.6] implies that the
conjugation action Λ ↷ L(Λ ↷ G/P ) is ergodic. Thus, the action Γ ↷ L(Λ ↷ G/P )

is ergodic. □

The following theorem is a noncommutative analogue of Margulis’ factor theorem
for all higher rank lattices (see [Mar91, Th. IV.2.11]). It is a more general version of
Theorem B.

Theorem 3.3. — Keep the same notation as above. Let L(Λ) ⊂M ⊂ L(Λ ↷ G/P ) be
an intermediate von Neumann subalgebra.

Then for every i ∈ {1, . . . , d}, there exists a unique parabolic ki-subgroup P i <

Qi < Gi such that with Q =
∏d

i=1 Qi(ki), we have M = L(Λ ↷ G/Q). In particular,
the rank

∑d
i=1 rkki

(Gi) is an invariant of the inclusion L(Λ) ⊂ L(Λ ↷ G/P ).

Proof. — Regard B = L(Λ ↷ G/P ) as a Γ-von Neumann algebra and denote by
E : B → L∞(G/P ) the canonical Γ-equivariant faithful normal conditional expecta-
tion. By Lemma 3.2, the action Γ ↷ B is ergodic. Let L(Λ) ⊂ M ⊂ B be an
intermediate von Neumann subalgebra and set Φ = E |M :M → L∞(G/P ). Using the
same notation and following the same argument as in the first paragraph of the proof
of Theorem A, we conclude that if Φ : M → L∞(G/P ) is invariant, then M = L(Λ).
Next, assume that Φ : M → L∞(G/P ) is not invariant. There are two cases to
consider.

Firstly, assume that d = 1. Let k = k1 and G = G1 such that rkk(G) ⩾ 2.
We proceed as in the proof of [BBH21, Th. D]. By [BBH21, Th. 5.4] (see also [BH21,
Th. B]), there exist a proper parabolic k-subgroup P < Q < G and a Γ-equivariant
unital normal embedding ι : L∞(G/Q) →M such that Φ ◦ ι : L∞(G/Q) → L∞(G/P )

is the canonical embedding with Q = Q(k). Then we have L(Λ ↷ G/Q) ⊂ M . Since
Λ ↷ G/Q is essentially free (see [BBHP22, Lem. 6.2]), a combination of [Mar91,
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Th. IV.2.11] and [Suz20, Th. 3.6] shows that there exists a unique parabolic k-subgroup
Q < R < G such that M = L(Λ ↷ G/R) with R = R(k).

Secondly, assume that d ⩾ 2. Since Γ < G need not be embedded with dense
projections, we cannot apply Theorem A. However, we may proceed as in the proof
of [BBHP22, Prop. 6.1]. Upon permuting the indices, letting H1 = p1(Γ) < G1 and
H2 = p̂1(Γ) <

∏d
j=2Gj , we have that Γ < H1 × H2 is a lattice embedded with

dense projections and the von Neumann subalgebra M1 ⊂ M of all H1-continuous
elements in M is nontrivial. Set B1 = G1/P1 and B2 =

∏d
j=2Gj/Pj . Since G+

1 < H1

and
∏d

j=2G
+
j < H2, as explained in the proof of [BBHP22, Prop. 6.1] and using

[BS06, Cor. 5.2], for every i ∈ {1, 2}, we may choose Borel probability measures µi ∈
Prob(Hi) and νi ∈ Prob(Bi) such that (Bi, νi) is the (Hi, µi)-Furstenberg-Poisson
boundary. Since G+

1 < H1 and
∏d

j=2G
+
j < H2, using [Mar91, Th. I.1.5.6(i)] and

[CM11, Prop. 4.3], we infer that for every i ∈ {1, 2}, QZ (Hi) = Z (Hi). Moreover,
[BBHP22, Lem. 6.2] implies that for every i ∈ {1, 2}, the pair (Hi, µi) satisfies the
boundary freeness condition. We may now apply Theorem A to obtain the conclusion.

For every i ∈ {1, . . . , d}, there are 2rkki
(Gi) intermediate parabolic ki-subgroups

P i < Qi < Gi. The NFT implies that there are 2
∑d

i=1 rkki
(Gi) intermediate von

Neumann subalgebras L(Λ) ⊂ M ⊂ L(Λ ↷ G/P ). Thus, the rank
∑d

i=1 rkki
(Gi) is

an invariant of the inclusion L(Λ) ⊂ L(Λ ↷ G/P ). □

Proof of Theorem C. — For every i ∈ {1, . . . , d}, we have QZ (Gi) = {e} (see [BM00a,
Lem. 3.1.1 & Prop. 3.1.2]). Moreover, the nonsingular action Γ ↷ ∂Ti is essentially free
(see [BBHP22, Prop. 6.4]). This condition is sufficient to apply the proof of Theorem A
to obtain the conclusion. □
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