
Olivier Benoist & Olivier Wittenberg
On the integral Hodge conjecture for real varieties, II
Tome 7 (2020), p. 373-429.

<http://jep.centre-mersenne.org/item/JEP_2020__7__373_0>

© Les auteurs, 2020.
Certains droits réservés.

Cet article est mis à disposition selon les termes de la licence
LICENCE INTERNATIONALE D’ATTRIBUTION CREATIVE COMMONS BY 4.0.
https://creativecommons.org/licenses/by/4.0/

L’accès aux articles de la revue « Journal de l’École polytechnique — Mathématiques »
(http://jep.centre-mersenne.org/), implique l’accord avec les conditions générales
d’utilisation (http://jep.centre-mersenne.org/legal/).

Publié avec le soutien
du Centre National de la Recherche Scientifique

Publication membre du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org

http://jep.centre-mersenne.org/item/JEP_2020__7__373_0
https://creativecommons.org/licenses/by/4.0/
http://jep.centre-mersenne.org/
http://jep.centre-mersenne.org/legal/
http://www.centre-mersenne.org/
http://www.centre-mersenne.org


Tome 7, 2020, p. 373–429 DOI: 10.5802/jep.120

ON THE INTEGRAL HODGE CONJECTURE FOR

REAL VARIETIES, II

by Olivier Benoist & Olivier Wittenberg

Abstract. —We establish the real integral Hodge conjecture for 1-cycles on various classes of
uniruled threefolds (conic bundles, Fano threefolds with no real point, some del Pezzo fibrations)
and on conic bundles over higher-dimensional bases which themselves satisfy the real integral
Hodge conjecture for 1-cycles. In addition, we show that rationally connected threefolds over
non-archimedean real closed fields do not satisfy the real integral Hodge conjecture in general
and that over such fields, Bröcker’s EPT theorem remains true for simply connected surfaces
of geometric genus zero but fails for some K3 surfaces.

Résumé (Sur la conjecture de Hodge entière pour les variétés réelles, II)
Nous établissons la conjecture de Hodge entière réelle pour les 1-cycles pour diverses classes

de solides uniréglés (fibrés en coniques, solides de Fano sans points réels, certaines fibrations
en del Pezzo) et pour les fibrés en coniques sur des bases de dimension supérieure satisfaisant
elles-mêmes la conjecture de Hodge entière réelle pour les 1-cycles. De plus, nous montrons que
les solides rationnellement connexes sur les corps réels clos non archimédiens ne vérifient pas
en général la conjecture de Hodge entière réelle et que sur de tels corps, le théorème EPT de
Bröcker reste vrai pour les surfaces simplement connexes de genre géométrique nul mais tombe
en défaut pour certaines surfaces K3.
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Introduction

This article forms the second part of a work started in [BW18], which centres
around the formulation and the study of a “real integral Hodge conjecture” for real
algebraic varieties. The first part was devoted to the definition of this property, to
examples, and to the connections, in the case of 1-cycles, with other topics in the
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374 O. Benoist & O. Wittenberg

theory of real algebraic cycles (existence of curves of even genus, image of the Borel-
Haefliger cycle class map, unramified cohomology). In this second part, we address the
question of the validity of the real integral Hodge conjecture for 1-cycles on specific
classes of varieties.

Let us first recall the set-up put forward in op. cit. We denote by X a smooth and
proper algebraic variety of dimension d over a real closed field R. Letting C = R(

√
−1)

and G = Gal(C/R), one defines the equivariant cycle class map

cl : CH1(X) −→ H2d−2
G (X(C),Z(d− 1))

(see [BW18, §1.6.1]). It takes its values in the equivariant semi-algebraic cohomology
of the semi-algebraic space X(C), which, when R is the field R of real numbers, is
the same as the equivariant Betti cohomology of the complex manifold X(C). The
image of the equivariant cycle class map is contained in the subgroup

Hdg2d−2
G (X(C),Z(d− 1))0 ⊆ H2d−2

G (X(C),Z(d− 1))

of those classes that satisfy a topological constraint, determined by the image of the
class in the group H2d−2

G (X(R),Z(d− 1)), and a Hodge-theoretic constraint, which is
classical when C = C and which is trivial when H2(X,OX) = 0 (see [BW18, §2.2]).
We consider the real integral Hodge conjecture for 1-cycles on X only when R = R or
H2(X,OX) = 0; it is the assertion that every element of Hdg2d−2

G (X(C),Z(d − 1))0

belongs to the image of the equivariant cycle class map.
Examples and counterexamples to the real integral Hodge conjecture for 1-cycles

are given in [BW18, §2, §4]. Its connections with curves of even genus and with the
Borel-Haefliger cycle class map are discussed in [BW18, §3]. As it turns out, the point
of view we adopt leads to a systematic explanation for all known examples of smooth
proper real algebraic varieties X that satisfy Halg

1 (X(R),Z/2Z) 6= H1(X(R),Z/2Z)

or that fail to contain a curve of even genus (see [BW18, Rem. 2.7 (i) & §4]).
By analogy with Voisin’s results [Voi06] over the complex numbers, we were led,

in [BW18, Quest. 2.16], to raise the question of the validity of the real integral Hodge
conjecture, over R, for 1-cycles on uniruled threefolds, on Calabi-Yau threefolds and
on rationally connected varieties.

Motivated by this question, we first prove, in this article, the following three the-
orems, which provide some evidence towards a positive answer. We then proceed to
discuss the real integral Hodge conjecture over non-archimedean real closed fields.

Theorem D (see Theorem 6.1). — Let X → B be a morphism between smooth, proper,
irreducible varieties over R, whose generic fibre is a conic. Assume that B satisfies
the real integral Hodge conjecture for 1-cycles. (Such is the case, for instance, if B is
a surface.) Then X satisfies the real integral Hodge conjecture for 1-cycles.

Theorem E (see Theorem 7.1). — Let X be a smooth Fano threefold over R. Assume
that X(R) = ∅. Then X satisfies the real integral Hodge conjecture.
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Theorem F (see Theorem 8.1). — Let X → B be a morphism between smooth, proper,
irreducible varieties over a real closed field R, whose generic fibre is a del Pezzo
surface. Let δ ∈ {1, . . . , 9} denote the degree of this del Pezzo surface and assume
that B is a curve. Then X satisfies the real integral Hodge conjecture under any of
the following conditions:

(i) δ > 5;
(ii) X(R) = ∅ and B(R) 6= ∅;
(iii) δ ∈ {1, 3} and the real locus of each smooth real fibre of f has exactly one

connected component;
(iv) R = R and δ = 3.

The classes of varieties considered in these three theorems correspond to the three
possible outputs of the minimal model programme applied to a uniruled threefold: a
Fano threefold, a fibration into del Pezzo surfaces over a curve, a conic bundle over
a surface. We note, however, that Theorem D allows conic bundles over a base of
arbitrary dimension (which creates significant additional difficulties in its proof).

As explained in the introduction of [BW18] and in Sections 6–8 below, these the-
orems also have concrete implications for the study of the group Halg

1 (X(R),Z/2Z),
for the problem of C∞ approximation of loops in X(R) by algebraic curves, for the
existence of geometrically irreducible curves of even geometric genus on X and for
the study of the third unramified cohomology group of X with Q/Z coefficients,
when X belongs to one of the families of varieties which appear in their statements
(see Corollary 6.2, Corollary 6.5, Corollary 7.2, Proposition 8.4).

We devote each of Sections 6, 7, 8 to proving one of the above theorems. The
methods are varied. Theorem E is established, for threefolds X such that −KX is
very ample, by adapting to R the strategy employed by Voisin [Voi06] over C: we
exhibit real points of the Noether-Lefschetz locus for anticanonical sections of X.
The proofs of Theorems D and F exploit the geometry of the fibration structure.
Theorem F relies on a study of the homology of the singular fibres, adapting to real
closed fields an argument contained in [EW16] over separably closed fields, while the
proof of Theorem D applies the Stone-Weierstrass theorem in many ways, through
various results of real algebraic geometry due to Akbulut and King, to Bröcker, and
to Ischebeck and Schülting.

Let us now briefly describe the contents of Section 9, concerned with the phenomena
that are specific to non-archimedean real closed fields and with their implications for
the study of the real integral Hodge conjecture over R.

For smooth, projective and irreducible varieties X of dimension d > 1 such that
H2(X,OX) = 0, allowing an arbitrary real closed field as the ground field amounts to
strengthening the real integral Hodge conjecture over R by requiring that the group
H2d−2
G (X(C),Z(d− 1))0 be generated by the equivariant cycle classes of curves on X

whose degrees are bounded independently of X whenever X varies in a bounded
family of real varieties and is defined over R (see Section 9.1).

The proof of Theorem E heavily relies on Hodge theory, which forces us to restrict
its statement to R. We do not know whether it remains true over non-archimedean
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real closed fields. Theorem D, on the other hand, fails over such fields, as we show in
Section 9.2.2 by reinterpreting an example of Ducros [Duc98]: there exist a real closed
field R and a conic bundle threefold X over P1

R ×P1
R failing the real integral Hodge

conjecture. We refer to Section 9.2.3 for a detailed discussion of the consequences of
this counterexample.

The proof of Theorem D depends on the ground field being archimedean through
three uses of the Stone-Weierstrass theorem: one to apply results of Akbulut and
King [AK85], [AK88] to approximate C∞ loops in X(R) by real loci of algebraic
curves and C∞ surfaces in B(R) by connected components of real loci of algebraic
surfaces; one to apply, to B, Bröcker’s EPT theorem [Brö80] if B is a surface, or its
higher-dimensional version due to Ischebeck and Schülting [IS88] in general; and one
to separate the connected components of the real loci of algebraic surfaces contained
in B by the signs of rational functions on these surfaces.

The first of these uses becomes irrelevant when X(R) = ∅ and B is a surface.
Under these assumptions, as we explain in Section 9.4.2, the proof of Theorem D goes
through over an arbitrary real closed field as soon as B satisfies the conclusion of
the EPT theorem and possesses enough rational functions to separate the connected
components of its real locus—two properties that we refer to as the “EPT” and the
“signs” properties (see Proposition 9.20).

This process can be reversed: if B is a surface over a real closed field R and Γ

denotes the anisotropic conic over R, the real integral Hodge conjecture for the trivial
conic bundle X = B × Γ implies, in turn, the EPT and signs properties for B (see
Proposition 9.21). We use this criterion to deduce the validity of the EPT and signs
properties, over arbitrary real closed fields, for surfaces subject to the assumptions
H2(B,OB) = 0 and Pic(BC)[2] = 0 (see Theorem 9.16).

The assumption H2(B,OB) = 0 is essential: the signs property is known to fail for
some K3 surfaces over non-archimedean real closed fields. We complete the picture
by showing that over non-archimedean real closed fields, the EPT property can fail
as well (see Proposition 9.17; the counterexample is a K3 surface), thus answering
a question raised in [IS88] and again in [Sch95]. We also verify that the hypothesis
Pic(BC)[2] = 0 cannot be dispensed with, by constructing a bielliptic surface failing
the signs property (see Proposition 9.18).

Additional positive and negative results are contained in Section 9: counterexam-
ples to the real integral Hodge conjecture over a non-archimedean real closed field
for simply connected Calabi-Yau threefolds with and without real points (in Sec-
tion 9.2.1) and for hypersurfaces of degree 8 in P4 with no real point (in Section 9.3),
and the validity of the real integral Hodge conjecture, over arbitrary real closed fields,
for smooth cubic hypersurfaces of dimension > 3 (see Theorem 9.23).

Notation. — Given a real closed field R, we let C = R(
√
−1) and G = Gal(C/R). We

denote by R the field of real numbers. We recall from [BW18] that variety (over R)
is understood as separated scheme of finite type (over R). We refer to [BW18, §1] for
generalities concerning the cohomology of varieties over R. For a smooth and proper
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variety X of pure dimension d over R, we set Hi(X(R),Z/2Z) = Hd−i(X(R),Z/2Z)

and write Halg
i (X(R),Z/2Z) = clR(CHi(X)) and Hi

alg(X(R),Z/2Z) = clR(CHi(X)),
where clR denotes the Borel-Haefliger cycle class maps (see [BW18, §1.6.2]).

Acknowledgements. — We are grateful to Jacek Bochnak and Wojciech Kucharz for
calling our attention to an oversight in the argument we had given for Theorem 6.8 in
a previous version of this article, to Jean-Louis Colliot-Thélène for pointing out that
our proof of Theorem 9.23 for three-dimensional cubics works in higher dimension as
well, and to the referee for their useful suggestions.

6. Conic bundles

6.1. The real integral Hodge conjecture for conic bundles. — Our goal in Sec-
tion 6 is to prove the following theorem.

Theorem 6.1. — Let f : X → B be a morphism of smooth proper connected varieties
over R whose generic fibre is a conic. If B satisfies the real integral Hodge conjecture
for 1-cycles, then so does X.

This theorem is already non-trivial when B is a surface. In this case, in view of
the real Lefschetz (1, 1) theorem [BW18, Prop. 2.8] and of the reformulation of the
real integral Hodge conjecture for 1-cycles on X in terms of unramified cohomology
[BW18, Rem. 5.3 (iii)], we get:

Corollary 6.2. — Let f : X → B be a morphism of smooth proper connected varieties
over R whose generic fibre is a conic. If B is a surface, the real integral Hodge conjec-
ture holds for 1-cycles on X and the unramified cohomology group H3

nr(X,Q/Z(2))0

vanishes.

Remark 6.3. — We show in Example 9.7 below that an analogous statement over an
arbitrary real closed field R fails in general, even when B is an R-rational surface.
This is the reason why we only work over R in this section. We explain geometric
consequences of this failure in Example 9.9 below.

The reason why the proof does not work over arbitrary real closed fields is that
we extensively use consequences of the Stone-Weierstrass approximation theorem. In
Proposition 9.20, we explain what remains of the proof over general real closed fields
when B is a surface and X has no real point.

Remark 6.4. — The last statement of Corollary 6.2 is an analogue overR of a theorem
of Parimala and Suresh over finite fields [PS16, Th. 1.3].

The proof of Parimala and Suresh is very different from ours: they use the fact
that the relevant unramified cohomology classes of X come from cohomology classes
of the function field of B, and study in detail their ramification over B. It is possible
to give a proof of Corollary 6.2 along these lines. The difficulties that arise, in this
alternative proof, in the analysis of the ramification, are identical to those encountered
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378 O. Benoist & O. Wittenberg

in the proof we give below. This strategy is however not applicable when the base has
dimension > 3.

Combining Theorem 6.1 with the duality theorem [BW18, Th. 3.16] and with an
approximation result to be discussed next, namely Theorem 6.8 below, yields the
following corollary.

Corollary 6.5. — Let f : X → B be a morphism of smooth projective connected
varieties over R whose generic fibre is a conic. Suppose that H2(B,OB) = 0 and
Pic(BC)[2] = 0 and that B satisfies the real integral Hodge conjecture for 1-cycles.

Then H1(X(R),Z/2Z) = Halg
1 (X(R),Z/2Z) and all one-dimensional compact C∞

submanifolds of X(R) have an algebraic approximation in X(R) (in the sense of
[BCR98, Def. 12.4.10], recalled in Definition 6.7 below).

Corollary 6.5 is interesting already when B is a geometrically rational surface. Its
hypotheses are then satisfied by [BW18, Prop. 2.8].

Proof of Corollary 6.5. — By Lemma 6.6 below, we have H2(X,OX)=Pic(XC)[2]=0.
We deduce from [BW18, Th. 3.16] and Theorem 6.1 that H1(X(R),Z/2Z) =

Halg
1 (X(R),Z/2Z). The second statement follows from Theorem 6.8 below. �

Lemma 6.6 (Kollár [Kol86, Kol93]). — Let f : X → B be a morphism of smooth,
projective, connected varieties over an algebraically closed field of characteristic 0,
whose geometric generic fibre F is irreducible. Let ` be a prime number. Assume that
Pic(F )[`] = 0 and Hi(F,OF ) = 0 for i > 0. Then the pull-back maps Pic(B)[`∞] →
Pic(X)[`∞] and Hi(B,OB)→ Hi(X,OX) for i > 0 are isomorphisms.

Proof. — The assertion on Hi(B,OB) → Hi(X,OX) follows from [Kol86, Th. 7.1]
and from the Lefschetz principle. The other assertion is a close variation on [Kol93,
Th. 5.2]; for the sake of completeness, we provide a proof. First, we recall that

(6.1) Pic(Z)[`∞] = Hom(πét
1 (Z)`,ab,Q/Z(1))

for any smooth and proper variety Z over an algebraically closed field of characteris-
tic 0, where πét

1 (Z)`,ab denotes the pro-` completion of πét
1 (Z)ab (a finitely generated

Z`-module). In particular πét
1 (Z)ab/` = 0 if and only if Pic(Z)[`] = 0 (where, for any

abelian group M , we write M/` for M/`M).
As F is irreducible and satisfies Hi(F,OF ) = 0 for i > 0, the morphism f has no

multiple fibre above codimension 1 points of B (see [CTV12, Prop. 7.3 (iii)], [ELW15,
Prop. 2.4]). As, on the other hand, the group πét

1 (F )ab/` vanishes, it follows that
πét

1 (Xb)
ab/` vanishes for any geometric point b of B above a codimension 1 point

of B (see [Ray70, Prop. 6.3.5 (ii) a)]). As πét
1 (Xb)

ab/` andH1(Xb,Z/`Z) are Pontrjagin
dual and as R1f∗Z/`Z is a constructible sheaf, we deduce that πét

1 (Xb)
ab/`, hence also

πét
1 (Xb)

`,ab, vanishes for any geometric point b of an open subset B0 ⊂ B whose com-
plement has codimension at least 2. Letting X0 = f−1(B0), we can now apply [Gro03,
Exp. IX, Cor. 6.11] to conclude that the natural map πét

1 (X0)`,ab → πét
1 (B0)`,ab is an

isomorphism. As πét
1 (B0) = πét

1 (B) and πét
1 (X0)� πét

1 (X) (op. cit., Exp.V, Prop. 8.2
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and Exp.X, Cor. 3.3), it follows that the natural map πét
1 (X)`,ab → πét

1 (B)`,ab is an
isomorphism; i.e., in view of (6.1), the pull-back map Pic(B)[`∞]→ Pic(X)[`∞] is an
isomorphism. �

6.2. Algebraic approximation. — The proof of Theorem 6.1 will rely, in an essential
way, on consequences of the Stone-Weierstrass approximation theorem. One of these
is an approximation result due to Akbulut and King, which we now state.

If M and N are C∞ manifolds, we endow C∞(M,N) with the weak C∞ topology
defined in [Hir94, p. 36]. We first recall the definition of algebraic approximation (see
[BCR98, Def. 12.4.10]).

Definition 6.7. — Let X be a smooth algebraic variety over R. A Zariski closed
subset of X(R) is said to be nonsingular if its Zariski closure in X is smooth along
X(R).

A compact C∞ submanifold Z ⊂ X(R) is said to have an algebraic approximation
in X(R) if the inclusion i : Z ↪→ X(R) can be approximated in C∞(Z,X(R)) by
maps whose images are nonsingular Zariski closed subsets of X(R).

The existence of algebraic approximations for C∞ hypersurfaces is entirely under-
stood (see [BCR98, Th. 12.4.11], which goes back to Benedetti and Tognoli [BT82,
Proof of Th. 4.1]). The following theorem is a counterpart for curves. Akbulut and
King [AK88] established a slight variant, which turns out to be equivalent to the
statement given below thanks to a moving lemma of Hironaka [Hir68]. Using entirely
different methods, Bochnak and Kucharz [BK03] were able to give a direct proof
when X has dimension 3.

Theorem 6.8 (Akbulut-King). — Let X be a smooth projective algebraic variety
over R and i : Z ↪→ X(R) be a one-dimensional compact C∞ submanifold. The
following are equivalent:

(i) [Z] ∈ Halg
1 (X(R),Z/2Z),

(ii) Z has an algebraic approximation in X(R),
(iii) For every neighbourhood V of Z in X(R), there exists a C∞ isotopy

ϕ : Z × [0, 1] −→ V

such that ϕ|Z×{0} = i and ϕ|Z×{1} is arbitrarily close to i in C∞(Z, V ) with nonsin-
gular Zariski closed image.

Proof. — The implication (iii)⇒ (i) is immediate and (ii)⇒ (iii) follows from [Wal16,
Prop. 4.4.4]. It remains to prove (i) ⇒ (ii). For this implication, the case d = 1 is
obvious, d = 2 is [BCR98, Th. 12.4.11] and d = 3 is due to Bochnak and Kucharz
[BK03, Th. 1.1]. For any d > 3, it is a theorem of Akbulut and King [AK88, Prop. 2
& Rem.] that the condition

(i′) [Z] ∈ H1(X(R),Z/2Z) is a linear combination of Borel-Haefliger cycle classes
of smooth algebraic curves lying in X
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implies (ii). On the other hand, conditions (i) and (i′) are in fact equivalent, by a
theorem of Hironaka [Hir68] according to which the classes of smooth curves generate
the Chow group of 1-cycles of any smooth and projective variety of dimension > 3

over an infinite perfect field.
The ground field is assumed to be algebraically closed in [Hir68, p. 50, Th.]. As it

turns out, Hironaka’s argument for the proof of the above assertion does not make use
of this assumption. Nevertheless, in order to dispel any doubt regarding its validity
over R, we give a brief outline of the argument. Let ι : B ↪→ X be a closed embedding,
where B is an integral curve. Let ν : B′ → B be its normalisation. Choose a finite
morphism g : B′ → P1

R in such a way that (ι◦ν)×g : B′ → X×P1
R is an embedding.

Applying the following proposition twice, to C = B′ and to C = ∅ (with the same H
and n), now shows that B is rationally equivalent, as a cycle on X, to the difference
of two smooth curves.

Proposition 6.9. — Let X be a smooth and projective variety of dimension d > 3

over an infinite field. Let H be an ample divisor on X × P1. Let C ⊂ X × P1 be a
smooth closed subscheme everywhere of dimension 1, with ideal sheaf I ⊂ OX×P1 .
Assume that C does not contain any fibre of the first projection p : X × P1 → X.
For n large enough, if σ1, . . . , σd ∈ H0(X×P1,I (nH)) are general, the subvariety of
X×P1 defined by σ1 = · · · = σd = 0 is equal to C∪D for a smooth curve D ⊂ X×P1

such that the map D → X induced by p is a closed embedding.

Proposition 6.9 is what the proof of [Hir68, Th. 5.1] applied to f = p and Z ′ = C

really establishes. On the other hand, in order to prove Proposition 6.9, it is clear
that the ground field may be assumed to be algebraically closed. �

6.3. Sarkisov standard models. — In the proof of Theorem 6.1, it will be convenient
to replace the morphism f : X → B by one that is birational to it and whose geometry
is as simple as possible. Such models were constructed by Sarkisov [Sar82].

6.3.1. Definition and existence. — A morphism f : X → B of varieties over a field k
is said to be a Sarkisov standard model if it satisfies the following conditions(1):

(i) The varieties X and B are smooth, projective and connected.
(ii) The morphism f is flat.
(iii) There exists a reduced simple normal crossings divisor ∆ ⊂ B such that the

fibres of f are smooth (rank 3) conics outside of ∆, rank 2 conics above the regular
locus of ∆, and rank 1 conics above the singular locus Σ of ∆.

That every conic bundle is birational to a Sarkisov standard model has been proven
by Sarkisov [Sar82, Prop. 1.16] over an algebraically closed field of characteristic 0.
His proof goes through over non-closed fields of characteristic 0 and another proof
has been provided by Oesinghaus [Oes19, Th. 7].

(1)Contrary to common usage, we do not require that f be relatively minimal.
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Theorem 6.10 ([Sar82, Oes19]). — Let f : X → B be a morphism of integral varieties
over a field k of characteristic 0 whose generic fibre is a smooth conic. There exist
a birational morphism B′ → B and a birational rational map X ′ 99K X inducing a
morphism f ′ : X ′ → B′ that is a Sarkisov standard model.

6.3.2. Computing their cohomology. — Let f : X → B be a Sarkisov standard model
over R whose degeneracy locus ∆ has singular locus Σ. Let i∆ : ∆(C) → B(C),
iΣ : Σ(C) → B(C) and j : (∆ r Σ)(C) → ∆(C) be the inclusions. Sheafifying the
push-forward maps (

f |f−1(U)

)
∗ : H2(f−1(U),Z(1)) −→ H0(U,Z)

yields a morphism of G-equivariant sheaves Trf : R2f∗Z(1) → Z on B(C): the trace
morphism, whose analogue in étale cohomology is defined in [Del73, Th. 2.9].

The morphism Trf may be computed over each stratum using the proper base
change theorem. Over Br∆, it is an isomorphism. Over ∆rΣ, R2f∗Z(1)|(∆rΣ)(C) is
a Z-local system of rank 2 whose stalk at a point is generated by the classes of points
on the two lines in the fibres, and the trace morphism is a surjection. The kernel
of Trf |(∆rΣ)(C) is then a G-equivariant Z-local system L of rank 1 on (∆ r Σ)(C)

(corresponding geometrically to the monodromy action on the two lines of the rank 2

conics). Over Σ, R2f∗Z(1)|Σ(C) ' Z and the trace morphism Trf |Σ(C) : Z → Z is
the multiplication by 2 map. We deduce a canonical exact sequence of G-equivariant
sheaves on B(C):

(6.2) 0 −→ (i∆)∗j!L −→ R2f∗Z(1)
Trf−−−−→ Z −→ (iΣ)∗Z/2Z −→ 0.

6.4. Proof of Theorem 6.1. — This paragraph is devoted to the proof of Theo-
rem 6.1. Since the validity of the real integral Hodge conjecture for 1-cycles is a
birational invariant [BW18, Prop. 2.13], we may assume that f : X → B is a standard
Sarkisov model, by Theorem 6.10. We define ∆ and Σ as in Section 6.3.1. Let d be
the dimension of B. The statement of Theorem 6.1 is obvious if d = 0 and follows
from [BW18, Prop. 2.8] if d = 1. From now on, we suppose that d > 2.

We fix α ∈ Hdg2d
G (X(C),Z(d))0 and shall now prove that α is in the image of the

cycle class map
cl : CH1(X) −→ H2d

G (X(C),Z(d)).

We proceed in six steps.

6.4.1. Analysis of the push-forward. — We consider the push-forward homomorphism

f∗ : H2d
G (X(C),Z(d)) −→ H2d−2

G (B(C),Z(d− 1))

(see [BW18, (1.22)]) and first make use of the algebraicity of f∗α.

Step 1. — We may assume that α|X(R) ∈ H2d
G (X(R),Z(d)) vanishes.

Proof. — The class f∗α belongs to Hdg2d−2
G (B(C),Z(d − 1))0 by [BW18, Th. 1.21]

hence is algebraic by the hypothesis on B. Let y ∈ CH1(B) be such that f∗α = cl(y).
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Consider the image of α by the natural map

H2d
G (X(C),Z(d))0 −→ Hd(X(R),Z/2Z) = H1(X(R),Z/2Z)

(see [BW18, (1.58)]) and represent it by a topological cycle. By C∞ approx-
imation [Hir94, Ch. 2, Th. 2.6], we may assume that it is a sum of C∞ loops
(gi : S1 → X(R))16i6s. Let

hi := f(R) ◦ gi : S1 −→ B(R)

and S :=
⊔
i S

1, and consider the disjoint union maps

g :=
⊔
i

gi : S −→ X(R) and h :=
⊔
i

hi : S −→ B(R).

Since f is a Sarkisov standard model, the locus where f is not smooth has codi-
mension > 2 in X, hence real codimension > 2 in X(R). Since moreover d > 2, an
application of multijet transversality [Wal16, Th. 4.6.1] shows that after deforming g,
which preserves its homology class, we may assume that its image is contained in the
smooth locus of f , that h is an immersion, that h(S) has distinct tangents at the finite
number of points over which h is not injective, and that these points do not belong
to ∆ (see the proof of loc. cit., Th. 4.7.7 and apply [Mic08, Th. 21.5 (5)]).

Defining π : B′ → B to be the blow-up of B at this finite number of points, the
map h lifts to an embedding h′ : S→ B′(R). We introduce the cartesian diagram:

X ′

f ′
��

// X

f
��

B′
π // B.

The map g lifts to an embedding g′ : S → X ′(R). We still denote by S the images
of g′ and h′. By Lemma 6.11, there exists a neighbourhood V of S in B′(R) and a C∞

map s : V → X ′(R) that is the identity on S, yielding a commutative diagram:

X ′(R) //

f ′(R)

��

X(R)

f(R)

��

S

h′

44

� � //

g′
77

V

s

==

� � // B′(R)
π(R)

// B(R).

The class [h(S)]∈Hd−1(B(R),Z/2Z) equals clR(y) by [BW18, Th. 1.18 & Th. 1.21],
hence is algebraic. Since the kernel of

π(R)∗ : Hd−1(B′(R),Z/2Z) −→ Hd−1(B(R),Z/2Z)

is generated by classes of lines on the exceptional divisor of π, one has [h′(S)] ∈
Hd−1

alg (B′(R),Z/2Z). Then Theorem 6.8 (i) ⇒ (iii) applies: there exist a smooth
projective curve Γ and a morphism µ : Γ → B′ such that µ(Γ(R)) ⊂ V and
[µ(Γ(R))] = [h′(S)] ∈ H1(V,Z/2Z).
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Let X ′Γ → Γ be the base change of f ′ by µ, S → X ′Γ be a resolution of singularities
and ψ : S → Γ be the composition. We have a commutative diagram:

S //

ψ
  

X ′Γ

��

// X ′

f ′

��

Γ
µ
// B′.

The lifting s : V → X ′(R) induces a C∞ section still denoted by s : Γ(R) → S(R).
In the commutative diagram

H1(S(R),Z/2Z) // H1(X ′(R),Z/2Z) // H1(X(R),Z/2Z)

H1(Γ(R),Z/2Z)

s∗

OO

// H1(V,Z/2Z),

s∗

OO

the image in H1(V,Z/2Z) of the fundamental class of Γ(R) is [h′(S)]. We deduce
that its image in H1(X(R),Z/2Z) is [g(S)]. By Lemma 6.12 below, its image in
H1(S(R),Z/2Z) is algebraic, hence so is its image in H1(X(R),Z/2Z). We have
shown the existence of z ∈ CH1(X) such that clR(z) = [g(S)]. Using the decompo-
sition [BW18, (1.30)] and applying [BW18, Th. 1.18] with Y = z, we now see that
(α− cl(z))|X(R) = 0. Replacing α by α− cl(z) completes the proof. �

We have used the following two lemmas.

Lemma 6.11. — Let ϕ : M → N be a C∞ map between C∞ manifolds, and let
Z ⊂M be a closed C∞ submanifold such that ϕ is submersive along Z and such that
ϕ|Z : Z → N is an embedding. Then there exists an open neighbourhood V of ϕ(Z)

in N and a C∞ section s : V →M of ϕ above V such that s ◦ ϕ|Z = IdZ .

Proof. — Choose a tubular neighbourhood of Z inM contained in the locus where ϕ is
submersive, and view it as an open embedding of the normal bundle ι : NZ/M →M .
The choice of a metric on NZ/M induces a splitting σ : Nϕ(Z)/N → NZ/M of the
surjection ϕ∗ : NZ/M → Nϕ(Z)/N of C∞ vector bundles on Z. The composition ϕ◦ι◦σ
realises a diffeomorphism between an open neighbourhood of ϕ(Z) in Nϕ(Z)/N and
an open neighbourhood V of ϕ(Z) in N (apply [Wal16, Cor.A.2.6]). The existence of
a C∞ map s : V →M as required follows from the construction. �

Lemma 6.12. — Let ψ : S → Γ be a morphism between smooth projective con-
nected varieties over R whose base is a curve, and whose generic fibre is a conic.
Let s : Γ(R)→ S(R) be a C∞ section. Then [s(Γ(R))] ∈ H1

alg(S(R),Z/2Z).

Proof. — We suppose that S(R) 6= ∅ since the theorem is trivial otherwise. In par-
ticular, S and Γ are geometrically connected. By Lemma 6.6, H2(S,OS) = 0 and
Pic(ΓC)tors → Pic(SC)tors is an isomorphism. By [BLR90, 8.1/4], Pic(Γ) ' Pic(ΓC)G
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and Pic(S) ' Pic(SC)G, so that ψ∗ : Pic(Γ)tors → Pic(S)tors is an isomorphism. For
any L ∈ Pic(Γ), the projection formula shows that

deg
(
[s(Γ(R))] ^ clR(ψ∗L)

)
= deg

(
clR(Γ) ^ clR(L)

)
∈ Z/2Z.

Since torsion line bundles have degree 0, the right-hand side of the above equation
vanishes for any L ∈ Pic(Γ)[2∞]. We now deduce from [BW18, Cor. 3.17 (i)] that
[s(Γ(R))] ∈ H1

alg(S(R),Z/2Z). �

Step 2. — We may assume that f∗α ∈ H2d−2
G (B(C),Z(d− 1)) vanishes.

Proof. — The argument at the beginning of the proof of Step 1 shows the existence
of y ∈ CH1(B) such that f∗α = cl(y). By Step 1, α|X(R) = 0, so that (f∗α)|X(R) = 0

by [BW18, Th. 1.21] and clR(y) = 0 by [BW18, Th. 1.18]. Ischebeck and Schülting
have shown [IS88, Main Th. (4.3)] that there exists a 1-cycle Γ on B whose support
has only finitely many real points, and such that [Γ] = y ∈ CH1(B) (when B is a
surface, this follows from Bröcker’s EPT theorem [Brö80]).

Since f is a Sarkisov standard model, the normalisations of the components of Γ

lift to X. For those that are not contained in ∆, this is a theorem of Witt [Wit37,
Satz 22]; those contained in ∆ but not in Σ lift uniquely to the locus where f is not
smooth; and those contained in Σ lift because f |Σ : f−1(Σ)red → Σ is a P1-bundle.
This proves the existence of a 1-cycle Γ̃ on X whose class ỹ := [Γ̃] ∈ CH1(X) satisfies
f∗ỹ = y ∈ CH1(B), and clR(ỹ) = 0 because the support of Γ̃ has only finitely many
real points. By [BW18, Th. 1.18], cl(ỹ)|X(R) ∈ H2d

G (X(R),Z(d)) vanishes. By [BW18,
Th. 1.21], replacing α by α−cl(ỹ) finishes the proof of Step 2. The conclusion of Step 1
remains valid because cl(ỹ)|X(R) = 0. �

6.4.2. The restriction above the real locus. — Let U ⊂ B be the complement of finitely
many points, including at least one in each connected component of B(R), B(C) and
∆(C), and at least one in the image of each connected component of X(R). Denote
by fU : XU → U the base change of f : X → B. Let Ξ := f−1(U(R)) be the inverse
image of U(R) by f : X(C)→ B(C). Building on Step 1, we prove:

Step 3. — The restriction α|Ξ ∈ H2d
G (Ξ,Z(d)) vanishes.

Proof. — There is an exact sequence of relative cohomology:

H2d
G (Ξ, XU (R),Z(d)) −→ H2d

G (Ξ,Z(d)) −→ H2d
G (XU (R),Z(d)).

Since α|XU (R) = 0 by Step 1, it suffices to prove that H2d
G (Ξ, XU (R),Z(d)) = 0. The

real-complex exact sequence [BW18, (1.6)] yields:

(6.3) H2d(Ξ, XU (R),Z) −→ H2d
G (Ξ, XU (R),Z(d)) −→ H2d+1

G (Ξ, XU (R),Z(d+ 1)).

The left-hand side of (6.3) vanishes by the relative cohomology exact sequence:

H2d−1(XU (R),Z) −→ H2d(Ξ, XU (R),Z) −→ H2d(Ξ,Z).

Indeed, H2d−1(XU (R),Z) = 0 by Poincaré duality since 2d − 1 > d + 1 and XU (R)

has no compact component by the choice of U ; and H2d(Ξ,Z) = 0 because the only
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term that might contribute to it in the Leray spectral sequence for f |Ξ : Ξ → U(R)

is H2(U(R),R2f∗Z) if d = 2, and computing this latter group using (6.2) shows
that it vanishes by cohomological dimension [Del91, Ch. II, Lem. 9.1] and because
H2(U(R),Z) = 0 as U(R) has no compact component.

To see that the right-hand side of (6.3) vanishes, we let j : Ξ r XU (R) → Ξ be
the inclusion and apply the equivariant cohomology spectral sequence [BW18, (1.3)]
to F = j!Z(d+ 1), noting that H2d+1(Ξ/G,H 0(G,F )) vanishes by [Del91, loc. cit.]
since 2d+ 1 > dim(Ξ/G). �

6.4.3. The Leray spectral sequence. — By Step 3, the class

α|XU (C) ∈ H2d
G (XU (C),Z(d))

lifts to a class α̃ ∈ H2d
G (XU (C),Ξ,Z(d)) in relative cohomology.

To compute the equivariant cohomology of a sheaf on XU (C), we shall consider
the Leray spectral sequence for fU obtained by composing the push-forward fU∗ from
G-equivariant abelian sheaves on XU (C) to G-equivariant abelian sheaves on U(C)

with the invariant global sections functor. Applied to the sheaf Z(d), it reads:

(6.4) Ep,q2 = Hp
G(U(C),Rqf∗Z(d)) =⇒ Hp+q

G (XU (C),Z(d)).

Applying it to u!Z(d), where u : XU (C)rΞ→ XU (C) is the inclusion, and computing
Rqf∗(u!Z(d)) using proper base change yields:

(6.5) Ep,q2 = Hp
G(U(C), U(R),Rqf∗Z(d)) =⇒ Hp+q

G (XU (C),Ξ,Z(d)).

The natural morphism u!Z(d)→ Z(d) induces a morphism from (6.5) to (6.4).
By proper base change and since f is a Sarkisov standard model, the only non-

zero G-equivariant sheaves among the Rqf∗Z(d) are f∗Z(d) ' Z(d) and R2f∗Z(d).
Consider the edge maps

ε : H2d
G (XU (C),Z(d)) −→ H2d−2

G (U(C),R2f∗Z(d))

ε̃ : H2d
G (XU (C),Ξ,Z(d)) −→ H2d−2

G (U(C), U(R),R2f∗Z(d)),and

and recall from Section 6.3.2 the definition of the trace map Trf : R2f∗Z(1)→ Z.

Step 4. — There exists an open subset B0 ⊂ U such that BrB0 has dimension 6 1

and such that
Trf (ε̃(α̃))|B0 ∈ H2d−2

G (B0(C), B0(R),Z(d− 1))

vanishes.

Proof. — Consider the long exact sequence of relative cohomology for U(R) ⊂ U(C).
The image of Trf (ε̃(α̃)) ∈ H2d−2

G (U(C), U(R),Z(d − 1)) in H2d−2
G (U(C),Z(d − 1))

is Trf (ε(α|XU (C))), by the compatibility between (6.5) and (6.4). By the definition
of the trace morphism, this is (f∗α)|U(C), which vanishes by Step 2. We deduce that
Trf (ε̃(α̃)) lifts to a class ηU ∈ H2d−3

G (U(R),Z(d− 1)).

J.É.P. — M., 2020, tome 7



386 O. Benoist & O. Wittenberg

By purity [BW18, (1.18)] applied with V = B(R)rU(R), W = B(R), i = 2d− 2,
c = d and F = Z(d − 1), one has, after choosing local orientations of B(R) at the
(finitely many) points of B(R) r U(R), an exact sequence:

H2d−3
G (B(R),Z(d−1)) −→ H2d−3

G (U(R),Z(d−1)) −→ Hd−2
G (B(R)rU(R),Z(d−1)).

Since Hd−2(G,Z(d − 1)) = 0 and B(R) r U(R) is finite, the right-hand side group
vanishes; thus ηU lifts to a class η ∈ H2d−3

G (B(R),Z(d− 1)).
Let B0 ⊂ B be given by Lemma 6.13 below. Replacing it by its intersection with U ,

we may assume that B0 ⊂ U . Then η|B0 lifts to H2d−3
G (B0(C),Z(d− 1)), so that its

image
Trf (ε̃(α̃))|B0 ∈ H2d−2

G (B0(C), B0(R),Z(d− 1))

vanishes. �

We have used:

Lemma 6.13. — Let η ∈ H2d−3
G (B(R),Z(d− 1)). There exists an open subset B0 ⊂ B

such that B rB0 has dimension 6 1 and

η|B0(R) ∈ Im
(
H2d−3
G (B0(C),Z(d− 1)) −→ H2d−3

G (B0(R),Z(d− 1))
)
.

Proof. — Let E = Hd−3(G,Z(d − 1)). For any open subset B0 of B, we recall that
there is a canonical decomposition (see [BW18, (1.30)])

H2d−3
G (B0(R),Z(d− 1)) = Hd(B0(R), E)⊕

⊕
p<d

p≡d mod 2

Hp(B0(R),Z/2Z).(6.6)

For p < d with p ≡ d mod 2, let ηp ∈ Hp(B(R),Z/2Z) denote the degree p component
of η according to this decomposition for B0 = B. By [BW18, Prop. 1.8], to prove the
lemma, we may assume that ηp = 0 for p 6 d− 4.

By a theorem of Akbulut and King [AK85, Lem. 9 (1)], there exist a smooth pro-
jective surface S over R and a morphism ϕ : S → B such that ηd−2 is the image by

ϕ∗ : H0(S(R),Z/2Z) −→ Hd−2(B(R),Z/2Z)

of a class σ ∈ H0(S(R),Z/2Z).
By the Stone-Weierstrass approximation theorem, there exists a rational function

h ∈ R(S)∗ that is invertible on S(R), such that h > 0 on the connected components
of S(R) where σ vanishes and h < 0 on the other connected components (see [BCR98,
Th. 3.4.4 and Th. 8.8.5]).

Let B0 ⊂ B be an open subset such that dim(BrB0) 6 1, small enough that h is
invertible on S0 = ϕ−1(B0) and that no connected component of B0(R) is compact.
View h as a morphism h : S0 → Gm. As a consequence of the isomorphism [BW18,
(1.8)], of the localisation exact sequence, and of the remark that C∗/G and R∗ are
disjoint unions of contractible spaces, we have H2

G(C∗,R∗,Z(1)) = 0. This vanishing
and the isomorphism H1

G(R∗,Z(1)) = H0(R∗,Z/2Z) [BW18, (1.30)] show that there
exists a class µ ∈ H1

G(C∗,Z(1)) whose restriction to a real point x ∈ R∗ vanishes if
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and only if x > 0. The class ν := h∗µ ∈ H1
G(S0(C),Z(1)) then has the property that

if x ∈ S0(R), ν|x = 0 if and only if σ|x = 0.
It follows from [BW18, §1.2.3 & Prop. 1.22] applied to ϕ|S0 : S0 → B0 that in

the decomposition (6.6), the degree p component of ((ϕ|S0)∗ν)|B0(R) is equal to 0 for
p < d − 2 and to (ϕ∗σ)|B0(R) for p = d − 2. On the other hand, as no connected
component of B0(R) is compact, we have Hd(B0(R), E) = 0. As ϕ∗σ = ηd−2, this
concludes the proof of the lemma. �

Define f0 : X0 → B0 to be the base change of f : X → B by the open immersion
B0 ⊂ B, and let ∆0 := ∆ ∩ B0, Σ0 := Σ ∩ B0 and Ξ0 := Ξ ∩X0(C). Shrinking B0,
we may assume that ∆0 = ∅ if d = 2.

Step 5. — The restriction α|X0 ∈ H2d
G (X0(C),Z(d)) vanishes.

Proof. — We have proven in Step 4 that the trace Trf (ε̃(α̃))|B0 of ε̃(α̃)|B0 vanishes.
By the exact sequence (6.2) and the vanishing of H2d−3

G (Σ0(C),Σ0(R),Z/2Z) and
H2d−2
G (∆0(C),∆0(R), j!L (d− 1)) proven in Lemma 6.14 below, ε̃(α̃)|B0 = 0.
The analogue of (6.5) for the morphism f0 : X0 → B0 is a spectral sequence:

(6.7) Ep,q2 = Hp
G(B0(C), B0(R),Rqf∗Z(d)) =⇒ Hp+q

G (X0(C),Ξ0,Z(d)).

Recall that Rqf∗Z(d) = 0 unless q ∈ {0, 2} and f∗Z(d) ' Z(d). By the compatibility
between (6.5) and (6.7), the image of α̃|X0 ∈ H2d

G (X0(C),Ξ0,Z(d)) by the edge
map of (6.7) coincides with ε̃(α̃)|B0 hence vanishes. Consequently, (6.7) shows that
α̃|X0 comes from a class in H2d

G (B0(C), B0(R),Z(d)). Since this group vanishes by
Lemma 6.14 below, α̃|X0 = 0. We deduce that α|X0 = 0. �

Lemma 6.14. — The groups

H2d
G (B0(C), B0(R),Z(d)), H2d−3

G (Σ0(C),Σ0(R),Z/2Z)

H2d−2
G (∆0(C),∆0(R), j!L (d− 1))and

vanish.

Proof. — We only prove the vanishing of H2d−2
G (∆0(C),∆0(R), j!L (d − 1)). The

other two groups are easier to analyse and are dealt with similarly. We assume that
d > 3 since otherwise ∆0 = ∅.

By the real-complex exact sequence [BW18, (1.6)], it suffices to show the vanishing
of

H2d−1
G (∆0(C),∆0(R), j!L (d)) and H2d−2(∆0(C),∆0(R), j!L ).

The first group is equal to

H2d−1(∆0(C)/G,∆0(R),H 0(G, j!L (d)))

by the spectral sequence [BW18, (1.3)] hence vanishes by cohomological dimension
[Del91, Ch. II, Lem. 9.1].
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The long exact sequence of relative cohomology and [Del91, loc. cit.] show that the
vanishing of the second group will be implied by that of H2d−2(∆0(C), j!L ). Letting
χ : ∆̃ r Σ→ ∆rΣ be the double cover associated with L , there is an exact sequence

0 −→ Z −→ χ∗Z −→ L −→ 0

of G-equivariant sheaves on (∆rΣ)(C). By [Del91, loc. cit.] again, it suffices to prove
that H2d−2(∆0(C), j!χ∗Z) = 0.

Let ̃ : ∆̃ r Σ ↪→ ∆̃ be a smooth compactification fitting in a commutative diagram:

∆̃ r Σ

χ
��

̃
// ∆̃

π
��

∆ r Σ
j
// ∆,

and let ∆̃0 := π−1(∆0). The Leray spectral sequence and proper base change for π
show that

H2d−2(∆0(C), j!χ∗Z) = H2d−2(∆̃0(C), ̃!Z).

A final application of [Del91, loc. cit.] to the cokernel of the injection ̃!Z→ Z shows
that it suffices to prove the vanishing ofH2d−2(∆̃0(C),Z), which follows from Poincaré
duality since ∆0(C), hence ∆̃0(C), has no compact component. �

6.4.4. Algebraicity. — We are ready to complete the proof of Theorem 6.1.

Step 6. — The class α is in the image of cl : CH1(X)→ H2d
G (X(C),Z(d)).

Proof. — By Step 5, α|X0 = 0. From the structure of Sarkisov standard models, and
since B r B0 has dimension 6 1, one sees that there is a descending chain of open
subsets X = X0 ⊃ · · · ⊃ Xk = X0 such that for 0 6 i < k, Zi := Xi r Xi+1 is of
one of the three types described in the statement of Lemma 6.15 below. This can be
achieved by successively removing from X, in an appropriate way, first singular points
of fibres of f , then components of fibres of f , then curves in the non-smooth locus of
f |Σ : XΣ → Σ, then inverse images of curves in B. The closed subsets removed in the
first three steps are of type (i). Those removed in the last step are of type (iii) if the
conics above the curve are smooth, and of type (ii) if the conics above the curve are
rank 1 conics, or rank 2 conics whose singular points have already been removed in
the third step. Indeed, in this last situation, Z has a structure of A1-bundle over a
double étale cover of the curve.

Let δi := dim(Zi) and consider the long exact sequence of cohomology with sup-
ports at every step, taking into account purity [BW18, (1.21)]:

H2δi−2
G (Zi(C),Z(δi − 1)) −→ H2d

G (Xi(C),Z(d)) −→ H2d
G (Xi+1(C),Z(d)).

By Lemma 6.15 below, the leftmost group consists of classes of algebraic cycles, there-
fore so does the kernel of

H2d
G (Xi(C),Z(d)) −→ H2d

G (Xi+1(C),Z(d)),

and the statement follows. �
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Lemma 6.15. — Let Z be a connected variety of dimension δ over R that is either
(i) a smooth curve or the point,
(ii) a (Zariski locally trivial) A1-bundle g : Z → Γ over a smooth curve Γ,
(iii) or a smooth conic bundle g : Z → Γ over a smooth curve Γ.

Then the cycle class map CH1(Z)→ H2δ−2
G (Z(C),Z(δ − 1)) is surjective.

Proof. — The assertion in case (i) is obvious. In case (ii), the Leray spectral sequence

(6.8) Ep,q2 = Hp
G(Γ(C),Rqg∗Z(1)) =⇒ Hp+q

G (Z(C),Z(1))

for g shows that H2
G(Γ(C),Z(1))→ H2

G(Z(C),Z(1)) is an isomorphism. On the other
hand, the cycle class map Pic(Γ) → H2

G(Γ(C),Z(1)) is surjective since its cokernel
is torsion-free (see [BW18, Prop. 2.9]) while H2

G(Γ(C),Q(1)) = H2(Γ(C),Q(1))G is
generated by the class of any closed point of Γ. The assertion in case (ii) follows. In
case (iii), the Leray spectral sequence (6.8) gives rise to an exact sequence:

0 −→ H2
G(Γ(C),Z(1))

g∗−−−→ H2
G(Z(C),Z(1))

g∗−−−→ H0
G(Γ(C),Z) ' Z.

The argument given above shows that H2
G(Γ(C),Z(1)) is generated by algebraic

cycles. Moreover the relative anticanonical line bundle gives rise to a class in
H2
G(Z(C),Z(1)) whose push-forward is 2 ∈ Z ' H0

G(Γ(C),Z). To conclude sup-
pose that there is a cohomology class in H2

G(Z(C),Z(1)) whose push-forward is
1 ∈ Z ' H0

G(Γ(C),Z). Restricting it to a fibre of g over a real point x ∈ Γ(R)

and applying [BW18, Prop. 2.9] to the real conic Zx shows that Zx has a real point,
hence that Z(R)→ Γ(R) is surjective. It is then a theorem of Witt [Wit37, Satz 22]
that g has a section. The class in H2

G(Z(C),Z(1)) of the image of this section induces
1 ∈ Z ' H0

G(Γ(C),Z), which concludes the proof. �

7. Fano threefolds

7.1. Curves of even genus in Fano threefolds. — The goal of Section 7 is to es-
tablish the following theorem. We prove it in Section 7.3 when −KX is very ample
(relying on Hodge theory) and in Section 7.4 when −KX is ample but not very ample
(relying on the easier half of the classification of Fano threefolds).

Theorem 7.1. — Let X be a smooth Fano threefold over R. If X(R) = ∅, then the
real integral Hodge conjecture holds for X.

By [BW18, Cor. 3.23 and Prop. 3.9], the statement of Theorem 7.1 can be given a
more geometric formulation:

Corollary 7.2. — Any smooth Fano threefold over R contains a geometrically irre-
ducible curve of even geometric genus.

Equivalently, in the notation of [BW18, §3.4], every smooth Fano threefold X

over R satisfies that ind1(X) = 1 (see [BW18, Cor. 3.11]). Corollary 7.2 is nontrivial
only when X(R) = ∅, by [BW18, Prop. 3.9].
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Example 7.3. — By Corollary 7.2, any smooth quartic threefold X ⊂ P4
R with empty

real locus contains a geometrically irreducible curve of even geometric genus. We do
not know whether the minimal degree (resp. genus) of such a curve can be bounded
independently of the quartic threefold. (The existence of a bound on the degree would
be equivalent to the validity of Theorem 7.1 over arbitrary real closed fields; see
Section 9.1 and the discussion in Section 9.2.3). We do not even know whether any
such X contains a conic in P4

R. For such an X, we recall that there is a canonical
isomorphism H4

G(X(C),Z(2)) = Z ⊕ Z/2Z, the first summand being generated by
cl(L+ L), where L ⊂ XC denotes a line and L its conjugate (see [BW18, Lem. 5.8]).
It is the algebraicity of the 2-torsion class which is difficult to prove.

Example 7.4. — If we denote by SB3
R the nontrivial three-dimensional Severi-Brauer

variety over R (corresponding to the algebra of 2× 2 matrices over the quaternions)
and define the degree of a subvariety V ⊆ SB3

R as the degree of VC in P3
C ' (SB3

R)C,
then, by Corollary 7.2, any double cover X → SB3

R ramified along a smooth quar-
tic surface must contain a geometrically irreducible curve of even geometric genus.
We note that SB3

R does contain many surfaces of each even degree, since OP3
C

(2)

descends from P3
C to a line bundle on SB3

R.
For such an X, there is a canonical isomorphism H4

G(X(C),Z(2)) = Z. Indeed, the
push-forward map

H4(X(C),Z(2)) −→ H4(SB3
R(C),Z(2)) = Z

is an isomorphism (see [Cle83, Lem. 1.23]); by the five lemma applied to the push-
forward morphism between the exact sequences [BW18, (3.7)] associated with X and
with SB3

R, we deduce that the push-forward map

H4
G(X(C),Z(2)) −→ H4

G(SB3
R(C),Z(2))

is an isomorphism. On the other hand, the natural map Br(R)→ Br(SB3
R) vanishes

(its kernel contains the class of SB3
R) and is onto (see [CTSD94, Prop. 2.1.4 (iv)]), so

that Br(SB3
R) = 0 and hence (see [Gro68, II, Théorème 3.1])

H2
G(SB3

R(C),Q/Z(1)) = H2
ét(SB

3
R,Q/Z(1)) = Pic(SB3

R)⊗Z Q/Z = Q/Z.

It follows that H4
G(SB3

R(C),Z(2)) = Z, by [BW18, Prop. 1.10, Rem. 1.11 (ii)].
A line of P3

C ' (SB3
R)C which is bitangent to the ramification locus breaks up,

in XC, into two components. If L ⊂ XC denotes one of the components and L its
complex conjugate, the isomorphism H4

G(X(C),Z(2)) = Z maps cl(L+ L) to 2. It is
the algebraicity of 1

2cl(L + L), or, equivalently, the existence of a curve in X whose
push-forward to SB3

R has odd degree, which is difficult to prove.

Remark 7.5. — The consequences of Theorem 7.1 spelt out in Examples 7.3 and 7.4
are, as far as we know, nontrivial existence statements. For some families of real Fano
threefolds, however, Theorem 7.1 is vacuous as one can produce a curve of even genus
out of the geometry. For instance, a double cover X → P3

R ramified along a smooth
quartic surface, with X(R) = ∅, contains a smooth del Pezzo surface of degree 2
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(pull back a general plane in P3
R) and therefore a geometrically irreducible curve of

even geometric genus by [BW18, Cor. 3.17 (ii)]. Other examples of this phenomenon
will be given in the proof of Proposition 7.12.

7.2. An infinitesimal criterion. — Let us now turn to the proof of Theorem 7.1.
We shall adapt the strategy of Voisin [Voi06] to our situation. Before considering
the particular case of Fano threefolds, let us work out a real analogue of Voisin’s
infinitesimal criterion [Voi06, §1, Prop. 1] for the algebraicity of cohomology classes
supported on an ample surface.

To formulate it, we need some notation. Let X be a smooth, projective variety
over R and S ⊂ X be a smooth surface. We denote by F∞ the C-linear involution of
H2(S(C),C) induced by the complex conjugation involution of S(C). As the latter
is antiholomorphic, the endomorphism F∞ interchanges the summands Hp,q(SC) and
Hq,p(SC) of the Hodge decomposition. In particular, it stabilises H1,1(SC). For any
subspace V ⊂ H2(S(C),C) stable under F∞, we denote by V F∞=−1 the eigenspace
{v ∈ V ;F∞(v) = −v}. Finally, following [Voi06, §1], we shall consider, for λ ∈
H1,1(SC), the composition

(7.1) H0(SC, NSC/XC
)

KS−−−−→ H1(SC, TSC
)
λ−−→ H2(SC,OSC

)

of the Kodaira-Spencer map, which is by definition the boundary of the short exact
sequence

0 −→ TS −→ TX |S −→ NS/X −→ 0,

of the cup product with λ ∈ H1(SC,Ω
1
SC

), and of the natural map

H2(SC, TSC
⊗OSC

Ω1
SC

) −→ H2(SC,OSC
).

Proposition 7.6. — Let X be a smooth, projective and geometrically irreducible
variety over R, of dimension d. Let S ⊆ X be a smooth surface such that
H1(S,NS/X) = 0. If there exists λ ∈ H1,1(SC)F∞=−1 such that the composition (7.1)
is surjective, then the image of the Gysin map

H2
G(S(C),Z(1)) −→ H2d−2

G (X(C),Z(d− 1))

(see [BW18, (1.22)] for its definition) is contained in the image of the equivariant
cycle class map

cl : CH1(X) −→ H2d−2
G (X(C),Z(d− 1)).

Proof. — We closely follow [Voi06, §1], keeping track of G-actions.
The C-linear involution F∞ stabilises the subgroup H2(S(C),R) ⊆ H2(S(C),C)

and therefore defines an R-linear action of G on

H1,1
R (SC) := H1,1(SC) ∩H2(S(C),R).

Let V = H1,1
R (SC)F∞=−1. We have

VC = H1,1(SC)F∞=−1 and V (1) = H1,1
R (SC)(1)G.
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As the surjectivity of (7.1) is a Zariski open condition on λ and as the two summands
of the decomposition VC = V ⊕ V (1) induced by the decomposition C = R⊕R(1)

are Zariski dense in VC (viewed as an algebraic variety over C), there exists
λ ∈ H1,1

R (SC)(1)G such that (7.1) is surjective. We now fix such a λ.
The hypothesis that H1(S,NS/X) = 0 implies that the Hilbert scheme H of X is

smooth at [S]. Let U be an analytic neighbourhood of [SC] in H(C) and π : SU → U

denote the universal family. After shrinking U , we may assume that π is smooth and
projective, that the local system H 2

Z := R2π∗Z/(torsion) is trivial, and that U is
G-invariant, in which case π is a G-equivariant morphism between complex analytic
varieties and H 2

Z is a G-equivariant sheaf. We set U(R) := U ∩H(R) = UG. After
further shrinking U , we may assume that U(R) is contractible.

A trivialisation of H 2
Z induces a biholomorphismH2 ' U×H2(S(C),C), whereH2

is the total space of the holomorphic vector bundle on U whose sheaf of sections is
the locally free Oan

U -module H 2
Z ⊗Z Oan

U . We fix such a trivialisation and let

τ : H2 −→ H2(S(C),C)

denote the second projection. Let H1,1
R ⊆ H2

R ⊆ H2 be the smooth real subbundles
whose fibres above t ∈ U are

H1,1
R (St) ⊆ H2(St,R) ⊆ H2(St,C).

(We stress that St = π−1(t) denotes a complex analytic surface; thus, if t = [SC], then
St = S(C).) Building on Green’s infinitesimal criterion for the density of Noether-
Lefschetz loci (see [Voi02, Prop. 17.20]), Voisin shows in [Voi06, p. 48], under the
assumption that (7.1) is surjective, that τ restricts to a map

τ1,R(1) : H1,1
R (1) −→ H2(S(C),R(1))

which is submersive at λ.
This map is equivariant with respect to the natural actions of G on its domain

and target, and λ is G-invariant. As the fixed locus MG of a G-action on a smooth
manifold M is again a smooth manifold, with tangent space Tx(MG) = (TxM)G for
x ∈MG (see, e.g. [Aud91, Ch. I, §2.1]), the map

τ1,R(1)G : H1,1
R (1)G −→ H2(S(C),R(1))G

induced by τ1,R(1) is again submersive at λ. Here, the manifold H1,1
R (1)G is a smooth

real vector bundle on U(R); its fibre over t ∈ U(R) is H1,1
R (St)(1)G.

As this map is submersive at λ, its image Im(τ1,R(1)G) contains a nonempty open
subset of H2(S(C),R(1))G. Being a cone, it then contains a nonempty open cone.
It follows that H2

G(S(C),Z(1))/(torsion), which is a lattice in H2(S(C),R(1))G, is
generated by

Im(τ1,R(1)G) ∩
(
H2
G(S(C),Z(1))/(torsion)

)
(see [Voi06, Lem. 3]).

The sheaf H 2
G,Z(1) on U(R) associated with the presheaf Ω 7→ H2

G(π−1(Ω),Z(1)) is
locally constant as it is the abutment of the Hochschild-Serre spectral sequence, all of
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whose terms are locally constant sheaves (see [Art73, Lemme 2.1]); hence, the natural
map H 2

G,Z(1) →H 2
R(1)G, where H 2

R = H 2
Z ⊗Z R, is locally constant. (Alternatively,

this would also be a consequence of the G-equivariant variant of Ehresmann’s theorem
[Dim85, Lem. 4].) As U(R) is contractible, it follows that τ1,R(1)G induces a map⊕

t∈U(R)

Hdg2
G(St,Z(1)) −→ H2

G(S(C),Z(1))/(torsion),

which we have shown to be surjective, and that it fits into a commutative diagram⊕
t∈U(R)

CH1(St)
cl //

��

⊕
t∈U(R)

Hdg2
G(St,Z(1)) // //

��

H2
G(S(C),Z(1))/(torsion)

��

CH1(X)
cl // H2d−2

G (X(C),Z(d− 1)) // H2d−2
G (X(C),Z(d− 1))/(torsion)

whose vertical arrows are the Gysin maps. The top horizontal map on the left is
surjective by the real Lefschetz (1, 1) theorem (see [BW18, Prop. 2.8]). This diagram
shows that H2

G(S(C),Z(1)) is generated by torsion classes and by classes whose im-
age in H2d−2

G (X(C),Z(d− 1)) is algebraic. As torsion classes in H2
G(S(C),Z(1)) are

themselves algebraic (loc. cit.), this completes the proof. �

7.3. The anticanonical linear system. — We do not know how to verify our criterion
over R in the same generality as Voisin does over C. However, for Fano threefolds
without real points, it will be possible, in most cases, to apply it with S ∈ |−KX |,
as S is then a K3 surface, which makes the analysis tractable.

In Section 7.3, we establish Theorem 7.1 under the assumption that −KX is very
ample. We proceed in two steps. First, we apply Proposition 7.6 to a smooth an-
ticanonical divisor and deduce, in Proposition 7.7, that Theorem 7.1 holds as soon
as X contains a good enough smooth anticanonical divisor. We then check, in Propo-
sition 7.9, that when X(R) = ∅, any smooth anticanonical divisor is good enough in
this sense.

For smooth S ⊂ X, we denote by H2
van(S(C),C) ⊂ H2(S(C),C) the orthogonal

complement of the image of H2(X(C),C) with respect to the cup product pairing.
The subspace

H1,1
van(SC) = H1,1(SC) ∩H2

van(S(C),C)

is stable under F∞.

Proposition 7.7. — Let X be a smooth Fano threefold over R, with −KX very ample.
Let S ∈ |−KX | be a smooth anticanonical divisor. If H1,1

van(SC)F∞=−1 6= 0, then the
image of the Gysin map H2

G(S(C),Z(1))→ H4
G(X(C),Z(2)) is contained in the image

of the equivariant cycle class map cl : CH2(X) → H4
G(X(C),Z(2)). If, in addition,

the Gysin map H1(S(R),Z/2Z) → H1(X(R),Z/2Z) is surjective, then X satisfies
the real integral Hodge conjecture.

Proof. — According to [BW18, Prop. 1.15, Rem. 1.20 (i)], the image of the Gysin map

H2
G(S(C),Z(1)) −→ H4

G(X(C),Z(2))
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coincides with H4
G(X(C),Z(2))0 as soon as the Gysin map

H1(S(R),Z/2Z) −→ H1(X(R),Z/2Z)

is surjective. In view of this remark, the second assertion results from the first one.
To prove the first assertion, we consider the family π : S → B of smooth anti-

canonical sections of XC. Here B is a Zariski open subset of |−KXC
|, the map π is

smooth and projective, and its fibres are K3 surfaces. To conform with the notation
used in the proof of Proposition 7.6, we view S and B as complex analytic varieties
endowed with compatible antiholomorphic actions of G and we set B(R) = BG and
Sb(R) = Sb

G for b ∈ B(R). We choose once and for all a contractible open neighbour-
hood B(R)0 ⊂ B(R) of the point of B(R) defined by S; by Ehresmann’s theorem,
the image of the Gysin map

H1(Sb(R),Z/2Z) −→ H1(X(R),Z/2Z)

is independent of b ∈ B(R)0. To establish Proposition 7.7, it now suffices to check
that Proposition 7.6 is applicable to Sb ∈ |−KX | for at least one b ∈ B(R)0. We have

H1(Sb, NSb/XC
) = H1(Sb,OXC

(−KXC
)|Sb

) = 0

for all b ∈ B anyway, by the Kodaira vanishing theorem. It therefore suffices to prove
the surjectivity of the composition

(7.2) H0(Sb, NSb/XC
)

KS−−−−→ H1(Sb, TSb
)
λ−−→ H2(Sb,OSb

),

for at least one b ∈ B(R)0 and one λ ∈ H1,1(Sb)
F∞=−1. Let us argue by contradiction

and suppose that the map (7.2) fails to be surjective for every such b and every such λ.
The vector space H2(Sb,OSb

) has dimension 1 since Sb is a K3 surface, hence (7.2) in
fact vanishes for all b ∈ B(R)0 and all λ ∈ H1,1(Sb)

F∞=−1.
As the map π : S→ B is G-equivariant, so is the local system H 2

R = R2π∗R. The
sub-local system H 2

R,van ⊂ H 2
R of vanishing cohomology, defined as the orthogonal

complement of the image of H2(X(C),R) with respect to the cup product pairing,
is also G-equivariant. We denote by H2

van the holomorphic vector bundle on B whose
sheaf of sections is the locally free Oan

B -module H 2
R,van ⊗R Oan

B . It comes endowed
with the Gauss-Manin connection and carries a variation of Hodge structure.

For b ∈ B, let H1,1
R,van(Sb) = H1,1(Sb) ∩H2

van(Sb,R). We consider the smooth real
subbundles

H1,1
R,van(1)G ⊆ H2

R,van(1)G ⊆ H2
van|B(R)

whose fibres above b ∈ B(R) are

H1,1
R,van(Sb)(1)G ⊆ H2

van(Sb,R(1))G ⊆ H2
van(Sb,C).

The Gauss-Manin connection on H2
van induces a connection on H2

R,van(1)G since the
action of G on H2

van|B(R) comes from an action on the local system H 2
R,van|B(R).

Let b ∈ B(R)0. The derivative of a local section s of H1,1
R,van(1)G around b along a

vector field on B(R)0, with respect to this connection, is a local section of H2
R,van(1)G

whose projection to H0,2(Sb) is controlled by the map (7.2) for λ = s(b), by a theorem
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of Griffiths (see [Voi02, Th. 17.7]), hence vanishes. It follows that the fibre above b of
this derivative lies in the subgroup

H2
van(Sb,R(1))G ∩

(
H2,0(Sb)⊕H1,1(Sb)

)
= H1,1

R,van(Sb)(1)G

of H2
van(Sb,C), where the equality comes from the fact that F∞ interchanges H2,0(Sb)

and H0,2(Sb) and stabilises H1,1(Sb). We have thus proved that H1,1
R,van(1)G|B(R)0 is

a flat subbundle of H2
van|B(R)0 .

Let us now consider the effect on H1,1
R,van(1)G|B(R)0 , which is a vector bundle

on B(R)0, of parallel transport from B(R)0 to an arbitrary point of B with respect
to the Gauss-Manin connection on the holomorphic vector bundle H2 on B.

Lemma 7.8. — Let b ∈ B(R)0 and α ∈ H1,1
R,van(Sb)(1)G. For any x ∈ B and any path γ

from b to x, the parallel transport of α along γ belongs to H1,1(Sx) ⊂ H2(Sx,C).

Proof. — Let ρ : (B̃, b̃)→ (B, b) denote the universal cover of the pointed space (B, b)

and let B̃(R) = ρ−1(B(R)). Let Z ⊆ B̃ denote the set of x̃ ∈ B̃ such that the parallel
transport of α from b̃ to x̃ remains of type (1, 1). This is a well-defined locus since B̃
is simply connected. We need only check that Z = B̃.

For any x̃ ∈ B̃, the parallel transport α(x̃) ∈ H2(Sρ(x̃),C) of α from b̃ to x̃ belongs
to the subgroup H2(Sρ(x̃),R(1)), since α ∈ H2(Sb,R(1)) and H2 is the complexifica-
tion of the flat smooth real vector bundle on B associated with the local system H 2

R.
It follows that α(x̃) is of type (1, 1) if and only if α(x̃) ∈ F 1H2(Sρ(x̃),C), where F
denotes the Hodge filtration. As F 1H2 ⊂ H2 is a holomorphic subbundle, we deduce
that Z is a closed complex analytic subvariety of B̃.

On the other hand, as H1,1
R,van(1)G|B(R)0 is a flat subbundle of H2

van|B(R)0 , the
connected component B̃(R)0 of b̃ in ρ−1(B(R)0) is contained in Z. Let W ⊆ Z be a
(reduced) closed complex analytic subvariety of minimal dimension containing B̃(R)0.
For any u ∈ B̃(R)0, the inclusion of real vector spaces

TuB̃(R) ⊆ TuW ⊆ TuB̃ = TuB̃(R)⊗R C

shows that TuW = TuB̃, since TuW is a complex vector space. As a consequence,
we have either dim(W ) = dim(B̃) or B̃(R)0 ⊆ Sing(W ). As dim(W ) is minimal and
dim(Sing(W )) < dim(W ), it follows that dim(W ) = dim(B̃), so that W = B̃, and
hence Z = B̃. �

Let E be the smallest holomorphic flat subbundle of H2
van such that

H1,1
R,van(1)G|B(R)0 ⊆ E|B(R)0 .

It follows from Lemma 7.8 that E is purely of type (1, 1) at every point of B. In
particular E 6= H2

van. On the other hand, the given smooth anticanonical section S

of X satisfies H1,1
van(SC)F∞=−1 6= 0 by assumption and it defines a point of B(R)0,

so that E 6= 0 (note that H1,1
van(SC)F∞=−1 = H1,1

R,van(SC)(1)G ⊗R C). This contra-
dicts the absolute irreducibility of the action of monodromy on vanishing cohomology
(see [Lam81, Th. 7.3.2]) and concludes the proof of Proposition 7.7. �
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We do not know whether an anticanonical divisor satisfying all the assumptions of
Proposition 7.7 always exists. The next statement provides a positive answer to this
question when X(R) = ∅: in this case, any smooth anticanonical divisor will do.

Proposition 7.9. — Let X be a smooth Fano threefold over R. If S ∈ |−KX | is
smooth and satisfies S(R) = ∅, then H1,1

van(SC)F∞=−1 6= 0.

Proof. — Let us apply the Lefschetz fixed-point theorem to the complex conjugation
involution of S(C), which has no fixed point and acts trivially on H0(S(C),C) = C

and on H4(S(C),C) = C. We have H1(S(C),C) = 0 and H3(S(C),C) = 0 as S
is a K3 surface. Hence Tr(F∞ | H2(S(C),C)) = −2. As F∞ interchanges H2,0(SC)

and H0,2(SC), it follows that Tr(F∞ | H1,1(SC)) = −2. As dimH1,1(SC) = 20, we
deduce that dimH1,1(SC)F∞=−1 = 11. On the other hand, the Picard rank of XC is
at most 10 (see [MM81, Th. 2], [MM83, Th. 1.2]; this also follows from [Cas12, Th. 1.1],
see [DN14, Th. 1.3]). Therefore H1,1

van(SC) has codimension at most 10 in H1,1(SC)

and intersects H1,1(SC)F∞=−1 nontrivially. �

Remark 7.10. — The statement of Proposition 7.9 would fail without the assumption
that S(R) = ∅. For instance, if X has Picard rank 1, then H1,1

van(SC)F∞=−1 = 0 if
and only if the eigenvalue −1 for the action of F∞ on H2(S(C),Q) has multiplicity 2.
As can be seen from the classification of real K3 surfaces [Sil89, Ch.VIII, §3], this
happens exactly when the real locus of S is a union of 10 spheres.

Putting together Proposition 7.7 and Proposition 7.9, we have now established
Theorem 7.1 under the assumption that −KX is very ample.

7.4. Classification of Fano threefolds. — We finish the proof of Theorem 7.1 by
dealing with the case when −KX is not very ample. To do so, we need to rely, to some
extent, on classification results for complex Fano threefolds. This classification roughly
consists of two distinct steps: first, one studies the anticanonical linear system and
classifies the (few) Fano threefolds for which it is badly behaved; then, one classifies
the (many) Fano threefolds for which it is well behaved. We shall only need the first
of these two steps, which is mainly due to Iskovskikh [Isk79] and whose statement is
contained in [IP99, Th. 2.1.16 and Prop. 2.4.1].

Proposition 7.11 (Iskovskikh). — If X is a smooth complex Fano threefold, exactly
one of the following holds:

(i) The anticanonical bundle −KX is very ample.
(ii) The linear system |−KX | is base point free and realises X as a finite double

cover, the possible cases being listed in [IP99, Th. 2.1.16].
(iii) The base locus of |−KX | is either a point or a smooth rational curve.

In view of [BW18, Cor. 3.23], the following proposition completes the proof of
Theorem 7.1. We recall that the notation ind1(X) was introduced in [BW18, §3.4].

J.É.P. — M., 2020, tome 7



On the integral Hodge conjecture for real varieties, II 397

Proposition 7.12. — If X is a smooth Fano threefold over R and if −KX is not very
ample, then ind1(X) = 1.

Proof. — If the base locus of |−KX | is a point or a smooth geometrically rational
curve, then ind1(X) = 1 by [BW18, Cor. 3.11]. Thus, by Proposition 7.11, we may
assume that X falls into one of the six cases numbered (i) to (vi) in [IP99, Th. 2.1.16].

In case (i), the variety XC is also the one described in [IP99, Th. 2.4.5 (i) a)], where
it is explained that there is a unique H ∈ Pic(XC) such that −KXC

= 2H, and
that |H| has a unique base point. This base point is necessarily G-invariant, hence it
is a real point of X, so that ind1(X) = 1.

In cases (ii) and (iv), the intersection of two general members of |−KX | is a
smooth and geometrically irreducible curve of genus 2 or 4, respectively. Therefore
ind1(X) = 1 in these two cases, by [BW18, Cor. 3.11].

In case (iii), the ramification divisor of the morphism induced by |−KX | is a
smooth degree 4 del Pezzo surface S. Such a surface satisfies ind1(S) = 1 by [BW18,
Cor. 3.17 (ii)] or by a theorem of Comessatti [Com12, discussion below Th.VI, p. 60],
see also [CT92]. It follows that ind1(X) = 1.

In case (v), the variety XC has Picard rank 2 and can be realised both as a degree 2

del Pezzo fibration over P1
C or as the blow-up of a smooth elliptic curve in a Fano

threefold whose anticanonical bundle is very ample (a double cover of P3
C ramified

along a smooth quartic). It follows that the two boundaries of the nef cone of XC are
generated by the two line bundles inducing this fibration and this contraction, so that
these morphisms are canonical and descend to R. Therefore X is isomorphic, over R,
to the blow-up of a smooth and geometrically irreducible curve of genus 1 in a Fano
threefold Z such that −KZ is very ample. We have already proved, in Section 7.3, the
validity of Theorem 7.1 and Corollary 7.2 for Z; hence ind1(Z) = 1. A geometrically
irreducible curve of even geometric genus in Z cannot be contained in the centre of the
blow-up since the latter is a smooth and geometrically irreducible curve of genus 1.
By considering its strict transform in X, we deduce that ind1(X) = 1.

In case (vi), we have XC ' P1
C×SC for a complex degree 2 del Pezzo surface SC.

The line bundle −KXC
induces a double cover XC → P1

C × P2
C. Arguing as above,

the two projections XC → P1
C and XC → P2

C are canonical, and so is the Stein
factorisationXC → SC of the second one, so that these three morphisms must descend
to R. Therefore X ' B × S for a geometrically rational curve B and a degree 2

del Pezzo surface S over R. If S contains a real point s, then B × S contains the
geometrically rational curve B × {s} and hence ind1(X) = 1. Otherwise, by the
theorem of Comessatti quoted above, the surface S contains a geometrically rational
curve. Its inverse image in X is a geometrically rational surface, which, by the same
theorem again, must contain a geometrically rational curve, so that ind1(X) = 1. �

Remark 7.13. — It is likely that many of the cases in which |−KX | induces a double
cover could have been handled by a variant of the strategy of Section 7.3. How-
ever, note that the theorem on the irreducibility of the monodromy action [Lam81,
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Th. 7.3.2] used at the very end of the proof of Proposition 7.7 fails for such X: the
vanishing cohomology splits as the sum of its invariant and anti-invariant parts with
respect to the involution given by the anticanonical double cover.

8. Del Pezzo fibrations

8.1. Main result. — In this section, we study del Pezzo fibrations f : X → B over
a curve B over a real closed field R. Our main goal is the following statement.

Theorem 8.1. — Let f : X → B be a morphism between smooth proper connected
varieties over a real closed field R such that B is a curve and the generic fibre of f is
a del Pezzo surface of degree δ. The cycle class map cl : CH1(X)→ H4

G(X(C),Z(2))0

is surjective in each of the following cases:
(i) δ > 5,
(ii) X(R) = ∅ and B(R) 6= ∅,
(iii) δ ∈ {1, 3} and the real locus of each smooth real fibre of f has exactly one

connected component,
(iv) R = R and δ = 3.

In the above statement, the surjectivity of cl : CH1(X) → H4
G(X(C),Z(2))0 is

nothing but the real integral Hodge conjecture for 1-cycles on X in the sense of
[BW18, Def. 2.3], since H2(X,OX) = 0 (see Lemma 6.6).

Our proof of Theorem 8.1 is uniform, except in case (iv) where we rely on a specific
trick explained in Section 8.3. To prove all other cases of Theorem 8.1, we use in a
geometric way the fibration structure. We separately construct curves in the fibres
of f in Section 8.4 (adapting to the real situation a strategy due to Esnault and the
second-named author [EW16] over a separably closed field), and (multi-)sections of f
in Section 8.6. We show that their classes generate the whole of H4

G(X(C),Z(2))0

using a variant of the Leray spectral sequence, studied in Section 8.5.

Example 8.2. — Theorem 8.1 is easy if δ ∈ {5, 7, 9}. Indeed, the generic fibre XR(B)

is then rational over R(B) (see [Man66, Th. 3.7 and Theorem 3.15] and [SD72], and
note that Br(R(B))[3] = 0 since Br(C(B))[3] = 0 by Tsen’s theorem), so that X is
birational to P2

R ×B, and one may use [BW18, Prop. 2.13].

The first case to which Theorem 8.1 does not apply, that of degree 4 del Pezzo
fibrations, is related to an old conjecture of Lang, as we now explain.

Proposition 8.3. — Let f : X → Γ be a degree 4 del Pezzo fibration over the
anisotropic conic Γ over R. Then the following assertions are equivalent:

(i) X satisfies the real integral Hodge conjecture for 1-cycles,
(ii) X contains a geometrically integral curve of even geometric genus,
(iii) X contains a geometrically rational curve,
(iv) f has a section,
(v) XR(Γ) has a rational point.
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Proof. — The equivalence between (i) and (ii) is [BW18, Cor. 3.23]. Suppose that (ii)
holds, and let ∆ → X be a smooth projective geometrically integral curve of even
genus. By [BW18, Prop. 3.12], the degree of ∆ → Γ is odd. This implies that XR(Γ)

has a 0-cycle of odd degree. By a theorem of Coray [Cor77], it has a rational point,
proving (v). The implications (v)⇒ (iv)⇒ (iii)⇒ (ii) are trivial. �

In the formulation (v), the validity of the above assertions follows from the conjec-
ture of Lang [Lan53, p. 379] according to which the function field of a curve over R
without rational points is a C1 field (see [Lan52, Th. 1 & Th. 3]). This particular case
of Lang’s conjecture has been proven in [Ben19, Th. 0.13] if R = R; it is still open
if R is a non-archimedean real closed field.

8.2. Applications. — When Theorem 8.1 applies, one can combine it with the next
proposition, which builds on the duality theorem [BW18, Th. 3.3] and on Theorem 6.8,
to compute Halg

1 (X(R),Z/2Z) and to deduce approximation results.

Proposition 8.4. — Let f : X → B be a morphism of smooth projective connected
varieties over a real closed field R with irreducible geometric generic fibre F . Assume
that B is a curve, that Pic(F )[2] = 0, that Hi(F,OF ) = 0 for i > 0, and that the
cycle class map cl : CH1(X)→ H4

G(X(C),Z(2))0 is surjective.
(i) The group Halg

1 (X(R),Z/2Z) is:

{α ∈ H1(X(R),Z/2Z) | f∗α ∈ H1(B(R),Z/2Z) is a multiple of clR(B)}.

(ii) If R = R and B(R) is connected, any one-dimensional compact C∞ sub-
manifold Z ⊂ X(R) has an algebraic approximation in X(R) in the sense of Defini-
tion 6.7.

Proof. — Since (ii) is a consequence of (i) and Theorem 6.8, we need only prove (i).
We may assume that X(R) 6= ∅. By [BW18, Th. 3.3 and 3.6], Halg

1 (X(R),Z/2Z) is
the subgroup of H1(X(R),Z/2Z) consisting of the classes orthogonal to the image of
the Borel-Haefliger map

clR : Pic(XC)G[2∞] = Pic(X)[2∞] −→ H1(X(R),Z/2Z).

Now the pull-back map

Pic(B)[2∞] = Pic(BC)G[2∞] −→ Pic(XC)G[2∞] = Pic(X)[2∞]

is an isomorphism by Lemma 6.6. The projection formula [BW18, (1.15)] then
identifies Halg

1 (X(R),Z/2Z) with the set of α ∈ H1(X(R),Z/2Z) such that
f∗α ∈ H1(B(R),Z/2Z) is orthogonal to clR(Pic(B)[2∞]). Applying [BW18, Th. 3.3]
to B concludes the proof. �

8.3. Cubic surface fibrations. — We now start to prove Theorem 8.1.

Proposition 8.5. — Theorem 8.1 holds when R = R and δ = 3.
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Proof. — Consider the generic fibre XR(B) of f : it is a smooth cubic surface over
R(B). Its 27 lines are permuted by the Galois group of R(B). Since 27 is odd, this
action has an orbit of odd cardinality ν. Let D → B be the corresponding degree ν
morphism of smooth projective curves over R. By construction, XR(D) contains a
line. Projecting from this line, one sees that XR(D) is birational to a conic bun-
dle over P1

R(D). Let Y be a smooth projective model of XR(D) dominating X and
π : Y → X be the corresponding generically finite morphism of degree ν. The va-
riety Y is birational to a conic bundle over P1

R × D. By Theorem 6.1 and [BW18,
Prop. 2.8 & 2.13], Y satisfies the real integral Hodge conjecture for 1-cycles, and there-
fore cl : CH1(Y )→ H4

G(Y (C),Z(2))0 is surjective as H2(Y,OY ) = 0 (see Lemma 6.6).
The diagram

CH1(X)
π∗ //

cl
��

CH1(Y )
π∗ //

cl
����

CH1(X)

cl
��

H4
G(X(C),Z(2))0

π∗ // H4
G(Y (C),Z(2))0

π∗ // H4
G(X(C),Z(2))0,

where the vertical maps are the equivariant cycle class maps [BW18, §1.6.1 &
Th. 1.18] and where the push-forward map π∗ in equivariant cohomology is defined
in [BW18, (1.22) and Th. 1.21], is commutative by [BW18, §1.6.1]. The projection
formula [BW18, (1.23)] shows that the composition of the horizontal arrows of the
bottom row is multiplication by ν. It follows that the cokernel K of the cycle class
map cl : CH1(X)→ H4

G(X(C),Z(2))0 is killed by ν.
By Voisin’s theorem [Voi06, Th. 2], XC satisfies the integral Hodge conjecture for

1-cycles. A norm argument for XC → X, similar to the one explained above, shows
that K is 2-torsion. Since gcd(ν, 2) = 1, one has K = 0, as required. �

8.4. Vertical curves. — We construct here, following [EW16], many curves in the
fibres of some surface fibrations over a curve over R, including del Pezzo fibrations.

Proposition 8.6. — Let f : X → B be a proper flat morphism of smooth varieties over
a real closed field R. Assume that B is a curve and that the geometric generic fiber
of f is a connected surface with geometric genus zero. Let t ∈ B(R) and S = f−1(t).

Then the image of the natural map H4
G,S(C)(X(C),Z(2)) → H4

G(X(C),Z(2)) is
contained in the image of the cycle class map cl : CH1(X)→ H4

G(X(C),Z(2)).

We prove this proposition in Section 8.4.2. Before doing so, we shall need two
lemmas.

8.4.1. Two lemmas. — In Section 8.4.1, we fix f : X → B and t ∈ B(R) as in Proposi-
tion 8.6 and we assume, in addition, that Sred is a divisor with simple normal crossings
on X. Let (Si)i∈I be its irreducible components. The following lemma is essentially
[EW16, Lem. 4.4, 4.5]. We give a short proof in our context, already suggested in
loc. cit.

Lemma 8.7. — The groups H2(Si,OSi
) and H2(Sred,OSred

) all vanish.
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Proof. — Replacing B by an open subset, we may assume that t ∈ B is defined by
the vanishing of a global section s ∈ H0(B,OB). The coherent sheaves Rif∗OX are
torsion-free by du Bois and Jarraud [dBJ74] (see [Kol86, Step 6 p. 20]). Since R2f∗OX
and R3f∗OX are moreover torsion (by hypothesis for the first one, by cohomological
dimension for the second), these sheaves vanish. The short exact sequence

0 −→ OX
s−−→ OX −→ OS −→ 0

implies that R2f∗OS = 0, that is H2(S,OS) = 0. Since both OSi
and OSred

are
quotients of OS and since S has coherent cohomological dimension 2, it follows that
H2(Si,OSi) = 0 and H2(Sred,OSred

) = 0, as desired. �

The next lemma originates from [EW16, §§4.2–4.3].

Lemma 8.8. — The morphism
ρ :
⊕
i∈I

H4
G,Si(C)(X(C),Z(2)) −→ H4

G,S(C)(X(C),Z(2))

induced by the inclusions Si(C) ⊂ S(C) is surjective.

Proof. — Order the finite set I. For n > 0 and i1 < · · · < in+1 ∈ I, we define
Si1,...,in+1 := Si1 ∩ · · · ∩ Sin+1 . For n > 0, we set S(n) :=

∐
i1<···<in+1∈I Si1,...,in+1

and define an : S(n) → S to be the natural morphism. That Sred has simple normal
crossings shows that S(n) is smooth of pure dimension 2 − n, and the ordering on I
gives rise to an exact sequence of G-equivariant sheaves on S(C) analogous to [EW16,
(3.7)]:
(8.1) 0 −→ Z −→ a0∗Z −→ a1∗Z −→ a2∗Z −→ 0.

Define F to be the cokernel of Z→ a0∗Z, split (8.1) into two short exact sequences, let
ι : S ↪→ X denote the inclusion and apply the derived functors of HomG(ι∗−,Z(2))

to get two exact sequences:

(8.2)
⊕
i

H4
G,Si(C)(X(C),Z(2))

ρ−−→ H4
G,S(C)(X(C),Z(2)) −→ Ext5

G(ι∗F,Z(2)),

0 −→
⊕
i<j

H5
G,Sij(C)(X(C),Z(2)) −→ Ext5

G(ι∗F,Z(2))

−→
⊕

i<j<k

H6
G,Sijk(C)(X(C),Z(2)),

where H5
G,Sijk(C)(X(C),Z(2)) = 0 for i < j < k by purity [BW18, (1.21)]. Purity also

shows that
H6
G,Sijk(C)(X(C),Z(2)) ' H0

G(Sijk(C),Z(−1)),

which is torsion-free, and that
H5
G,Sij(C)(X(C),Z(2)) ' H1

G(Sij(C),Z).

The latter group is torsion-free as well: indeed, the Hochschild-Serre spectral se-
quence [BW18, (1.4)] exhibits it as an extension of a subgroup of H1(Sij(C),Z) by
H1(G,H0(Sij(C),Z)). On the one hand, H1(Sij(C),Z) is torsion-free, as the long
exact sequences of cohomology associated with

0 −→ Z
n−−→ Z −→ Z/nZ −→ 0
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show. On the other hand, the G-module H0(Sij(C),Z) is isomorphic to Za ⊕ Z[G]b

for some a, b > 0 (that correspond respectively to the connected components
of Sij that are geometrically connected, and to those that are not), so that
H1(G,H0(Sij(C),Z)) = 0. The exact sequences (8.2) now show that Ext5

G(ι∗F,Z(2)),
hence also the cokernel of ρ, is torsion free.

It remains to show that the cokernel of ρ is torsion, or equivalently that the mor-
phism

ρQ :
⊕
i∈I

H4
G,Si(C)(X(C),Q(2)) −→ H4

G,S(C)(X(C),Q(2))

is surjective. By the Hochschild-Serre spectral sequence, it suffices to prove that the
morphism

ρQ :
⊕
i∈I

H4
Si(C)(X(C),Q(2)) −→ H4

S(C)(X(C),Q(2))

is surjective. To check this, we may assume that C = C, by the Lefschetz principle.
By [PS08, Cor. 6.28], the dual of ρQ identifies, up to a twist, with the restriction map

ρ∨Q : H2(S(C),Q) −→
⊕
i∈I

H2(Si(C),Q).

To prove that ρ∨Q is injective, we use Deligne’s mixed Hodge theory. By [Del74,
Prop. 8.2.5 and Théorème 8.2.4], the Hodge numbers of the mixed Hodge structure
N = Ker(ρ∨Q) all vanish except perhaps h0,0, h0,1, h1,0. On the other hand, it follows
from the definition of the Hodge filtration on H2(S(C),C) that

gr0
F H

2(S(C),C) = H2(Sred,OSred
)

(see, e.g. its description in [KK98, Ch. 4, §2.4]), which vanishes by Lemma 8.7. As gr0
F

is exact (see [Del71, Th. 2.3.5]), we deduce that gr0
F NC = 0, hence h0,0 = h0,1 = 0.

As h1,0 = h0,1, it follows that all Hodge numbers of N vanish, so that N = 0, which
completes the proof. �

8.4.2. Proof of Proposition 8.6. — By Hironaka’s theorem on embedded resolution of
singularities, there exists a proper birational morphism π : X ′ → X, with X ′ smooth,
such that (f ◦ π)−1(t)red is a simple normal crossings divisor on X ′. As π∗ ◦ π∗ is
the identity of H4

G(X(C),Z(2)) (a consequence of the equivariant projection formula
[BW18, (1.23)]), we may replace X with X ′ and assume that Sred is a simple normal
crossings divisor on X. By Lemma 8.8, it now suffices to show that the image of

H4
G,Si(C)(X(C),Z(2)) −→ H4

G(X(C),Z(2))

is contained, for all i ∈ I, in the image of the cycle class map

cl : CH1(X) −→ H4
G(X(C),Z(2)).

Consider the diagram

CH1(Si)

cl
��

// CH1(X)

cl
��

H2
G(Si(C),Z(1))

∼ // H4
G,Si(C)(X(C),Z(2)) // H4

G(X(C),Z(2)),
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whose vertical arrows are the equivariant cycle class maps, whose bottom right hori-
zontal arrow is the purity isomorphism [BW18, (1.21)], and whose top horizontal arrow
is the push-forward map. It is commutative by [BW18, §1.6.1]. By [BW18, Prop. 2.9]
and Lemma 8.7, the left vertical arrow is surjective. This proves the proposition.

8.5. Exploiting a Leray spectral sequence. — In §8.5, we introduce and study a
variant of the Leray spectral sequence that is adapted to the study of fibrations in the
real context. Applied to the map f(C) : X(C) → B(C) associated with a morphism
f : X → B of varieties over R, it is very closely related to (and inspired by) the Leray
spectral sequence for the natural morphism from the étale site of X to the b-site of B
defined by Scheiderer in [Sch94, §2].

8.5.1. Two Leray spectral sequences. — For the whole of Section 8.5.1, let us fix a real
closed field R, a G-equivariant morphism f : V →W between locally complete semi-
algebraic spaces over R endowed with a continuous semi-algebraic action of G, and a
G-equivariant sheaf F of abelian groups on V . In order to compute the equivariant
cohomology group Hn

G(V,F ), one could think of two Leray spectral sequences. The
more straightforward one has Hp

G(W,Rqf∗F ) as its Ep,q2 term. The other one, which
for the purposes of the proof of Theorem 8.1 is significantly more convenient, reads

(8.3) Ep,q2 = Hp(W/G,RqfG∗ F ) =⇒ Hp+q
G (V,F ).

Here fG∗ is the functor, from the category of G-equivariant sheaves of abelian groups
on V to the category of sheaves of abelian groups on the quotient semi-algebraic
space W/G, which takes a sheaf F to (π∗f∗F )G, where π : W → W/G denotes
the quotient map (see [Bru87, Cor. 1.6], [DK84, Prop. 3.5]). This left exact functor
admits an exact left adjoint; hence the spectral sequence (8.3) results from [Wei94,
Prop. 2.3.10, Th. 5.8.3].

Proposition 8.9. — Let f and F be as above. Let q > 0 be an integer.
(i) The sheaf on W/G associated with the presheaf

U 7−→ Hq
G

(
f−1(π−1(U)),F |f−1(π−1(U))

)
is canonically isomorphic to RqfG∗ F .

(ii) Viewing F [G] = F ⊗Z Z[G] as a G-equivariant sheaf with the diagonal action
of G, there is a canonical isomorphism RqfG∗ (F [G]) = π∗R

qf∗F .
(iii) The cokernel of the map RqfG∗ (F [G]) → RqfG∗ F induced by the norm map

F [G]→ F is supported on WG ⊆W/G.
(iv) If f is proper, the formation of RqfG∗ F commutes with arbitrary base change,

in the following sense. Let Z be a locally complete semi-algebraic space. Let ρ : Z →
W/G be a morphism. Let W ′ = W ×W/G Z. Let V ′ = V ×W W ′. Let ρV : V ′ → V

and f ′ : V ′ → W ′ denote the projections. If f is proper, the base change morphism
ρ∗RqfG∗ F → Rqf ′G∗ (ρ∗V F ) is an isomorphism.
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(v) If f is proper, the stalks of RqfG∗ F can be computed as follows. Let w ∈ W .
If w ∈WG, there is a canonical isomorphism

(RqfG∗ F )π(w) = Hq
G

(
f−1(w),F |f−1(w)

)
.

If w /∈WG, there is a canonical isomorphism

(RqfG∗ F )π(w) = Hq
(
f−1(w),F |f−1(w)

)
.

(vi) Let X and Y be algebraic varieties over R endowed with an action of G and
let ϕ : X → Y be a smooth and proper G-equivariant morphism. Assume that G acts
trivially on Y , that V = X(R) and W = Y (R) and that f = ϕ(R). If F is locally
constant with finitely generated stalks, then so is RqfG∗ F .

(vii) Let ϕ : X → Y be a smooth and projective morphism between varieties over R.
Assume that V = X(C) and W = Y (C) and that f = ϕ(C). If F is locally constant
with finitely generated stalks, then so are the restrictions of RqfG∗ F to Y (R) ⊆W/G
and to (Y (C) r Y (R))/G ⊆W/G.

Proof. — For (i), see [Gro57, Lemme 3.7.2]. Assertion (ii) follows from [BW18, (1.5)]
and from (i). For (iii), applying [DK82, Th. 2.1] to obtain a triangulation and con-
sidering the star neighbourhoods of the open simplices, we see that we can cover
the semi-algebraic space (W rWG)/G by finitely many connected and simply con-
nected open semi-algebraic subsets. After shrinking W , we may therefore assume
that W = (W/G) ×G and that π is the first projection. In this case, the norm map
F [G]→ F admits a G-equivariant section, so that the map RqfG∗ (F [G])→ RqfG∗ F

admits a section and is hence surjective. For (iv), we note that RfG∗ = R(IdW )G∗ ◦Rf∗
and Rf ′G∗ = R(IdW ′)

G
∗ ◦ Rf ′∗ and that Rf∗ satisfies the proper base change theorem,

by [Del91, Ch. II, Th. 7.8]. This reduces us to checking (iv) when f is the identity
map, in which case it is an exercise. Assertion (v) follows from (iv). For (vi), let us
consider the natural spectral sequence

Ea,b2 = H a(G,Rbf∗F ) =⇒ Ra+bfG∗ F ,

where, for a G-equivariant sheaf G on Y (R), we denote by H a(G,G ) the sheaf,
on Y (R), associated with the presheaf U 7→ Ha(G,G (U)). Applying [Sch94,
Cor. 17.20] to ϕ, we see that the sheaves Rbf∗F are locally constant on Y (R), with
finitely generated stalks. It follows that H a(G,Rbf∗F ) is locally constant on Y (R),
with finitely generated stalks, for all a and b; hence, so is the abutment RqfG∗ F .
Finally, to check (vii), we may assume that Y is affine. In this case, the assertion
on Y (R) follows from (vi) applied to the second projection RC/RXC×RC/RYC

Y → Y ,
where RC/R denotes the Weil restriction from C to R of a quasi-projective variety
over C, and from (iv), while the assertion on (Y (C) r Y (R))/G follows from [Sch94,
Cor. 17.20] applied to RC/Rϕ : RC/RXC → RC/RYC . �

Remark 8.10. — To prevent misuse of Proposition 8.9 (v), we remind the reader that
a sheaf on a semi-algebraic space need not vanish even if its stalks at the points of the
underlying set do (see [Del91, Ch. I, Ex. 1.7]). This phenomenon does not occur for
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sheaves which become constant on a set-theoretic cover by finitely many locally closed
semi-algebraic subsets (e.g. for locally constant sheaves, see [Del91, Ch. II, Def. 1]).

8.5.2. Application. — We resume the proof of Theorem 8.1.

Proposition 8.11. — Let B be a smooth, geometrically connected, affine curve over
a real closed field R. Let f : X → B be a smooth and projective morphism whose
fibre over any b ∈ B(C) satisfies H3(Xb(C),Z) = 0. Assume that all semi-algebraic
connected components of B(R) are semi-algebraically contractible. Then the product
of restriction maps

H4
G(X(C),Z(2)) −→

∏
b∈B(R)

H4
G(Xb(C),Z(2))×

∏
b∈B(C)

H4(Xb(C),Z(2))

is injective.

Proof. — The spectral sequence (8.3) for f : X(C)→ B(C) takes the shape

Ep,q2 = Hp(B(C)/G,RqfG∗ Z(2)) =⇒ Hp+q
G (X(C),Z(2)).

By Proposition 8.9 (v) and (vii) and Remark 8.10, the desired statement is equivalent
to the injectivity of the edge homomorphism H4

G(X(C),Z(2)) → E0,4
2 . For this, it is

enough to check that E1,3
2 = 0 and that Ep,q2 = 0 for all p, q such that p > 2.

By Proposition 8.9 (v) and (vii) and by our assumption on the fibres of f , the
sheaf R3fG∗ Z(2) is supported on B(R) ⊆ B(C)/G and is locally constant on B(R).
On the other hand, as B(R) is a disjoint union of contractible semi-algebraic spaces,
any locally constant sheaf on B(R) must be constant and have trivial cohomology in
positive degrees (see [Del91, Ch. II, Th. 2.5]). Hence E1,3

2 = 0.
Let p > 2. Let π : B(C) → B(C)/G denote the quotient map. Proposition 8.9 (ii)

and (iii) provides a norm map

π∗R
qf∗Z(2) −→ RqfG∗ Z(2)

whose cokernel is supported on B(R) ⊆ B(C)/G. As p > dim(B(R)) and p + 1 >

dim(B(C)/G), the induced map

Hp(B(C),Rqf∗Z(2)) −→ Ep,q2

is surjective (see [Del91, Ch. II, Lem. 9.1]). To conclude the proof, it therefore suffices
to check that Hp(B(C),F ) = 0 for any locally constant sheaf with finitely generated
stalks F on B(C). Indeed Rqf∗Z(2) is such a sheaf by [Sch94, Cor. 17.20] applied
to RC/Rf . As the group Hp(B(C),F ) is finitely generated (see [Sch94, Th. 17.9]),
it suffices to check that it is divisible. For this, as p > dim(B(C)), it is enough that
Hp(B(C),F/nF ) = 0 for all n > 1. Now this last vanishing follows from Poincaré
duality for sheaves of abelian groups with finite exponent (see [BW18, (1.16)]) and
from the fact that H0

c (B(C),G ) = 0 for any locally constant sheaf G on B(C) as B
is affine. �

J.É.P. — M., 2020, tome 7



406 O. Benoist & O. Wittenberg

8.6. Constructing multisections. — It is now possible to give the

Proof of Theorem 8.1. — By Proposition 8.5, we only have to consider cases (i), (ii)
and (iii) of Theorem 8.1. Choose points t1, . . . , ts ∈ B such that B0 := Br{t1, . . . , ts}
is affine, such that the semi-algebraic connected components of B0(R) are semi-
algebraically contractible, and such that the base change f0 : X0 → B0 is smooth
and projective. By Proposition 8.6 and the commutative diagram with exact row

CH1(X) // //

cl
��

CH1(X0)

cl
��s⊕

i=1

H4
G,Xti

(C)(X(C),Z(2)) // H4
G(X(C),Z(2)) // H4

G(X0(C),Z(2)),

it suffices to show the surjectivity of cl : CH1(X0) → H4
G(X0(C),Z(2))0. Fix a class

α ∈ H4
G(X0(C),Z(2))0. To prove that it lies in the image of cl, we first reduce to the

case when α has degree 0 on the geometric fibres of f0. We distinguish two cases.
Suppose that the degree of α on the geometric fibres of f0 is even. By Manin and

Colliot-Thélène [Kol96, Ch. IV, Th. 6.8], f0
C : X0

C → B0
C has a section. Its image in X0

is a curve of degree 1 or 2 over B0. Removing from α a multiple of the class of this
curve, we may assume that α has degree 0 on the geometric fibres of f0.

Suppose now that the degree of α on the geometric fibres of f0 is odd. It follows
from [BW18, Prop. 2.10] applied to the real fibres of f0 that X0(R) → B0(R) is
surjective. In particular, we are in case (i) or (iii). Then we claim that f0 : X0 → B0

has a section. If δ = 1 such a section is given by the base locus of the anticanonical
divisor of the generic fibre, and if δ = 3, one is provided by [Lan53, Cor. p. 390]. The
cases δ ∈ {5, 7, 9} have already been dealt with in Example 8.2: then, the generic fibre
XR(B) of f0 is even rational over R(B). When δ = 8, XR(B) is either the blow-up of
P2
R(B) in a point (which has obvious rational points), or a form of P1 ×P1, hence a

homogeneous space under a linear algebraic group (being homogeneous is a geometric
property of projective varieties, by the representability of their automorphism group
scheme). When δ = 6, XR(B) contains a torsor under a 2-dimensional torus [Man66,
Th. 3.10]. Consequently, the existence of a section in these cases follows from the
strong Hasse principle for homogeneous spaces under linear algebraic groups over
function fields of curves over R [Sch96, Cor. 6.2] (over R, the case δ = 8 could have
been deduced from [Wit37, Satz 22] and the case δ = 6 from [CT96, Th. 1.1 (a)]).
Removing from α a multiple of the class of this section, we may assume that α has
degree 0 on the geometric fibres of f0.

The real fibres of f0 have a connected or empty real locus: this is obvious in cases (ii)
and (iii) and is a consequence of [Man66, Cor. 3 to Th. 3.7, Cor. 1 to Th. 3.10, Th. 3.15]
and [DK81, Th. 13.3] in case (i). It follows from [BW18, Lem. 2.11] that if b ∈ B0(R),
then H4

G(X0
b (C),Z(2))0 ' Z, generated by the class of any R-point (resp. closed

point) of X0
b if X0

b (R) 6= ∅ (resp. if X0
b (R) = ∅). Similarly, if b ∈ B0(C), then

H4(X0
b (C),Z(2)) ' Z, generated by the class of any C-point of X0

b . Since α has
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degree 0 on the geometric fibres of f0, we deduce that it satisfies the hypotheses of
Proposition 8.11, hence that it vanishes, proving the theorem. �

9. Non-archimedean real closed fields

In this section, we construct counterexamples to the real integral Hodge conjecture
that are specific to non-archimedean real closed fields, explain geometric consequences
of these counterexamples, and discuss and exploit the relationship between the “EPT”
and “signs” properties for a surface over a real closed field and the real integral Hodge
conjecture for conic bundles over the same surface.

9.1. Curves of bounded degree. — Given an integer k and a bounded family, de-
fined over R, of smooth projective varieties X which satisfy Hq(X,ΩpX) = 0 for all
p, q such that p+ q = 2k, (p, q) 6= (k, k), the real integral Hodge conjecture for codi-
mension k cycles on the members of this family defined over an arbitrary real closed
field is equivalent to the real integral Hodge conjecture for codimension k cycles on
the members that are defined over R together with a bound on the degrees of the
cycles which span their cohomology:

Proposition 9.1. — Let f : X → B be a smooth and projective morphism between
varieties over a real closed field R0. Let C0 = R0(

√
−1). Let Θ ⊆ B(R0) be a semi-

algebraic subset. Let L be a relatively ample line bundle on X. Let k be an integer. For
any integer δ, any field extension R/R0 and any b ∈ B(R), let CHk(Xb)deg6δ denote
the subgroup of CHk(Xb) generated by the classes of integral closed subvarieties of Xb

of dimension k whose degree, with respect to L, is 6 δ, and let ΘR ⊆ B(R) denote the
semi-algebraic subset obtained from Θ by extension of scalars (see [DK82, §4]). The
following conditions are equivalent:

(i) for any real closed field extension R/R0 and any b ∈ ΘR, the equivariant cycle
class map cl : CHk(Xb)→ H2k

G (Xb(C),Z(k))0 is surjective, with C = R(
√
−1);

(ii) there exists an integer δ such that for any b ∈ Θ, the restriction of the map
cl : CHk(Xb)→ H2k

G (Xb(C0),Z(k))0 to the subgroup CHk(Xb)deg6δ is surjective.

Proof. — Let Br denote the real spectrum of B (see [CR82], [BCR98, Ch. 7], [Sch94,
(0.4)]). We recall that Br is a topological space whose points are represented by
pairs (R, b) consisting of a real closed field extension R/R0 and a point b ∈ B(R); two
pairs (R, b) and (R′, b′) define the same point of Br if and only if b and b′ lie above
the same scheme-theoretic point of B and R and R′ induce the same ordering on its
residue field. We shall abuse notation and freely write (R, b) for a point of Br. We
also recall that semi-algebraic subsets of B(R0) are in one-to-one correspondence with
constructible subsets of Br and that the latter form the base of a compact topology
(see [BCR98, Prop. 7.1.12, Theorem 7.2.3]).

Lemma 9.2. — Let δ be an integer. There is a constructible subset Zδ ⊆ Br such that
for any real closed field extension R/R0 and any b ∈ B(R), if we let C = R(

√
−1),
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the restriction of the equivariant cycle class map cl : CHk(Xb)→ H2k
G (Xb(C),Z(k))0

to CHk(Xb)deg6δ is surjective if and only if the point (R, b) ∈ Br belongs to Zδ.

Proof. — Let Z+
δ (resp. Z−δ ) denote the set of points of Br for which every

(resp. some) representative (R, b) satisfies the property of the lemma. We shall
now check that any (R, b) ∈ Br is contained in a constructible subset Z of Br which is
itself either contained in Z+

δ or disjoint from Z−δ . This will prove the lemma. Indeed,
this assertion implies that Z+

δ = Z−δ and that, if Zδ denotes this common subset,
both Zδ and Br r Zδ are unions of constructible subsets; the constructible topology
on Br being compact, it then follows that Zδ is constructible.

Let M denote the open subvariety of the relative Hilbert scheme of f which
parametrises the reduced closed subschemes of pure codimension k and degree 6 δ

(with respect to L) in the fibres of f (see [Gro61, Th. 3.2, Lem. 2.4], [Gro66,
Th. 12.2.1]). Let π : M → B denote the projection. Let µ : U → M be the universal
family. Let us write M as the set-theoretic union of finitely many locally closed sub-
varieties which are smooth over R0. Let M ′ be their disjoint union, let ν : M ′ → M

be the natural map, let π′ = π ◦ν : M ′ → B, let µ′ : U ′ →M ′ denote the base change
of µ by ν and let f ′ : X ′ → M ′ denote the base change of f by π′. We note that X ′
is smooth, since M ′ and f ′ are smooth, and that U ′ is a reduced closed subvariety
of X ′ of pure codimension k (see [Gro65, Cor. 3.3.5]). We write [U ′] ∈ CHk(X ′) for
the class of the corresponding cycle. For (R′,m′) ∈ M ′r, the fibre U ′m′ = µ′−1(m′) is
a reduced closed subvariety of X ′m′ of pure codimension k, therefore the pull-back
map CHk(X ′) → CHk(X ′m′) sends [U ′] to [U ′m′ ] (see [Ful98, Prop. 8.2]). In view of
the compatibility of the equivariant cycle class map with pull-backs, we deduce that
cl([U ′m′ ]) ∈ H2k

G (X ′m′(C
′),Z(k)), for any (R′,m′) ∈M ′r, is the image of the fixed class

cl([U ′]) by the composed map

(9.1) H2k
G (X ′(C0),Z(k)) = H2k

G (X ′(C ′),Z(k)) −→ H2k
G (X ′m′(C

′),Z(k))

(see [Del91, Ch. II, Th. 6.1] for the first isomorphism).
For a quasi-projective variety V over R0, let Vcx denote the complex spectrum of V ,

i.e., the real spectrum of the Weil restriction of V ⊗R0
C0 from C0 to R0 (see [Sch94,

(0.4) and Def. 5.6.2]). There is a natural map Br → Bcx. Let Ycx/r = Xcx×Bcx Br and
let g : Ycx/r → Br denote the second projection. Taking up the notation of Section 8.5.1
and freely identifying sheaves on the semi-algebraic site of B(R0) with sheaves on the
topological space Br (see [Del91, Ch. I, Prop. 1.4]), we set F = R2kgG∗ Z(k). This
is a locally constant sheaf on Br (see Proposition 8.9 (vii)). The fibre of g above a
point of Br represented by a pair (R, b) is the “abstract semi-algebraic space”, in
the terminology of [DK85, App.A to Ch. I], associated with the semi-algebraic space
Xb(C1), where C1 = R1(

√
−1) andR1 is the real closed subfield ofR which is algebraic

over the residue field of the scheme-theoretic point of B over which b lies. In particular,
the stalk of F at this point coincides with H2k

G (Xb(C),Z(k)) (see Proposition 8.9 (v),
[Del91, Ch. I, Cor. 1.5 & Ch. II, Th. 6.1]). It follows from Proposition 8.9 (vi) that the
groups H2k

G (Xb(R),Z(k)) are also the stalks of a locally constant sheaf and, hence,
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that the subgroups H2k
G (Xb(C),Z(k))0 fit together in a locally constant subsheaf

F0 ⊆ F . Finally, let Y ′cx/r = X ′cx ×M ′cx M
′
r, let g′ : Y ′cx/r → M ′r denote the second

projection, let F ′ = R2kg′G∗ Z(k), and let π′r : M ′r → Br denote the map induced by π′.
We now fix (R, b) ∈ Br and construct Z. Let us choose a connected constructible

open neighbourhood Ω ⊂ Br of (R, b) on which the sheaves F and F0 are constant.
As F ′ = π′∗r F (see Proposition 8.9 (iv)), we can canonically identify the stalk of F ′

at any (R′,m′) ∈ π′−1
r (Ω) with the group H2k

G (Xb(C),Z(k)). Let us define a map

(9.2) τ : π′−1
r (Ω) −→ H2k

G (Xb(C),Z(k))0

by sending a point (R′,m′) to the image of cl([U ′m′ ]) by the canonical isomorphism

H2k
G (X ′m′(C

′),Z(k))0 = H2k
G (Xb(C),Z(k))0.

As cl([U ′m′ ]) is also the image of cl([U ′]) by (9.1), we see that τ coincides with the
map that sends (R′,m′) to the germ at (R′,m′) of the global section of F ′ defined by
cl([U ′]). In particular, as F ′ is locally constant, we deduce that τ is locally constant.

Let W1, . . . ,Wm (resp. Wm+1, . . . ,Wn) denote the (finitely many, see [CR82,
Cor. 3.7]) connected components of π′−1

r (Ω) whose images by π′r contain (R, b)

(resp. do not contain (R, b)). The subset

Z = π′r(W1) ∩ · · · ∩ π′r(Wm) ∩ (Ω r π′r(Wm+1)) ∩ · · · ∩ (Ω r π′r(Wn))

of Ω is constructible (op. cit., Prop. 2.3) and contains (R, b).
For (R′, b′) ∈ Ω, if R′1 denotes the real closed subfield of R′ which is algebraic

over the residue field of the scheme-theoretic point of B over which b′ lies, and b′1
denotes the point b′ viewed as an element of B(R′1), the real spectrum of π′−1(b′1)

coincides with π′−1
r ((R′, b′)). Therefore π′−1(b′1)(R′1) ⊆ π′−1

r ((R′, b′)) is a dense subset.
In particular, the locally constant map τ takes the same set of values on π′−1

r ((R′, b′))

and on this subset. It follows that for (R′, b′) ∈ Ω, the image of CHk(Xb′)deg6δ by the
equivariant cycle class map

cl : CHk(Xb′) −→ H2k
G (Xb′(C

′),Z(k))0

coincides, via the identification

H2k
G (Xb′(C

′),Z(k))0 = H2k
G (Xb(C),Z(k))0,

with the subgroup of H2k
G (Xb(C),Z(k))0 generated by τ(π′−1

r ((R′, b′))). As the map τ
is locally constant and as every fibre of the projection π′−1

r (Z) → Z meets each of
W1, . . . ,Wm and none of Wm+1, . . . ,Wn, it follows that Z is either contained in Z+

δ

or disjoint from Z−δ . �

We can now prove the proposition. Let Θr ⊆ Br denote the unique constructible
subset such that Θ = Θr ∩ B(R0) (see [BCR98, Prop. 7.2.2 (i)]). As the groups
H2k
G (Xb(C),Z(k))0 are finitely generated, property (i) holds if and only if Θr ⊆

⋃
δ Zδ.

As the constructible topology on Br is compact, this is, in turn, equivalent to the ex-
istence of δ such that Θr ⊆ Zδ. On the other hand, property (ii) is equivalent to the
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existence of δ such that Θ ⊆ Zδ. Now Θ ⊆ Zδ if and only if Θ = Zδ ∩ Θr ∩ B(R0),
which, by the definition of Θr, holds if and only if Θr = Zδ ∩Θr. Thus (i)⇔ (ii). �

We end this paragraph with the following related result.

Proposition 9.3. — Let R/R0 be an extension of real closed fields, let C0 = R0(
√
−1)

and C = R(
√
−1). Let X be a smooth, projective variety over R0. For any integer k,

the map cl : CHk(X)→ H2k
G (X(C0),Z(k))0 is surjective if and only if so is the map

cl : CHk(XR)→ H2k
G (X(C),Z(k))0.

Proof. — Apply Lemma 9.2 with B = Spec(R0). �

Remarks 9.4
(i) Propositions 9.1 and 9.3 still hold, with the same proofs, if, in their state-

ments, one replaces the equivariant cycle class map to H2k
G (Xb(C),Z(k))0 with the

Borel-Haefliger cycle class map to Hk(Xb(R),Z/2Z). We recall that the latter factors
through the former (see [BW18, §1.6.3]).

(ii) In Example 9.9 below, we shall provide an example of a smooth and projective
morphism f : X → B defined over R and of an integer k such that the equivariant
cycle class map cl : CHk(Xb) → H2k

G (Xb(C),Z(k))0 is surjective for all b ∈ B(R)

even though there is no δ such that its restriction to CHk(Xb)deg6δ is simultaneously
surjective for all b ∈ B(R). This is a specifically real phenomenon, which cannot
occur over C: if the cycle class map cl : CHk(Xb) → H2k(Xb(C),Z(k)) is surjec-
tive for all b ∈ B(C), then there is always an integer δ such that its restriction to
CHk(Xb)deg6δ is simultaneously surjective for all b ∈ B(C). Indeed, when B is ir-
reducible, the surjectivity of cl : CHk(Xb) → H2k(Xb(C),Z(k)) for a very general
b ∈ B(C) furnishes cycles which spread out over a dense open subset of B, since
the relative Hilbert scheme of f only has countably many irreducible components; an
induction on dim(B) completes the proof of the existence of δ.

9.2. Counterexamples to the real integral Hodge conjecture. — As announced
at the end of [BW18, §4], we now give examples of smooth, projective, connected
varieties X of dimension d over a real closed field R, such that H2(X,OX) = 0 and
that the real integral Hodge conjecture for 1-cycles on X fails (in the sense that the
equivariant cycle class map CH1(X) → H2d−2

G (X(C),Z(d − 1))0 is not surjective;
see [BW18, Def. 2.3]) while the complex integral Hodge conjecture does hold (in the
sense that the cycle class map CH1(XC) → H2d−2(X(C),Z(d − 1)) is surjective).
Our examples are Calabi-Yau threefolds, with or without real points (Section 9.2.1),
and a rationally connected threefold with real points (Section 9.2.2), over the field or
real Puiseux series

⋃
n>1 R((t1/n)). Such varieties satisfy the complex integral Hodge

conjecture by Voisin’s theorem [Voi06, Th. 2] combined with the Lefschetz principle.
By [BW18, Cor. 3.23], these are examples of smooth projective varieties X over R

such that H1(X(R),Z/2Z) 6= Halg
1 (X(R),Z/2Z), if X(R) 6= ∅, or on which there

is no geometrically irreducible curve of even geometric genus, if X(R) = ∅. These
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examples of cycle-theoretic obstructions (in the terminology of [BW18, §3.6.1]) of a
new kind complement those given over R in [BW18, §4.3].

By Proposition 9.1, these examples show that to prove the real integral Hodge
conjecture for 1-cycles on rationally connected or Calabi-Yau threefolds over R (see
[BW18, Quest. 2.16]), one cannot restrict to curves of bounded degree, in bounded
families of varieties. We refer to Section 9.2.3 for further discussion of this question.

Another counterexample to the real integral Hodge conjecture, for a uniruled three-
fold with no real point, will appear later (see Example 9.22 in Section 9.4.2).

9.2.1. Calabi-Yau threefolds. — Here are two Calabi-Yau counterexamples. They are
both simply connected.

Example 9.5 (Calabi-Yau threefold with real points). — We consider the real closed
field R :=

⋃
nR((t1/n)). Let

G := (u2 + v2)F (x0, . . . , x3) ∈ H0(P1
R ×P3

R,O(2, 4)),

where u, v (resp. x0, . . . , x3) are the homogeneous coordinates of P1 (resp. P3) and
F is the equation of a smooth quartic surface in S ⊂ P3

R as in [BW18, Ex. 4.5]. Let
H ∈ H0(P1

R × P3
R,O(2, 4)) be the equation of any smooth hypersurface. Consider

G+ tH ∈ H0(P1
R ×P3

R,O(2, 4)) and let

X := {G+ tH = 0} ⊂ P1
R ×P3

R.

The Calabi-Yau threefold X is smooth since {H = 0} is smooth.
Let X0 := {G = 0} ⊂ P1

R×P3
R and Xsm

0 be its smooth locus. Since X0(R) ⊂ Xsm
0 ,

one may consider the composition

CH1(X0) −→ CH1(Xsm
0 )

clR−−−−→ H2(X0(R),Z/2Z)

and define H2
alg(X0(R),Z/2Z) to be its image. By the choice of F , and noting that

X0(R) = P1(R)×S(R), we see that there exists a class α0 ∈ H2(X0(R),Z/2Z) such
that

deg(α0 ^ clR(OX0(0, 1))) 6= 0 ∈ Z/2Z,

but no class β ∈ H2
alg(X0(R),Z/2Z) is such that

deg(β ^ clR(OX0(0, 1))) 6= 0 ∈ Z/2Z.

Introduce f : X → A1
R, where X := {G+ tH = 0} and t is the coordinate of A1

R.
The variety X0 is the fibre of f over 0 and X is a real closed fibre of f specialising
to X0. Denoting by fr : Xr → A1

R,r the induced map between real spectra, the sheaf
R2fr∗Z/2Z satisfies proper base change by [Del91, Ch. II, Th. 7.8] and is constant
in a neighbourhood of 0 by [Sch94, Cor. 17.20 a)] (the proof of this last result only
uses the smoothness of f in a neighbourhood of the real locus). This induces an
isomorphism H2(X(R),Z/2Z) ' H2(X0(R),Z/2Z). Let α ∈ H2(X(R),Z/2Z) be
the class corresponding to α0 under this isomorphism.

If α were algebraic, there would exist a curve Z ⊂ X such that

deg(clR(Z) ^ clR(OX(0, 1))) 6= 0 ∈ Z/2Z,
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hence with odd degree with respect to OX(0, 1). The specialisation Z0 ⊂ X0 of Z
would have odd degree with respect to OX0(0, 1), hence would be such that

deg(clR(Z0) ^ clR(OX0
(0, 1))) 6= 0 ∈ Z/2Z,

a contradiction. We deduce that

H2(X(R),Z/2Z) 6= H2
alg(X(R),Z/2Z).

By [BW18, Cor. 3.23], X does not satisfy the real integral Hodge conjecture for
1-cycles.

Note that in this example, we could have chosen S to be any smooth quartic
surface such that H1(S(R),Z/2Z) 6= H1

alg(S(R),Z/2Z), after having verified that
the specialisation isomorphism H2(X(R),Z/2Z) ' H2(X0(R),Z/2Z) is compatible
with the specialisation map for Chow groups.

Example 9.6 (Calabi-Yau threefold with no real point). — Consider the real closed
field R :=

⋃
nR((t1/n)) and let

G := (u2 + v2)F (x0, . . . , x3) ∈ H0(P1
R ×P3

R,O(2, 4)),

where u, v (resp. x0, . . . , x3) are the homogeneous coordinates of P1 (resp. P3) and F
is the equation of a smooth quartic surface in P3

R with no real points containing no
geometrically irreducible curve of even geometric genus, as in [BW18, Ex. 4.6]. Let
H ∈ H0(P1

R × P3
R,O(2, 4)) be the equation of any smooth hypersurface. Consider

G+ tH ∈ H0(P1
R ×P3

R,O(2, 4)) and let

X := {G+ tH = 0} ⊂ P1
R ×P3

R.

The variety X is a smooth Calabi-Yau threefold over R (because {H = 0} is
smooth) that has no R-points since X0 := {G = 0} ⊂ P1

R × P3
R has no R-points.

Suppose thatX contains a geometrically integral curve of even geometric genus. Then,
by [BW18, Cor. 3.11], ind1(X) = 1 (see [BW18, §3.4] for generalities on intermedi-
ate indices). Specialising a coherent sheaf on X with odd Euler characteristic shows
that ind1(X0) = 1. Applying [BW18, Cor. 3.11] again shows that X0 contains a geo-
metrically integral curve of even geometric genus. This curve must be contained in
{F = 0}, contradicting the choice of F . By [BW18, Cor. 3.23], X does not satisfy the
real integral Hodge conjecture for 1-cycles.

9.2.2. Rationally connected threefolds. — We now turn to an example of a rationally
connected threefold failing the real integral Hodge conjecture for 1-cycles.

Example 9.7 (rationally connected threefold with real points). — As before, we let
R :=

⋃
nR((t1/n)). We consider a variety constructed by Ducros [Duc98, §8] in his

study of the Hasse principle for varieties over functions fields of curves over real closed
fields, and we reinterpret it in our setting (beware that his notation differs slightly
from ours).

Ducros sets K := R(P1
R) and defines by equations in [Duc98, Prop. 8.11] a conic

bundleXK → P1
K . We may take a smooth projective modelX → P1

R×P1
R ofXK : it is
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a conic bundle over P1
R×P1

R. The content of [Duc98, Prop. 8.11] is that XK(K) = ∅
although there is no “reciprocity obstruction” to the existence of a rational point
on XK . The first condition exactly means that the composition p : X → P1

R with
the second projection does not admit an algebraic section. By [Duc98, Th. 4.3], the
second condition is equivalent to the existence of a continuous semi-algebraic section

σ : P1(R) −→ X(R) of p(R) : X(R) −→ P1(R),

taking values in the smooth locus of p.
The image of σ induces a homology class α ∈ H1(X(R),Z/2Z). If X satisfied the

real integral Hodge conjecture for 1-cycles, α would be the Borel-Haefliger class of a
1-cycle z on X, by [BW18, Cor. 3.23]. Restricting z to a general fibre of p : X → P1

R,
one sees that z has odd degree over P1

R, hence that XK has a 0-cycle of odd degree.
Since XK obviously has a closed point of degree 2, being a conic bundle over P1

K ,
it has index 1 over K. Colliot-Thélène and Coray have shown in [CTC79, Cor. 4
p. 309] that conic bundles over P1

K that have at most 5 singular geometric fibres have
a rational point if and only if they have index 1. Since there are only 4 singular
geometric fibres in Ducros’ example, this result applies to show that XK(K) 6= ∅,
hence that p : X → P1

R has a section: this is a contradiction.

9.2.3. Implications for the real integral Hodge conjecture. — Examples 9.5, 9.6 and 9.7
feature Calabi-Yau and rationally threefolds over R for which the real integral Hodge
conjecture for 1-cycles fails. This contrasts with the hope, expressed in [BW18,
Quest. 2.16], that the following question may have a positive answer:

Question 9.8. — Does the real integral Hodge conjecture hold for 1-cycles on ratio-
nally connected and Calabi-Yau threefolds over R ?

Since, for such varieties X, the integral Hodge conjecture holds for 1-cycles on XC

by Voisin’s theorem [Voi06, Th. 2] and the Lefschetz principle, our examples show that
it is not possible to deduce in a formal way a positive answer to Question 9.8 from
Voisin’s theorem in the spirit of the proof of [BW18, Prop. 2.9]. This is reflected by
the fact that many of our partial answers to Question 9.8 use tools that are specific
to the field R: either Hodge theory, or the Stone-Weierstrass approximation theorem
(see Theorem 6.1, Theorem 7.1 and Theorem 8.1 (iv)).

Despite Example 9.7, the real integral Hodge conjecture for 1-cycles does hold
over arbitrary real closed fields for some particular families of rationally connected
varieties. We will see that such is the case for cubic hypersurfaces of dimension > 3

in Theorem 9.23.

Example 9.9. — Example 9.7 is particularly interesting because it concerns a conic
bundle over P1

R ×P1
R, a kind of variety for which the real integral Hodge conjecture

for 1-cycles over R is known (Corollary 6.2).
A glance at the equations given by Ducros [Duc98, Prop. 8.11] shows that the

variety X of Example 9.7 spreads out to a smooth projective family f : X → B over
an open subset B of A1

R with coordinate t. Let L be a relatively ample line bundle
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on X . Then, on the one hand, for every b ∈ B(R), H1(Xb(R),Z/2Z) is generated
by Borel-Haefliger classes of algebraic curves on Xb, by Corollary 6.2 and [BW18,
Cor. 3.23]. On the other hand, it follows from Proposition 9.1 that for any integer
δ > 1, there exists b ∈ B(R) such that H1(Xb(R),Z/2Z) fails to be generated by the
Borel-Haefliger classes of curves on Xb that have degree 6 δ with respect to L.

Thus there is no hope to prove Theorem 6.1 by showing that some curve-counting
invariant (among real avatars of Gromov-Witten invariants) is non-zero. Indeed such
an invariant would control curves of a fixed degree, and would be constant in real
deformations of smooth projective varieties over R.

Example 9.10. — In [KM16, Example 26.2], Kollár and Mangolte exhibit a related
example, which can be viewed as a smooth quartic threefold X over R =

⋃
nR((t1/n))

such that H1(X(R),Z/2Z) 6= 0 although all rational curves on X have trivial Borel-
Haefliger class.

Letting D be the curve used in the construction of loc. cit., one can prove the
stronger fact that

H1(X(R),Z/2Z) 6= Halg
1 (X(R),Z/2Z)

as soon as D(R) has at least two connected components. (Indeed, it is possible,
although we do not do it here, to construct a canonical specialisation map

H1(X(R),Z/2Z) −→ H1(D(R),Z/2Z)

which preserves algebraic classes and which, in this example, turns out to be an
isomorphism.) The real integral Hodge conjecture for 1-cycles on X then fails.

Extrapolating from this example, Kollár and Mangolte conjecture that there should
exist smooth quartic threefolds X over R such that H1(X(R),Z/2Z) 6= 0 although all
rational curves on X have trivial Borel-Haefliger class. They explain that otherwise,
the rational curves whose classes span H1(X(R),Z/2Z) could not have uniformly
bounded degrees as X varies over the smooth quartic threefolds over R (an assertion
parallel to our Proposition 9.1). Example 9.9 shows that this heuristic argument is
not satisfactory.

There is no analogue of Example 9.7 for conic bundles without real points. Indeed,
let X → S be a conic bundle over a smooth geometrically rational surface over R
such that X(R) = ∅. If S(R) 6= ∅, the fibre of X → S over a general real point
is a real conic in X, showing that ind1(X) = 1. If S(R) = ∅, then S contains a
geometrically rational curve Γ by a theorem of Comessatti ([Com12, discussion below
Th.VI p. 60], see also [CT92]). For the same reason, the inverse image of Γ in X

contains a geometrically rational curve, showing again that ind1(X) = 1. In both
cases, [BW18, Cor. 3.23] shows that X satisfies the real integral Hodge conjecture for
1-cycles.

In fact, we do not have any counterexample to the real integral Hodge conjecture
for 1-cycles on rationally connected varieties without real points over arbitrary real
closed fields (although we will see that it fails in general for uniruled threefolds with
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no real points in Section 9.4.2 below, see Example 9.22). It is natural to wonder about
the following partial generalisation of [BW18, Quest. 2.16]:

Question 9.11. — Does the real integral Hodge conjecture hold for 1-cycles on ratio-
nally connected varieties X over R such that X(R) = ∅ ?

By Proposition 9.1, a positive answer would imply that in any bounded family of
rationally connected varieties over R, the members that have no real point contain a
geometrically irreducible curve of even geometric genus whose degree with respect to
a fixed polarisation is uniformly bounded. Already in the case of quartic threefolds
without real points (Example 7.3), we do not know if such a uniform bound exists.

9.3. Hypersurfaces in P4. — In this paragraph, we discuss the existence of geomet-
rically irreducible curves of even geometric genus in smooth hypersurfaces X ⊂ P4

R.
By [BW18, Prop. 3.9], this is only interesting if X(R) = ∅, which we now assume;
the degree δ of X is then even. By [BW18, Th. 3.16], the existence of a geometrically
irreducible curve of even geometric genus on X would follow from the validity of the
real integral Hodge conjecture for 1-cycles on X.

The intersection ofX by two general hyperplanes is a curve of genus (δ−1)(δ−2)/2,
showing that there exist such curves when δ ≡ 2 (mod 4). When δ = 4, we have
already explained in Example 7.3 that X contains a geometrically irreducible curve
of even geometric genus if R = R, but that we do not know whether this still holds
over arbitrary real closed fields. This is related to Question 9.11.

When δ > 6, we are out of the rationally connected or Calabi-Yau range, and there
are no general reasons to expect that the real integral Hodge conjecture for 1-cycles
on X holds. Recall from [BW18, Th. 3.6] the existence of a morphism:

(9.3) ϕ : CH1(X) −→ Z/2Z

sending the class of an integral curve to 1 if and only if it is geometrically integral
of even geometric genus. Over C, Griffiths and Harris have conjectured that a very
general hypersurface X ⊂ P4

C of degree δ > 6 satisfies CH1(X) ' Z, generated by
the intersection of X with two general hyperplanes [GH85, 1) p. 32]. At this point, it
is natural to consider the real analogue of this conjecture:

Question 9.12. — Does a very general hypersurface X ⊂ P4
R of degree δ > 6 satisfy

CH1(X) ' Z, generated by the intersection of X with two general hyperplanes ?

If this question has a positive answer, a very general degree δ hypersurface X ⊂ P4
R

without real points contains no geometrically integral curve of even geometric genus
if δ ≡ 0 (mod 4) and δ > 8. Indeed, in this case, the morphism ϕ of (9.3) sends
the generator of CH1(X) to 0 because (δ − 1)(δ − 2)/2 is odd. This motivates the
question:

Question 9.13. — If δ ≡ 0 (mod 4) and δ > 8, do there exist smooth hypersurfaces of
degree δ in P4

R containing no geometrically integral curve of even geometric genus ?
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Although we do not know if any such hypersurface exists over R, we are able to
give examples over non-archimedean real closed fields.

Example 9.14. — If δ ≡ 0 (mod 4) and δ > 8, we construct a smooth hypersur-
face X of degree δ in P4

R over the real closed field R :=
⋃
nR((t1/n)) containing no

geometrically irreducible curve of even geometric genus.
Write δ = 2ε with ε > 4 even. Let

F1 := xε0 + · · ·+ xε4 ∈ H0(P4
R,O(ε))

be the Fermat equation, and choose F2 ∈ H0(P4
R,O(ε)) very general. The surface

S := {F1 = F2 = 0} is smooth and has no R-point. By the Noether-Lefschetz
theorem [Voi02, Th. 15.33] applied to the threefold {F1 = 0} ⊂ P4

C, the geometric
Picard group Pic(SC) is generated by O(1), hence so is Pic(S). Since a hyperplane
section of S has odd genus ε3 − 2ε2 + 1, [BW18, Th. 3.6] shows that S contains no
geometrically irreducible curve of even geometric genus.

Fix a general F ∈ H0(P4
C,O(ε)) vanishing on SC that is not defined over R,

define G := FF ∈ H0(P4
R,O(δ)) to be the product with its complex conjugate, and

let X0 := {G = 0} ⊂ P4
R. A point x ∈ X0(R) satisfies F = 0 or F = 0, hence

F = F = 0 because it is real. Since the pencil generated by F and F coincides with
the one generated by F1 and F2, we would have x ∈ S(R). This is a contradiction and
shows that X0(R) = ∅. Note that X0 contains no geometrically irreducible curve of
even geometric genus: as the two irreducible components of (X0)C are exchanged by
Galois, such a curve would lie on their intersection, hence on S.

Choose the equation H ∈ H0(P4
R,O(δ)) of a smooth hypersurface, and let X :=

{G + tH = 0} ⊂ P4
R. The hypersurface X is smooth because so is {H = 0} and has

no R-points because X0(R) = ∅. Arguing as at the end of Example 9.6, we see that
it contains no geometrically irreducible curve of even geometric genus because neither
does X0.

9.4. Conic bundles without real points. — The main goal of this paragraph is the
study, in Section 9.4.2, of the image of cl : CH1(X) → H4

G(X(C),Z(2)) for conic
bundles X over surfaces over a real closed field R, when X(R) = ∅. It turns out to
be strongly related to two classical properties, of independent interest, of algebraic
varieties over R: the signs and EPT properties. We first study them in Section 9.4.1.

9.4.1. The signs and EPT properties

Definition 9.15. — Let X be a smooth projective variety over a real closed field R.
We say that

(i) X satisfies the signs property if for everyK ⊂ X(R) that is a union of connected
components, there is a rational function g on X that is invertible on X(R), such that
g > 0 on K and g < 0 on X(R) rK;

(ii) X satisfies the EPT property if for every line bundle L on X with vanishing
Borel-Haefliger class clR(L) ∈ H1(X(R),Z/2Z), there exists a divisor D on X such
that L ' OX(D) and the support of D contains no R-points.
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These two properties are closely related, and complement each other. Together,
they completely describe, for any open subset U ⊂ X, the possible distributions of
signs U(R)→ Z/2Z induced by rational functions g on X invertible on U(R).

The signs and EPT properties have been proven to hold when X is a curve, by
Witt [Wit34] over the field R of real numbers and by Knebusch [Kne76] over general
real closed fields. For an arbitrary X over R, the signs property is an immediate
consequence of the Stone-Weierstrass approximation theorem, and the EPT property
has been proven by Bröcker [Brö80]. Several proofs of Bröcker’s EPT theorem have
been given since then, and we refer to [Sch95, §4] for one of them and an account of
the literature. At the end of Section 9.4.2, we will establish the validity of the signs
and EPT properties for a large class of surfaces over an arbitrary real closed field that
includes all geometrically rational surfaces:

Theorem 9.16. — Let S be a smooth projective surface over R such that H2(S,OS) =

Pic(SC)[2] = 0. Then S satisfies the signs and EPT properties.

Despite these positive results, the signs property does not hold in general. In
[BCR98, Example 15.2.2], there is an example of a K3 surface X over a non-
archimedean real closed field that does not satisfy the signs property (more precisely,
consider the minimal resolution of singularities of the surface of loc. cit.).

It was an open problem ([IS88, p. 309], [Sch95, (4.2)]) to decide whether the EPT
property always holds. We construct the first example showing that it fails in general.
Our example has two sources of inspiration: the counterexample [BCR98, Ex. 15.2.2]
to the signs property mentioned above and, most importantly, Ducros’ example
[Duc98, §8] discussed in Example 9.7.

Proposition 9.17. — There exists a K3 surface S over R :=
⋃
nR((t1/n)) that does

not satisfy the EPT property.

Proof. — Consider P1
R × P1

R with homogeneous coordinates ([x : y], [v : w]). Let T
be the double cover of P1

R ×P1
R, with branch locus of bidegree (4, 4), defined by the

equation
z2 = x(y − x)(xw2 − yv2)(xw2 + yv2)− tw4y4.

Since T has only rational double points as singularities, its minimal resolution of
singularities S is a K3 surface over R. We denote by i : T → T the involution
associated with the double cover.

The unique connected component K of S(R) contained in 0 < x/y < 1 is semi-
algebraically isomorphic to a sphere, hence satisfies H1(K,Z/2Z) = 0. The strict
transform D of D := {v = 0} in S has real points only in K, so that its Borel-
Haefliger class is trivial. Suppose for contradiction that S satisfies the EPT property.
Then D is linearly equivalent to a divisor whose support has no R-points. Pushing
forward to T shows that D is linearly equivalent in T to a Weil divisor whose support
contains only finitely many R-points.
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Write D = E1 − E2 + div(f), where E1 and E2 are effective Weil divisors whose
supports contain finitely many R-points. The divisor E2 + i(E2) comes from P1×P1,
hence is the zero locus of a section in H0(T,O(d1, d2)) for some d1, d2 ∈ Z. It follows
that E1 + i(E2) is the zero locus of a section in H0(T,O(d1, d2 + 1)). These two
divisors have finitely many R-points in their support. Consequently, after possibly
replacing d2 by d2 + 1, we have constructed s ∈ H0(T,O(d1, d2)) with d2 odd such
that {s = 0} contains finitely many R-points.

Suppose there exists a ∈ T (R) such that s(a) 6= 0, i∗s(a) 6= 0 but s(a)+ i∗s(a) = 0.
Choose a semi-algebraic path γ : [0, 1] → T (R) joining a and a point b ∈ T (R) in
the ramification locus. Since s vanishes at only finitely many R-points, it is possible
to assume (after changing b) that neither s nor i∗s vanishes along the path. Since b
is a ramification point, s(b) = i∗s(b). By hypothesis, s(a) = −i∗s(a). Since [0, 1] is
semi-algebraically connected, the continuous semi-algebraic map

λ 7−→ i∗s(γ(λ))/s(γ(λ))

must reach the value 0, a contradiction. We have proven that s(a)+i∗s(a) = 0 implies
that s(a) = 0 or i∗s(a) = 0, hence that s+ i∗s vanishes at only finitely many R-points
of T .

Since s+ i∗s is i∗-invariant, it comes from a section s′ ∈ H0(P1
R ×P1

R,O(d1, d2))

that vanishes at only finitely many R-points outside of the closed semi-algebraic subset
Θ ⊂ P1(R)×P1(R) defined by the inequality

(9.4) x(y − x)(xw2 − yv2)(xw2 + yv2) 6 tw4y4.

Replacing B := {s′ = 0} by an appropriate reduced irreducible component, we may
assume that B is integral.

Let A = R[[t1/n]], with n large enough that B = B ⊗A R for some closed integral
subscheme B ⊂ P1

A × P1
A. Let B′ be the normalisation of B and B′ = B′ ⊗A R.

The map B′ ⊗A R → P1
R induced by the first projection is generically finite of

degree d2, which is odd; therefore B′ ⊗A R possesses an irreducible component Y of
odd multiplicity m, which dominates P1

R with odd degree. Letting Yr ⊂ B′r ⊃ B′r
denote the real spectra of Y , B′ and B′, the inequality (9.4) now defines a closed
subset ΘA of B′r which contains B′r. The completion of the local ring of B′ at the
generic point of Y is isomorphic, over A, to R(Y )[[u]], where u = (αt1/n)1/m for
some α ∈ R(Y )∗. As m is odd, any ordering of R(Y ) can be extended to R(Y )((u)),
compatibly with the given ordering on A, by declaring that u is infinitely small of the
same sign as α. Thus, any point of Yr above the generic point of Y belongs to the
closure of B′r in B′r (see [BCR98, Prop. 7.1.21]) and, hence, to ΘA. Letting Y ′ be the
normalisation of Y , it follows that the image of Y ′r in Yr is contained in ΘA.

We have now constructed a smooth, proper, irreducible curve Y ′ over R, endowed
with two rational functions x, v ∈ R(Y ′)∗, such that the map x : Y ′ → P1

R has odd
degree and such that the function

g = x(1− x)(x− v2)(x+ v2)
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takes negative values on Y ′(R) wherever it is invertible. There exists P ∈ Y ′(R) at
which x vanishes to odd order. The function g then has a zero or pole of odd order
at P ; its sign therefore changes around P , a contradiction. �

Proposition 9.17 and [BCR98, Ex. 15.2.2] illustrate the importance of the require-
ment that H2(S,OS) vanish in the statement of Theorem 9.16. We now provide an
example showing that the hypothesis that Pic(SC)[2] = 0 is also essential. We adapt
the argument of [BCR98, Ex. 15.2.2].

Proposition 9.18. — There exists a bielliptic surface S over R :=
⋃
nR((t1/n)) that

does not satisfy the signs property.

Proof. — Let E be the elliptic curve with Weierstrass equation y2 = x(x+ 1)(x− t)
over R. Consider the abelian surface A = E2, with coordinates (x1, y1) (resp. (x2, y2))
on the first (resp. second) factor. The set of real points A(R) has four semi-algebraic
connected components. Let K ⊂ A(R) be the one satisfying the inequalities
−1 6 x1, x2 6 0. Let Z/2Z act on A diagonally, by −1 on the first factor, and
on the second factor, by translation by the 2-torsion point (x2, y2) = (t, 0) in the
same connected component of E(R) as the identity. Let S be the quotient of A by
this fixed-point-free action: it is a bielliptic surface over R. Since the quotient map
π : A→ S is finite étale, the image π(K) of K in S(R) is a semi-algebraic connected
component of S(R).

Suppose for contradiction that S satisfies the signs property. Then there exists a
non-zero rational function g on S that is invertible on S(R) and such that g > 0 on
π(K) and g 6 0 on S(R) r π(K). View g as a rational function on A, represent it as
a rational function in x1, y1, x2, y2, and multiply it by an appropriate square so that
g ∈ R[x1, y1, x2, y2]. Define h ∈ R[x1, x2] by the formula

h = g(x1, y1, x2, y2) + g(x1,−y1, x2, y2) + g(x1, y1, x2,−y2) + g(x1,−y1, x2,−y2).

Then h is a non-zero polynomial that is non-negative when −1 6 x1, x2 6 0 and
non-positive when x1, x2 > t, when x1 > t and −1 6 x2 6 0, as well as when
x2 > t and −1 6 x1 6 0. Specialising h when t = 0 yields a non-zero polynomial
h0 ∈ R[x1, x2] that is non-negative when −1 6 x1, x2 6 0 and non-positive in all
other cases for which −1 6 x1, x2. The way the sign of h0 changes when crossing the
line {x1 = 0} shows that the multiplicity of x1 as a factor of h0 is both even and odd,
a contradiction. �

Scheiderer has shown in [Sch95, App.] that the EPT property is equivalent to a
weakened formulation of it, and his arguments imply an analogous result for the signs
property. We explain this in the following proposition. As in [Sch95], we say that an
irreducible variety Z over R is real (resp. non-real) if the Zariski closure of Z(R) is
equal to (resp. is a proper subset of) Z.
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Proposition 9.19. — Let X be a smooth projective variety over R.
(i) Suppose that for every union K of connected components of X(R), there is an

invertible function g on a dense open subset U ⊆ X such that g > 0 on U(R) ∩ K
and g < 0 on U(R) r (U(R) ∩K). Then X satisfies the signs property.

(ii) Suppose that for every line bundle L on X with vanishing Borel-Haefliger class
clR(L) ∈ H1(X(R),Z/2Z), there exists a divisor D on X all of whose real components
have even multiplicity, and such that L = OX(D). Then X satisfies the EPT property.

Proof. — Statement (ii) is due to Scheiderer [Sch95, App., Prop.].
To show (i), we may assume that X is irreducible. We fix a union K of connected

components of X(R) and an invertible function g on a dense open subset U ⊆ X such
that g > 0 on U(R) ∩K and g < 0 on U(R) r (U(R) ∩K). Let Spec(A) ⊂ X be an
affine open subset containing X(R). Since g does not change its sign on connected
components of X(R), a real irreducible divisor can only appear with even multiplicity
in div(g). Scheiderer shows in [Sch95, App., Proof of Lem. 2] that for every irreducible
divisor y of Spec(A), there exists h ∈ A that is a sum of squares in R(X) such that
the support of 2y − div(h) only contains non-real divisors. He also shows in [Sch95,
App., Proof of Lem. 1] that for every non-real irreducible divisor y of Spec(A), there
exists h ∈ A that is a sum of squares in R(X) such that the support of y−div(h) has
no R-points. Combining these two facts, we see that there exists h ∈ A that is a sum
of squares in R(X) such that the support of div(g) − div(h) has no R-points. The
rational function g/h ∈ R(X)∗ then shows that X satisfies the signs property. �

9.4.2. Torsion in the cokernel of the cycle class map. — We now complement the exam-
ples of §9.2 by studying some uniruled threefolds X over R with X(R) = ∅. Since
such a variety may not satisfy H2(X,OX) = 0, the definition of the real integral
Hodge conjecture for 1-cycles on X of [BW18, Def. 2.3] does not apply. As a substi-
tute, we will rather consider the statement, for a smooth proper variety X over R of
pure dimension d, that the cokernel of

cl : CH1(X) −→ H2d−2
G (X(C),Z(d− 1))0

has no torsion. If R = R or H2(X,OX) = 0, a norm argument based on the validity
of the (rational, complex) Hodge conjecture for 1-cycles shows that this statement is
equivalent to the real integral Hodge conjecture for 1-cycles on X.

Proposition 9.20. — Let f : X → S be a morphism of smooth projective connected
varieties over R whose generic fibre is a conic. Suppose that S is a surface sat-
isfying the signs and EPT properties, and that X(R) = ∅. Then the cokernel of
cl : CH1(X)→ H4

G(X(C),Z(2)) has no torsion.

Proof. — First, we may assume that f is a Sarkisov standard model by applying
Theorem 6.10 and [BW18, Prop. 2.13], noting that if µ : S′ → S is a birational
morphism of smooth projective surfaces, writing µ as a composition of blow-ups at
closed points shows that S′ satisfies the signs and EPT properties.
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Let α ∈ H4
G(X(C),Z(2)) be such that Nα is algebraic for some integer N > 1. We

wish to show that α is algebraic. The proof closely follows that of Theorem 6.1 given
in Section 6.4, and we only explain the differences.

Step 1 is irrelevant since X(R) = ∅.
To perform Step 2, we note that f∗α ∈ H2

G(S(C),Z(1)) is algebraic by [BW18,
Prop. 2.9] and the compatibility of cl with proper push-forwards [BW18, §1.6.1] and
we replace [Wit37, Satz 22] with the more general [ELP73, §5] and the use of Bröcker’s
theorem [Brö80] with the hypothesis that S satisfies the EPT property.

Step 3 is unchanged.
In the proof of Lemma 6.13 used in Step 4, the use of [AK85, Lem. 9 (1)] can be

circumvented by taking ϕ to be the identity, and the Stone-Weierstrass theorem can
be replaced with the hypothesis that S satisfies the signs property.

Steps 5 and 6 require no modification. �

The hypotheses about the signs and EPT properties are optimal, as shown by the
following proposition:

Proposition 9.21. — Let S be a smooth projective surface over R, let Γ be the
anisotropic conic over R and let X := S × Γ. The following assertions are equiv-
alent:

(i) The cokernel of cl : CH1(X)→ H4
G(X(C),Z(2)) has no torsion.

(ii) The surface S satisfies the signs and EPT properties.

Proof. — That (ii) implies (i) is a consequence of Proposition 9.20. To prove the con-
verse, suppose that (i) holds. We consider Leray spectral sequences as in Section 6.4.3.
Those associated with the G-equivariant sheaf Z(1) and to the morphisms f : X → S

and Γ→ Spec(R) give rise to a commutative diagram with exact rows:

H0(G,Z) //

��

H3(G,Z(1))

��

// H3
G(Γ(C),Z(1))

��

H0
G(S(C),Z) // H3

G(S(C),Z(1)) // H3
G(X(C),Z(1)).

Since H3
G(Γ(C),Z(1)) = 0 by cohomological dimension [BW18, §1.1.3], we deduce

that the upper left horizontal map sends 1 to the non-zero class of H3(G,Z(1)),
hence that the lower left horizontal map sends 1 to ω3 (see [BW18, §1.1.2]).

In turn, the Leray spectral sequence for the equivariant sheaf Z(2) and the mor-
phism f : X → S provides an exact sequence:

(9.5) H1
G(S(C),Z(1))

ω3

−−−→ H4
G(S(C),Z(2))

f∗−−−→ H4
G(X(C),Z(2))

f∗−−−→ H2
G(S(C),Z(1))

ω3

−−−→ H5
G(S(C),Z(2)),

where two of the horizontal maps are the cup product by ω3 ∈ H3
G(S(C),Z(1)), by

the above computation and the multiplicative properties of Leray spectral sequences.
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Let σ ∈ H0(S(R),Z/2Z) be a collection of signs. By [BW18, §1.1.3, (1.30)],

H5
G(S(C),Z(3))

∼−→ H5
G(S(R),Z(3)) ' H0(S(R),Z/2Z)⊕H2(S(R),Z/2Z)

and one may lift (σ, 0) to a class α ∈ H5
G(S(C),Z(3)). By the exact sequence [BW18,

(1.7)]

H4(S(C),Z) −→ H4
G(S(C),Z(2))

ω−−→ H5
G(S(C),Z(3)) −→ H5(S(C),Z) = 0,

one may write α = β ^ ω for some class β ∈ H4
G(S(C),Z(2)) (see [BW18, §1.1.2]).

Since ω is 2-torsion, 2β is the norm of a class in H4(S(C),Z), hence is algebraic.
So are 2f∗β and, by (i), f∗β ∈ H4

G(X(C),Z(2)). Let z be a 1-cycle on X such that
f∗β = cl(z) and U be the complement in S of the image by f of the support of z.
The exact sequence analogous to (9.5) for the base change morphism fU : XU → U

H1
G(U(C),Z(1))

ω3

−−−→ H4
G(U(C),Z(2)) −→ H4

G(XU (C),Z(2))

shows that there exists γ ∈ H1
G(U(C),Z(1)) such that γ ^ ω3 = β|U . Consider the

reduction
γ ∈ H1

G(U(C),Z/2Z) = H1
ét(U,Z/2Z)

of γ modulo 2. Its image in H1
ét(U,Gm) = Pic(U) vanishes after shrinking U , so that

we may assume that it lifts, by the Kummer exact sequence, to g ∈ H0
ét(U,Gm). By

construction, the signs of g on U(R) are given by σ, and S has the signs property by
Proposition 9.19 (i).

Let L ∈ Pic(S) be such that clR(L) = 0. We deduce from [BW18, Th. 1.18] that
cl(L)|S(R) = 0 ∈ H2

G(S(R),Z(1)). It follows that cl(L) ^ ω3 = 0, since

H5
G(S(C),Z(2))

∼−→ H5
G(S(R),Z(2))

by [BW18, §1.1.3]. By (9.5), we now deduce that

cl(L) = f∗α ∈ H2
G(S(C),Z(1))

for some class α ∈ H4
G(X(C),Z(2)). On the one hand, representing L by a linear

combination of integral curves Ci ⊂ S and considering an appropriate combination
of integral curves Di ⊂ X such that f(Di) = Ci shows that there exists z ∈ CH1(X)

such that cl(f∗z) is a multiple of cl(L). On the other hand, a norm argument shows
that the double of every element in H4

G(S(C),Z(2)) is algebraic. Combining these
two facts and (9.5) shows that some multiple of α is algebraic. By (i), α = cl(w)

for some 1-cycle w on X. Let B be an integral curve in the support of w that is
not contracted by f . Since B(R) ⊂ X(R) = ∅, if the morphism B → f(B) has odd
degree, f(B)(R) cannot meet the smooth locus of f(B). We deduce that all the real
components of f∗w have even multiplicity. Consequently, S has the EPT property by
Proposition 9.19 (ii). �

Example 9.22 (uniruled threefolds with no real point). — Combining Proposi-
tion 9.21 with the counterexamples to the signs and EPT properties given in [BCR98,
Ex. 15.2.2], in Proposition 9.17 and in Proposition 9.18 provides examples of smooth
projective uniruled threefolds X over the real closed field R =

⋃
nR((t1/n)) such that

J.É.P. — M., 2020, tome 7



On the integral Hodge conjecture for real varieties, II 423

the cokernel of the cycle class map cl : CH1(X) → H4
G(X(C),Z(2))0 has non-trivial

torsion and such that X(R) = ∅. According to [BW18, Prop. 5.2], these varieties
have non-trivial third unramified cohomology group H3

nr(X,Q/Z(2)).
If S is the bielliptic surface of Proposition 9.18 and Γ is the anisotropic conic

over R, the variety X = S × Γ satisfies H2(X,OX) = 0. It then follows from the
discussion at the beginning of Section 9.4.2 that this uniruled threefold with no real
point fails the real integral Hodge conjecture for 1-cycles.

We may now give the

Proof of Theorem 9.16. — If S(R) = ∅, there is nothing to prove, so we assume that
there exists a real point s ∈ S(R). Define X := S × Γ, where Γ is the anisotropic
conic over R. By Proposition 9.21 and since H2(X,OX) = 0, it suffices to prove the
real integral Hodge conjecture for X. By [BW18, Th. 3.22], it suffices to show that X
contains a geometrically integral curve of even genus. But there is an obvious one:
{s} × Γ ⊂ X. �

9.5. Cubic hypersurfaces. — Despite the above counterexamples, the real integral
Hodge conjecture does hold for some particular families of varieties over arbitrary real
closed fields. We illustrate this in the case of cubic hypersurfaces in Theorem 9.23 be-
low. In particular, although cubic threefolds over R are rationally connected threefolds
with R-points, they do not give rise to examples analogous to Example 9.7.

Note that, even over the field of real numbers, Theorem 9.23 is stronger than what
we have considered before, because it concerns only lines, and not general curves. It
is this boundedness on the degree of the curves that allows the proof to go through
over an arbitrary real closed field.

Theorem 9.23. — Let X be a smooth cubic hypersurface of dimension d > 3 over R.
(i) The group CH1(X) is generated by real lines and sums of two complex conjugate

lines. If R = R, real lines suffice.
(ii) The Borel-Haefliger classes of real lines on X generate H1(X(R),Z/2Z).
(iii) The cohomology classes of real lines on X generate H2d−2

G (X(C),Z(d− 1))0.

Proof. — A smooth cubic surface S which is a linear section of X contains exactly
27 lines over C. Since 27 is odd, at least one of these has to be G-invariant, hence is
a real line L ⊂ X. The first part of (i) then follows from a theorem of Shen [She19,
Th. 1.7]. To prove the second part of (i), we introduce the variety of lines FX of X:
it is a smooth projective geometrically connected variety over R [AK77, Cor. 1.12,
Th. 1.16 (i)], and we let Z ⊂ X × FX be the universal line. The first part of (i) is
equivalent to the surjectivity of

[Z]∗ : CH0(FX) −→ CH1(X).

If R = R, Lemma 9.25 below then implies that CH1(X) is generated by the [Z]∗x for
x ∈ FX(R), that is, by real lines on X.
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Projecting from the real line L shows that X is birational to a conic bundle
over Pd−1

R . If R = R, we deduce from Theorem 6.1 and [BW18, Prop. 2.13 & 2.15]
that X satisfies the real integral Hodge conjecture for 1-cycles. Combining this fact
with (i), we see that if X is a smooth cubic hypersurface of dimension d over R, the
group H2d−2

G (X(C),Z(d − 1))0 is generated by classes of curves of degree 1 on X.
By Proposition 9.1 applied to the universal family of smooth cubic hypersurfaces of
dimension d over R, the real integral Hodge conjecture holds for 1-cycles on smooth
cubic hypersurfaces of dimension d over real closed field extensions of R, hence over
arbitrary real closed fields by Proposition 9.3 since any two real closed fields can be
embedded simultaneously in a third one (see [Con01, Th. 28] or [CK90, Prop. 3.5.11,
Ex. p. 197]).

By [BW18, Th. 3.6 and Prop. 3.14], we deduce that the Borel-Haefliger cycle class
map clR : CH1(X)→ H1(X(R),Z/2Z) is surjective. The first part of (i) now implies
that H1(X(R),Z/2Z) is generated by Borel-Haefliger classes of real lines and sums of
complex conjugate lines. Since the Borel-Haefliger class of a sum of complex conjugate
lines vanishes, we have shown (ii).

The cycle class clC(L′) ∈ H2d−2(X(C),Z(d− 1)) of a line L′ ⊂ XC is independent
of L′ by the Lefschetz hyperplane theorem. Therefore so is the equivariant cycle class

cl(L′ + L
′
) = NC/R(clC(L′)) ∈ H2d−2

G (X(C),Z(d− 1))0.

It follows that cl(L′ + L
′
) = 2cl(L). Thus (i) and the real integral Hodge conjecture

for 1-cycles on X imply (iii). �

Remarks 9.24
(i) Theorem 9.23 (iii) and the second assertion of Theorem 9.23 (i) fail for some

smooth cubic surfaces X over R. Indeed,

Pic(X) = H2
G(X(C),Z(1))

by [BW18, Prop. 2.8] but this group may be of rank 4 while X contains only 3 real
lines [Sil89, Ch.VI, (5.4.4)]. In contrast, a case by case analysis based on [Sil89,
Ch.VI, (5.4)] shows that Theorem 9.23 (ii) still holds for smooth cubic surfaces overR.
This argument works over an arbitrary real closed field R as the classification [Sil89,
Ch.VI, (5.4)] of real cubic surfaces holds over such a field, with the same proof. Finally,
the first assertion of Theorem 9.23 (i) also holds for smooth cubic surfaces over R, as
follows from the validity of Theorem 9.23 (ii) for them, from [BW18, Prop. 3.14] and
from the fact that Pic(XC) is generated by lines.

(ii) A direct approach to establishing Theorem 9.23 (ii) over R = R through a
topological classification of the real locus of cubic hypersurfaces runs into the dif-
ficulty that such a classification is only understood in dimension 6 4 (see [FK10]).
Nevertheless, in [FK19], Finashin and Kharlamov provide a direct, purely topological
proof of Theorem 9.23 (ii) over R = R.

Lemma 9.25. — Let Y be a smooth projective connected variety over R such that
Y (R) 6= ∅. Then CH0(Y ) is generated by the classes of real points of Y .

J.É.P. — M., 2020, tome 7



On the integral Hodge conjecture for real varieties, II 425

Proof. — Looking at smooth curves in Y going through an arbitrary closed point
of Y and a fixed real point of Y , we are immediately reduced to the case where Y
is a curve. Then CH0(Y ) = Pic(Y ). Let g be the genus of Y , J := Pic0(Y ) be its
jacobian, and J(R)0 be the connected component of the identity of J(R). We also
choose a connected component K ⊂ Y (R). Combining the exact sequence

0 −→ J(R) −→ Pic(Y )
deg−−−−→ Z −→ 0

and [vH00, Ch. IV, Cor. 4.2] (in the statement of which H1 should read H2), we see
that

J(R)0 = Ker
(
cl : Pic(Y ) −→ H2

G(Y (C),Z(1))
)
.

By [BW18, Lem. 2.11], H2
G(Y (C),Z(1)) is generated by classes of real points on Y .

Consequently, it suffices to show that every line bundle on Y whose class belongs to
J(R)0 is linearly equivalent to a linear combination of real points of Y . We introduce
the subgroup H ⊂ J(R)0 of classes satisfying this property.

Look at the morphism ϕ : Y 2g → J defined by

ϕ(P1, . . . , Pg, Q1, . . . , Qg) = OY (P1 + · · ·+ Pg −Q1 − · · · −Qg).

It is dominant as is checked geometrically, hence generically smooth. We deduce that
the induced map K2g → J(R)0 is open at some point, hence that H contains a
non-empty open subset of J(R)0. By homogeneity, H is a non-empty open subset of
J(R)0. As J(R)0 rH is stable under translation by any element of H, it must also
be open. Hence H is open and closed in J(R)0, so that H = J(R)0, as desired. �

Remark 9.26. — In Theorem 9.23, we do not know whether the second part of (i)
holds over arbitrary real closed fields. The proof does not work because Lemma 9.25
fails in this more general setting. Here is an example.

Let Y be a smooth projective curve of genus 2 over R :=
⋃
nR((t1/n)) such that

Y (R) 6= ∅. We suppose that Y is defined over R((t)) and has a model over R[[t]] whose
special fibre is a stable curve Y0 of genus 2 over R that, over C, consists of two genus
one curves intersecting transversally in one point P and exchanged by the action of G.
Since Y0 is of compact type, the jacobian J of Y has good reduction over R[[t]], with
as special fibre the jacobian of Y0. The R-points of Y all specialise to the only real
point P of Y0, so that the classes in J(R) representing line bundles linearly equivalent
to a sum of R-points of Y all specialise to the origin in J0(R). But all points of J0(R)

lift to J(R) by Hensel’s lemma, so that there exist line bundle classes in J(R) not
linearly equivalent to a sum of R-points of Y .
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