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THE GINZBURG-LANDAU FUNCTIONAL
BY Sercio Conti, MicuaeL GoLpman, FELix OTro
& SYLVIA SERFATY
Asstract. — We study the Ginzburg-Landau model of type-I superconductors in the regime

of small external magnetic fields. We show that, in an appropriate asymptotic regime, flux pat-
terns are described by a simplified branched transportation functional. We derive the simplified
functional from the full Ginzburg-Landau model rigorously via I'-convergence. The detailed
analysis of the limiting procedure and the study of the limiting functional lead to a precise
understanding of the multiple scales contained in the model.

Résumt (Dérivation d’une fonctionnelle de type transport branché & partir du modeéle de
Ginzburg-Landau)

Nous étudions le modele de Ginzburg-Landau pour les supraconducteurs de type I dans
le régime de faible champ magnétique extérieur. Nous montrons qu’asymptotiquement, le flux
magnétique se concentre sur des structures unidimensionnelles minimisant une fonctionnelle de
type transport branché. Nous obtenons cette fonctionnelle simplifiée par I'-convergence & partir
du modeéle de Ginzburg-Landau complet. Ceci permet d’obtenir une compréhension fine des
différentes échelles mises en jeu.
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1. INnTRODUCTION

In 1911, K. Onnes discovered the phenomenon of superconductivity, manifested in
the complete loss of resistivity of certain metals and alloys at very low temperature.
W. Meissner discovered in 1933 that this was coupled with the expulsion of the mag-
netic field from the superconductor at the critical temperature. This is now called
the Meissner effect. After some preliminary works of the brothers F. and H. London,
V. Ginzburg and L. Landau proposed in 1950 a phenomenological model describing
the state of a superconductor. In their model (see (1.1) below), which belongs to
Landau’s general theory of second-order phase transitions, the state of the material
is represented by the order parameter u : 2 — C, where {2 is the material sample.
The density of superconducting electrons is then given by p := |u|?. A microscopic
theory of superconductivity was first proposed by Bardeen-Cooper-Schrieffer (BCS)
in 1957, and the Ginzburg-Landau model was derived from BCS by Gorkov in 1959
(see also [22] for a rigorous derivation).

One of the main achievements of the Ginzburg-Landau theory is the prediction and
the understanding of the mixed (or intermediate) state below the critical temperature.
This is a state in which, for moderate external magnetic fields, normal and supercon-
ducting regions coexist. The behavior of the material in the Ginzburg-Landau theory
is characterized by two physical parameters. The first is the coherence length £ which
measures the typical length on which u varies, the second is the penetration length A
which gives the typical length on which the magnetic field penetrates the supercon-
ducting regions. The Ginzburg-Landau parameter is then defined as x := A/¢. The
Ginzburg-Landau functional is given by

2
(1.1) / IVaul? + (1 — |uf?)? da +/ |V x A — Boy|* dr,
Q 2 R?

where A : R® — R? is the magnetic potential (so that B := V x A is the magnetic
field), Vau := Vu — iAu is the covariant derivative of u and Bey is the external
magnetic field. In these units, the penetration length A is normalized to 1. As first
observed by A. Abrikosov this theory predicts two types of superconductors. On the
one hand, when k < 1/ V2, there is a positive surface tension which leads to the
formation of normal and superconducting regions corresponding to p ~ 0 and p ~ 1
respectively, separated by interfaces. These are the so-called type-I superconductors.
On the other hand, when x > 1/1/2, this surface tension is negative and one expects
to see the magnetic field penetrating the domain through lines of vortices. These
are the so-called type-II superconductors. In this paper we are interested in better
understanding the former type but we refer the interested reader to [39, 37, 38] for
more information about the latter type. In particular, in that regime, there has been an
intensive work on understanding the formation of regular patterns of vortices known
as Abrikosov lattices.

In type-I superconductors, it is observed experimentally [36, 34, 35] that complex
patterns appear at the surface of the sample. It is believed that these patterns are a
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manifestation of branching patterns inside the sample. Although the observed states
are highly history-dependent, it is argued in [15, 35] that the hysteresis is governed
by low-energy configurations at vanishing external magnetic field. The scaling law of
the ground-state energy was determined in [13, 15] for a simplified sharp interface
version of the Ginzburg-Landau functional (1.1) and in [19] for the full energy, these
results indicate the presence of a regime with branched patterns at low fields.

This paper aims at a better understanding of these branched patterns by going
beyond the scaling law. Starting from the full Ginzburg-Landau functional, we prove
that in the regime of vanishing external magnetic field, low energy configurations
are made of nearly one-dimensional superconducting threads branching towards the
boundary of the sample. In a more mathematical language, we prove I'-convergence
[9, 21] of the Ginzburg-Landau functional to a kind of branched transportation func-
tional in this regime. We focus on the simplest geometric setting by considering the
sample Q to be a box Q.1 := (—Lo/2,Lo/2)* x (=T, T) for some T, Ly > 0 and
consider periodic lateral boundary conditions. The external magnetic field is taken to
be perpendicular to the sample, that is Beys := bextes for some beyy > 0 and where eg
is the third vector of the canonical basis of R3. After making an isotropic rescaling,
subtracting the bulk part of the energy and dropping lower order terms (see (3.5) and
the discussion after it), minimizing (1.1) can be seen as equivalent to minimizing

1
(1.2) Bplu, A) = LQ/Q Vraul? + (Bs — a1 — p))? + | B da
L1
+ HB3 — aﬂ”?{fl/z({xszil})y
where we have let B := (B’,Bs) :=V X A,

KT = V2, bext := and L := Lo/T.

Bk
V2
If u = p/? exp(if), since |Vraul? = [Vp/?|? + p|VO — TAJ?, in the limit T — 400
we obtain, at least formally, that A is a gradient field in the region where p > 0
and therefore the Meissner condition pB = 0 holds. Moreover, in the regime o > 1,
from (1.2) we see that B3 ~ a(1 — p) and p takes almost only values in {0,1}. Hence
div B = 0 can be rewritten as

1
O3x + —div' xB' =0,
a

where ¥ := (1 — p) and div’ denotes the divergence with respect to the first two
variables. Therefore, from the Benamou-Brenier formulation of optimal transportation
[3, 41] and since from the Meissner condition, B’ ~ iB’, the term

1
/ |B'|? dasz/ ~|B'|*dx
QL,I QL,I X

in the energy (1.2) can be seen as a transportation cost. We thus expect that in-
side the sample (this is, in Q1 1), superconducting domains where p ~ 1 and B ~ 0
alternate with normal ones where p >~ 0 and B3 ~ «. Because of the last term
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coherence length
L ﬂ_
S N

> .
penetration length

Iicure 1. The various lengthscales

||Bs — aﬁ”%,lm({m:il}) in the energy (1.2), one expects B ~ afles outside the sam-
ple. This implies that close to the boundary the normal domains have to refine. The
interaction between the surface energy, the transportation cost and the penalization
of an H~'/2 norm leads to the formation of complex patterns (see Figure 1).

It has been proven in [19] that in the regime T > 1, a > 1 and 8 < 1,

(1.3) min Ep(u, A) ~ min{a4/3ﬂ2/3, a10/7,8}.

The scaling min Ez(u, A) ~ o*/332/3 (relevant for a2/ < ) corresponds to uniform
branching patterns whereas the scaling min Ep(u, A) ~ a'%/73 corresponds to non-
uniform branching ones. We focus here for definiteness on the regime min Ez(u, A) ~
a?/332/3 although we believe that our proof can be extended to the other one. Based
on the construction giving the upper bounds in (1.3), we expect that in the first
regime there are multiple scales appearing (see Figure 1):

penetration coherence diameter of the distance between the
(1.4) length < length < threads in the bulk < threads in the bulk,

which amounts in our parameters to

Tl <ol < a /383 « o~ 1/3571/6,
In order to better describe the minimizers we focus on the extreme region of the
phase diagram T,Ta~!, 7!, af7/? — 400, with L = La~'/35~1/6 for some fixed
L > 0. In this regime, we have in particular o= < o~1/351/3 5o that the separation

of scales (1.4) holds. We introduce an anisotropic rescaling (see Section 3) which leads
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to the functional

~ 1
(1.5) Er(u,A):= ? |:-/Q a72/3571/3IV:X1/3571/3TAU|2
L1

— — 2 _ 2 _
+ « 4/3ﬁ 2/3 |(Va1/3571/3TAu)3] +042/3,8 2/3(33 — (1 — |u|2)) +ﬁ 1|B/|2 dx
+al /B3T3 By — 1\@171/2(13:11) '

Our main result is a I'-convergence result of the functional ET towards a functional
defined on measures p living on one-dimensional trees. These trees correspond to the
normal regions in which p ~ 0 and where the magnetic field B penetrates the sample.
Roughly speaking, if for a.e. 3 € (—1,1) the slice of p = p,, ® drs has the form
Pas = Y _; Pi0x,(z5) Where the sum is at most countable, then we let (see Section 5
for a precise definition)

1
(16) I0) == [ K30+ ol P dos

K3

where K, = 8y/7/3 and X; denotes the derivative (with respect to 3) of X;(x3). The
X,’s represent the graphs of each branch of the tree (parametrized by height) and the
pi’s represent the flux carried by the branch. We can now state our main result.

Turorem 1.1. Let Ty, B, — 400 with Tna,jl,ozn,b’zm — 400, L> 0, then:

(i) For every sequence (un, A,) with sup,, ET(un,An) < +00, up to subsequence,
B (1 — |un|?) weakly converges to a measure pu of the form p = piz, ® dwvs with pi., =
Yo pidx, for a.e. x3 € (=1,1), piz, — da’ (where da’ denotes the two dimensional
Lebesgue measure on Q7 ) when x3 — £1 and such that

lim inf ET(un, Ap) = I(w).

n—-+oo

(ii) If in addition L?a,B,T, € 277, where L, := Eaﬁl/?’ﬂ;lm, then for every
measure p such that I(p) < +o00 and pgy, — dz’ as xs — £1, there exists (un, Apn)
such that B;1(1 — |un|?) — u and

limsup Er(un, An) < I(p).

n—-+oo
Proof. By scaling, it suffices to consider the case L = 1. The first assertion follows
from Proposition 6.1, the second one from Proposition 7.1. |

Let us stress once again that our result could have been equivalently stated for the
full Ginzburg-Landau energy (1.1) instead of Ep (see Section 3).

Within our periodic setting, the quantization condition L2a,3,T, € 27Z for the
flux is a consequence of the fact that the phase circulation of the complex-valued
function in the original problem is naturally quantized. It is necessary in order to
make our construction but we believe that it is also a necessary condition for having
sequences of bounded energy (see the discussion in Section 3 and the construction in
Section 7.3). We remark that scaling back to the original variables this condition is
the physically natural one L3bey € 277Z.
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Before going into the proof of Theorem 1.1 we address the limiting functional I(u),
which has many similarities with irrigation (or branched transportation) models that
have recently attracted a lot of attention (see [7] and more detailed comments in
Section 5.4 or the recent papers [11, 10] where the connection is also made to some
urban planning models). In Section 5, we first prove that the variational problem
for this limiting functional is well-posed (Proposition 5.5) and show a scaling law
for it (Proposition 5.2 and Proposition 5.3). In Proposition 5.7, we define the notion
of subsystems which allows us to remove part of the mass carried by the branching
measure. This notion is at the basis of Lemma 5.8 and Proposition 5.11 which show
that minimizers contain no loops and that far from the boundary, they are made of
a finite number of branches. From the no-loop property, we easily deduce Proposi-
tion 5.10 which is a regularity result for minimizers of I. The main result of Section 5
is Theorem 5.15 which proves the density of “regular” measures in the topology given
by the energy I(u). As in nearly every I'-convergence result, such a property is crucial
in order to implement the construction for the upper bound ii.

We now comment on the proof of Theorem 1.1. Let us first point out that if the
Meissner condition pB = 0 were to hold, and A could be written as a gradient field
in the set {p > 0}, then |Vzau|? = |[Vp'/2|? and we would have

(1.7) / \Vraul? + (Bs — a(l — ,o))2 dx
Qra
= /Q |VP1/2‘2 + O‘2Xp>0(1 - P)2 + Xp:()(Bg - 01)2 dx.
L,1

This is a Modica-Mortola [31] type of functional with a degenerate double-well poten-
tial given by W(p) := x,>0(1 — p)?. Thanks to Lemma 6.2, one can control how
far we are from satisfying the Meissner condition. From this, we deduce that (1.7)
almost holds (see Lemma 6.5). This implies that the Ginzburg-Landau energy gives a
control over the perimeter of the superconducting region {p > 0}. In addition, 8 <« 1
imposes a small cross-area fraction for {p > 0}. Using then isoperimetric effects to get
convergence to one-dimensional objects (see Lemma 6.6), we may use Proposition 6.1
to conclude the proof of (i).

In order to prove (ii), thanks to the density result in Theorem 5.15, it is enough
to consider regular measures. Given such a measure p, we first approximate it with
quantized measures (Lemma 5.18). Far from branching points the construction is easy
(see Lemma 7.3). At a branching point, we need to pass from one disk to two (or vice-
versa); this is done passing through rectangles (see Lemma 7.6 and Figure 3). Close
to the boundary we use instead the construction from [19], which explicitly generates
a specific branching pattern with the optimal energy scaling; since the height over
which this is done is small the prefactor is not relevant here (Proposition 7.7). The
last step is to define a phase and a magnetic potential to get back to the full Ginzburg-
Landau functional. This is possible since we made the construction with the Meissner
condition and quantized fluxes enforced, see Proposition 7.8.
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From (1.2) and the discussion around (1.7), for type-I superconductors, the
Ginzburg-Landau functional can be seen as a non-convex, non-local (in «) functional
favoring oscillations, regularized by a surface term which selects the lengthscales of
the microstructures. The appearance of branched structures for this type of problem
is shared by many other functionals appearing in material sciences such as shape
memory alloys [29, 30, 17, 27, 4, 43, 12, 20], uniaxial ferromagnets [14, 32, 28] and
blistered thin films [5, 26, 6]. Most of the previously cited results on branching
patterns (including [13, 15, 19] for type-I superconductors) focus on scaling laws.
Here, as in [32, 18], we go one step further and prove that, after a suitable anisotropic
rescaling, configurations of low energy converge to branched patterns. The two main
difficulties in our model with respect to the one studied in [32] are the presence of an
additional lengthscale (the penetration length) and its sharp limit counterpart, the
Meissner condition pB = 0 which gives a nonlinear coupling between u and B. Let us
point out that for the Kohn-Miiller model [29, 30], a much stronger result is known,
namely that minimizers are asymptotically self-similar [17] (see also [40, 1] for related
results). In [23], the optimal microstructures for a two-dimensional analogue of I ()
are exactly computed.

The paper is organized as follows. In Section 2, we set some notation and recall
some notions from optimal transport theory. In Section 3, we recall the definition of
the Ginzburg-Landau functional together with various important quantities such as
the superconducting current. We also introduce there the anisotropic rescaling leading
to the functional E7. In Section 4, we introduce for the sake of clarity intermediate
functionals corresponding to the different scales of the problem. Let us stress that
we will not use them in the rest of the paper but strongly believe that they help
understanding the structure of the problem. In Section 5, we carefully define the
limiting functional I(u) and study its properties. In particular we recover a scaling
law for the minimization problem and prove regularity of the minimizers. We then
prove the density in energy of ‘regular’ measures. This is a crucial result for the main
I'-convergence result which is proven in the last two sections. As customary, we first
prove the lower bound in Section 6 and then make the upper bound construction in
Section 7.

Acknowledgment. — M. G. thanks E. Esselborn, F. Barret and P. Bella for stimulat-
ing discussions about optimal transportation.

2. NOT/\T]O\I AND PRELIMINARY RESULTS

In the paper we will use the following notation. The symbols ~, 2, < indicate
estimates that hold up to a global constant. For instance, f < g denotes the existence
of a constant C' > 0 such that f < Cg, f ~ g means f < g and g < f. In heuristic
arguments we use a ~ b to indicate that a is close (in a not precisely specified sense)
to b. We use a prime to indicate the first two components of a vector in R3, and

identify R? with R?x{0} CR3. Precisely, for a € R3 we write a’ = (a1, a,0) €R? C R3;
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given two vectors a,b € R® we write o’ x b/ = (a x b)3 = (a’ x b')3. We denote by
(e1,e2,e3) the canonical basis of R3. For L > 0 and T > 0, Q1 = (—L/2,L/2)?
and Qrr = Qr x (=T,T). For a function f defined on Qr r, we denote f,, the
function f,,(2’) := f(2',z3) and we analogously define for Q@ C Qp 1, the set Q.
For x = («/,x3) and r > 0 we let %,.(x) = ZB(z,r) be the ball of radius r centered
at z (in R3) and %.(2') = %'(«',r) be the analogue two-dimensional ball centered
at 2’. Unless specified otherwise, all the functions and measures we will consider are
periodic in the 2’ variable, i.e., we identify Q7 with the torus R?/LZ2. In particular,
for ',y € Qr, |’ —y'| denotes the distance for the metric of the torus, i.e., [z'—y'| :=
mingez2 |2’ —y'+ Lk|. We denote by % the k-dimensional Hausdorff measure. We let
Z(Q1) be the space of probability measures on Qr, and .#(Qr 1) be the space of finite
Radon measures on @, 7, and similarly .Z(Qr). Analogously, we define .#Z(Qr 1)
and .Z1(Qr) as the spaces of finite Radon measures which are also positive. For a
measure y and a function f, we denote by ff#u the push-forward of u by f.

We recall the definition of the (homogeneous) H~'/2 norm of a function f € L*(Q,)
with fQL fda' =0,

(2.1) 1 £I1%1/2 = mf{/ |B|?dz : div B =0, Bs(-,0) = f},
QLX[O,-‘,-OO)

which can be alternatively given in term of the two-dimensional Fourier series as (see,
e.g., [15])

~

1 k|2
M=t 3 HOR

L4
k'€((2m/L)Z)*~ {0}

We shall write || £113, 12, xqary) 0 131200, x gy + 131200 x (-1
The 2-Wasserstein distance between two measures p and v € Z1(Qr) with

w(Qr) = v(Qr) is given by
W) = min Q) L.

where the minimum is taken over measures on @ x @ and II; and II; are the
first and second marginal of ,M respectively. For measures pu,v € .4 (Qr 1), the
2-Wasserstein distance is correspondingly defined. We now introduce some notions
from metric analysis, see [3, 41] for more detail. A curve p : (a,b) = P(QL), z — 1.,
belongs to AC?(a,b) (where AC stands for absolutely continuous) if there exists
m € L?(a,b) such that

|x—y|2dﬂ(x,y) : Hl = W, H2 :V}7

(2.2) Wa(pz, uz) < / m(t)dt Vz,Zwitha<z<Z<b.

Wfor p > 1, we analogously define

Wh(w,v) = min{u(QL) |z — y|P dll(z,y) : II1 = p, IIp = I/}.

QLxQr
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For any such curve, the speed
w. Z5
I |(2) == lim M

sz |z —7Z]
exists for #'-a.e. z € (a,b) and |¢/|(2) < m(z) for #t-ae. 2z € (a,b) for every
admissible m in (2.2). Further, there exists a Borel vector field B such that
(2.3) B(,2) € LQ(QL,,LLZ), ||B(~,z)||L2(QL7MZ) < |(z)  for Hlae ze (a,b)
and the continuity equation
(2.4) O3p, + div' (Bu,) =0

holds in the sense of distributions [3, Th.8.3.1]. Conversely, if a weakly continuous
curve . : (a,b) — F(Qr) satisfies the continuity equation (2.4) for some Borel
vector field B with ||B(-, 2)|r2(q, ) € L*(a,b) then p € AC?*(a,b) and [1/'|(z) <
IB(, 2)|L2(qy .y for #'-ae. z € (a,b). In particular, we have
(2.5) Wi(v,p) = miErgl{2T/ |B|>dp. dz : p_7 = v, pr =0 and (2.4) holds},

Ha Qr,17

where by scaling the right-hand side does not depend on T
For a (signed) measure p€.#(Qr), we define the Bounded-Lipschitz norm of y as

(26) o= s [ wdn
lPllLip<1J/ QL
where for a Qp-periodic and Lipschitz continuous function ¥, [[¢[Lip = ¥l +

IVY]|so- By the Kantorovich-Rubinstein Theorem [41, Th.1.14], the 1-Wasserstein
and the Bounded-Lipschitz norms are equivalent.

3. Thue GiNzZBURG-LLANDAU FUNCTIONAL

In this section we recall some background material concerning the Ginzburg-
Landau functional and introduce the anisotropic rescaling leading to Er.

For a (non necessarily periodic) function v : Qr, r — C, called the order parameter,
and a vector potential A : Qr, x R — R3 (also not necessarily periodic), we define
the covariant derivative

Vau :=Vu—iAu,
the magnetic field

B:=V x A,
and the superconducting current
1 - _
(3.1) ja = 3 (—iu(Vau) + iu(Vau)) = Im(iuV au).

Let us first notice that |V 4u|? and the observable quantities p, B and j4 are invariant
under change of gauge. That is, if we replace u by ue® and A by A + Vi for any
function ¢, they remain unchanged. We also point out that if w is written in polar
coordinates as u = p'/2e* then

IV aul? = [Vp'/2? 4 p| VO — A
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For any admissible pair (u, A), that is such that p, B and ja are Qr,-periodic, we
define the Ginzburg-Landau functional as

2
Ear(u, A) == / IVl + 5 (1= ul?)? da +/ |V x A — Boy|* da.
QrLy,T 2 Qry xR
We remark that u and A need not be (and, if Beyx, 7# 0, cannot be) periodic. See [19]
for more details on the functional spaces we are using. Here Bgyxt := bextes is the

external magnetic field and s € (0,1/4/2) is a material constant, called the Ginzburg-

Landau parameter. From periodicity and div B = 0 it follows that fQL « {5} Bs dx’
0

does not depend on x3 and therefore, if the energy is finite, necessarily

(3.2) / Bsda' = L3beyy  for all z3 € R.
Qrox{z3}

We first remove the bulk part from the energy Fgr,. In order to do so, we introduce
the quantity

Diu = (Ogu — iAgu) — i(O1u — iAju) = (Vau)y —i(Vau);
and, more generally,

.@f‘u = (8k+2u — iAk+2u) — i(8k+1u — iAk+1u) == (VAU)k+2 - i(VAu)k+1,
where components are understood cyclically (i.e., ax = agy3). The operator P4
(which corresponds to a creation operator for a magnetic Laplacian) was used by
Bogomol'nyi in the proof of the self-duality of the Ginzburg-Landau functional at
k= 1/V/2 (cf. e.g. [25]). His proof relied on identities similar to the next ones, which
will be crucial in enabling us to separate the leading order part of the energy.

Expanding the squares, one sees (for details see [19, Lem. 2.1]) that (recall that
p = |ul?)

(3.3) IVul? = | Z3ul® + pBs + V' % iy
and, for any k = 1,2, 3,
(3.4) (Vaw) P2+ [(Vaw)* )2 = |Z8ul® + pBi + (V % ja).

This implies
Viul* = (1= 5v2)|Vyul® + sV2| Z3uf® + £V2pBs + kV2V' x ji.

The last term integrates to zero by the periodicity of ja. Therefore, for each fixed z3,
using (3.2), we have

/ V' yul? do’ = / (1—rV2)|Vyu? +£V2| 23 ul? +KV2(p—1) By da’' + L2 K\ 2bes -
Qrg Qrg

We substitute and obtain, using fQL (B3 — bext)? da’ = fQL B2 — b2, dz’ and com-
0 0

ext

pleting squares,

(3.5) Eqar(u, A) = 2T LE (kv 2bexs — b2 ) + E(u, A)+£V2 |Z3u)? — |V yul? dz,

QLy, T
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/

where
E(u,A) ::/ IV aul? + (Bg —
Qrgy, T

K

V2

+/ |B'|? da +/ (B3 — bexy)? da.
Qro xR Qro X (RN(=T,T))

In particular, the bulk energy is 2Lo>T (kv/2bex — b2, ). Since we are interested in the
regime k < 1 and since |Z3u|? < 2|V/,u/?, the contribution of the last term in (3.5)
to the energy is (asymptotically) negligible with respect to the first term in E, and
therefore it can be ignored in the following.

Applying (2.1) to B — bextes and minimizing outside Qr, x [T, T] if necessary,
the last two terms in E(u, A) can be replaced by

(1-p) do

/Q |B/‘2 dr + ||B3 - bext”?{fl/%{xs:T}) + HB3 - bext”i{fl/Z({%:_T})v
Ly, T

so that F(u, A) becomes

(3.6) E(u,A) = /Q |V aul? + (B3 - %(1 - p))2 + |B'|? dx

+ ||Bs — bext||2H—1/2({g;3:iT})'
Let us notice that the normal solution p = 0, B = bexies (for which we can take

A(x1, 22, 23) = bextZ1€2) is always admissible but has energy equal to

Eap(u, A) = L2TK? > 2L2T (KV 2bext — b2,1),

ext

in the regime k > bey that we consider here.
The following scaling law is established in [19].

Tueorem 3.1. — For bexy < £/8, k < 1/2, KT > 1, Lo sufficiently large, if the
quantization condition

(3.7) bext L € 277
holds, then
(3.8) min E(u, A) ~ min{biﬁanBTl/‘?, bextn3/7T3/7}Lg.

We believe that (3.7) is also a necessary condition for (3.8) to hold. Indeed, we
expect that if (u, A) is such that

B(u, A) < {bﬁ){fﬁ/ STV3L2 bexe 53/ 7T% 7L§},

then the normal phase p ~ 0 is the minority phase (typically disconnected on every
slice) and there exist x3 € (=T, T) and (periodic) curves ; and 72 such that

Iy o= {(n(s),s,23) : s € 0,1]} C {p ~ 1},
Ly :={(s,72(s),23) : s € [0, 1]} C {p ~ 1},
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with ;(1) = 7;(0) 4+ Loe;. If this holds then using Stokes Theorem on large domains
the boundary of which is made of concatenations of the curves I';, it is possible to
prove that (3.7) must hold. As in [19], we will need to assume (3.7) in order to build
the recovery sequence in Section 7.3.

The first regime in (3.8) corresponds to uniform branching patterns while the
second corresponds to well separated branching trees (see [13, 15, 19]). We focus here
on the first regime, that is KT & bt T2/ 7. and replace k and bey, by the variables
«, B, defined according to

_ _ Brk _ap
KT—\/§Q7 bext—\/i— T,
and then rescale
—~ -~ 1
T:=a/T, L:=Ly/T, uZ):=u(zr), A®):=A(z), Er(u,A):= mE(u,A},

so that in particular
B(@) =V x A®)=TB(z) and Vau(z) =T 'Vi(z/T)—iA(z/T)i(z/T).
Changing variables and removing the hats yields

1
Ep(u,A) = LQ(/Q |VTAu|2+(B3704(1fp))2+\B'|2d:c

+ || B3 — aﬁll?{mma:ﬂ}))-

as was anticipated in (1.2). In these new variables, the scaling law (3.8) becomes
Er ~ min{a?/34%/3,a%/73} and the uniform branching regime corresponds to Fy ~
o*/332/3 which amounts to a7 < 8 < 1, see also (1.3). Constructions (leading to
the upper bounds in [19, 15, 13]), suggest that in this regime, typically, the penetra-
tion length of the magnetic field inside the superconducting regions is of the order
of T~ the coherence length (or domain walls) is of the order of a~!, the width of
the normal domains in the bulk is of the order of a~'/35%/3 and their separation of
order a=1/3371/6_ These various lengthscales motivate the anisotropic rescalings that
we will introduce in Section 4.

In closing this section we present the anisotropic rescaling that will lead to the
functional defined in (1.5), postponing to the next section a detailed explanation of
its motivation. We set for x € Q. 1,

o . al/?’ﬁl/ﬁx/ g/ . 04_2/351/6,4’
<%3> . ( xs3 ) ’ AV?) (.Z‘) = (a—1/3ﬁ1/3A3> (JJ),
E = 061/3,81/6[/7 a(%) — u(x)’

to get B3(F) = a'Bs(z), B'(Z) = a~2/38Y6B () inside the sample. Outside the
sample, i.e., for [x3|>1, we make the isotropic rescaling & := +e3 + a/35Y/5(x F e3)
to get B(Z) = a !'B(z). A straightforward computation leads to the equality
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Er(u, A) = a=/3372/3Ey(u, A), where

~ 1 _ _ 2
ET(U,A) = E |:/Q « 2/35 1/3‘Vlal/3,8—1/3TAu|

a8 (Vg aspau)al” + 0?3870 (By — (1— uf)* + 57| B d

L1

+al /BT3By — 1‘@1*1/2(13:11) )

with V x A = B (and in particular div B = 0). We assume that L is a fixed quantity
of order 1. For simplicity of notation, the detailed analysis is done only for the case
L=1.

Let us point out that in these units, the penetration length is of order T~ 1a/!/351/6,
the coherence length of order a=2/33'/6 the width of the normal domains in the bulk
of order /2 and the distance between the threads of order one. That is, the scale

separation (1.4) reads now

(3.9) T—1a1/361/6 < a—2/3/81/6 <<ﬂ1/2 < 1.

4. ThE INTERMEDIATE FUNCTIONALS

In this section we explain the origin of the rescaling leading from Ep to ET, and
the different functionals which appear at different scales. This material is not needed
for the proofs but we think it is important to illustrate the meaning of our results.
We carry out the scalings in detail but the relations between the functionals are here
discussed only at a heuristic level.

We want to successively send 7" — 400, o« — 00 and 8 — 0. For this we are going
to introduce a hierarchy of models starting from Ep(u, A) and finishing at I(x). When
sending first T' — +o0o with fixed a and 3, the functional E7 approximates

1
Fuplp,B)i= 7 ( /Q |Vp1/2|2+<Bg—a<1—p>>2+|3’|2dx+||Bg—aﬁ||?{-m<w3_ﬂ>)’

L1

with the constraints
(4.1) divB=0 and pB=0.

The main difference between Er and F,, g is that for the latter, since the penetration
length (which corresponds to T~!) was sent to zero, the Meissner condition (4.1)
is enforced. We now want to send the coherence length (of order a~!) to zero at
fixed 8, while keeping superconducting domains of finite size. Since the typical domain
1/6

diameter is of order o= 1/341/3 and their distance is of order o= 1/3571/¢ we are led

to the anisotropic rescaling:

6= (@)= (o)

L:=a'®L, p@):=pa), Fap=a *3F,z.
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In these variables, the coherence length is of order a~2/3 < 1 (at least horizontally)
while the diameter of the normal domains is of order 3'/3 and their separation of
order S~/ Dropping the hats (we just keep them on the functional and on L to
avoid confusion) we obtain

/ 0-2/3
Qf,,l

v/ pl/2 2
(a—1/3p@3p1/2) ’ +0®* (Bs — (1= p))" + B da

~ 1
FO(:B(po) = f12<

+a'/?||Bs — 5“%{1/2(303:&1))7

with the constraints (4.1). The scaling of Theorem 3.1 indicates that ﬁa, g behaves as
min{3%/3, a?/?1 8} which is of order 82/3 if a > 1 and f is fixed. We remark that,

letting 7 := a~/3 and § := > = a~2?/3, one has
Fosl(p.B) = (/ 5 <V/”1/2>‘2+1(B (1—p)’ +|B'J2d
B - = = - - X
a,p\p 72 Q. 7783p1/2 5 3 p

+n "B — /8||2H—1/2(w3—i1)>'

In this form, ﬁaﬁ (p, B) is very reminiscent of the functional studied in [32]. Notice
however that besides the Meissner condition which makes our functional more rigid,
the scaling § = n? is borderline for the analysis in [32].

Recalling that (Bs — (1 — p))* = Xp>0(1—p)?, the corresponding term in ﬁaﬁ has
the form of a double well-potential, and so in the limit o — +o0 the functional ﬁa’g

Gt 5= = /

with the constraints x € {0,1}, x(-,x3) — Bdz’ when x5 — +1 and

approximates

4
S0+ s,

L1

O3x +divB'=0 and xB =B

This is similar to the simplified sharp-interface functional that was studied in [15, 13].
In the definition of Gz, we used the notation

/ |D'ul:=  sup / udiv’ € du,
QRp 1 £€eC=(Qp 1) YQp 1
[€leo <1

for the horizontal BV norm of a function u € L'(Qz ;). By definition it is lower
semicontinuous for the L! convergence and it is not hard to check that if we let

1
D' :/1</Q D'um3|> dxs,
- L

Ugy (@) = u(2’, x3), then

J

L
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where ‘fQE |D'ug,| is the usual BV norm of wu,, in Q7 [2]. From this and the usual

co-area formula [2, Th. 3.40], we infer that
1
(4.2) / D' = / / AN (O, > 5)) ds ds.
Q RJ-1

In (4.2), 0{us, > s} represents the measure-theoretic boundary of {u,, > s} in Q7.
We finally want to send the volume fraction of the normal phase to zero and

L1

introduce the last rescaling in 8 for which we let

(§/> _ (51/6x/) 7 Z — ﬂl/ﬁz, E/(E) — 61/6Bl($)7

.%3 I3
X(@) =" x(x), Gg:=p3Gs.

After this last rescaling, the domain width is of order /2 < 1, the separation between
domains of order 1. We obtain (dropping the tildas again) the order-one functional
~ 1 4
ColxB) == [ 38D + (B Pdo
L2 Jgo. 3

L1
under the constraints y € {0,837}, x(-, 23) — da’ when x3 — £1, and
Osx +div'(xB) =0 and xB' =p3"'B.

This functional converges to I(u) as 8 — 0.

Let us point out that since we are actually passing directly from the functional ET
to I in Theorem 1.1, we are covering the whole parameter regime of interest. In
particular, our result looks at first sight stronger than passing first from Er to Fi, g,
then from F\aﬁ to Gg and finally from CNY'ﬂ to I. However, because of the Meissner
condition, we do not have a proof of density of smooth objects for Fi, g and Gg.
Because of this, we do not obtain the I'-convergence of the intermediate functionals
(the upper bound is missing).

5. ThE LIMITING ENERGY

Before proving the I'-limit we study the limiting functional I that was mentioned in
(1.6) and motivated in the previous section. We give here a self-contained treatment
of the functional I, which is motivated by the analysis discussed above, and will be
crucial in the proofs that follow. However, in this discussion we do not make use of
the relation to the Ginzburg-Landau functional.

DeriNtTION 5.1, For L,T > 0 we denote by /7 r the set of pairs of measures
we A (Qrr), me A (Qrr;R?*) with m < p, satisfying the continuity equation
(5.1) O3+ divvm =0 in Qrr,

and such that p = p,, ® des where, for a.e. 23 € (=T,T), pzy = Y, @idx, for some
@i > 0 and X; € Qr. We denote by &7 1 := {u : Im, (u,m) € o} the set of
admissible p.
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We define the functional I : o1 1+ — [0, +00] by

K. [T 1/2 1 dm\ 2
5.2 I(p,m ::—/ g e, (2 dzs + — — ) du,
(5.2) (om) = T 7Tx’eQL( (7)) ST QL,T(d“)

where K, := 8/7/3 and (with abuse of notation) I : @} — [0, 00] by
(5.3) I(p) = min{I (g, m) : m < p, d3p + div'm = 0}.

Condition (5.1) is understood in a Qz-periodic sense, i.e., for any v € C*(R3) which
is Qr-periodic and vanishes outside R? x (0, T') one has fQL . O3 dp+ V' - dm = 0.

If fiay = 35, @i, then Yo, (tay (@)% = 3,0}, Because of (5.1), i, (Q1)
does not depend on x3.

Let us point out that the minimum in (5.3) is attained thanks to (2.3). Moreover,
the minimizer is unique by strict convexity of m — [ Opr (dm/dp)? dp. As proven
in Lemma 5.9 below, if x4 is made of a finite union of curves then there is actually
only one admissible measure m for (5.3). More generally, Since every measure p with
finite energy is rectifiable (see Corollary 5.20), we believe that it is actually always
the case. For p an admissible measure and z,z € [-T,T], we let

. K, [* 1/2 1 dm 2
Ga) 150w = 35 [0S G @) do (%) an,
L2 ). wf;zb ) L2 Jouxizz1 N du
where m is the optimal measure for p on [z,Z] (which coincides with the restriction
to [z, Z] of the optimal measure on [T, T]).
From (2.5) one immediately deduces for every measure p, and every x3,Ts €
[=T,T), the following estimate on the Wasserstein distance

In particular for every measure p with I(p) < 400, the curve z3 — py, is Holder
continuous with exponent 1/2 in .#Z*(Qr) (endowed with the metric Ws) and the
traces p+rr are well defined.

5.1. Existence or minivmizers. — Given two measures fy in #1(Qr) satisfying
7, (Qr) = _(Qr), we are interested in the variational problem
(5.6) nf{7(0) : par = i}

We first prove that any pair of measures with equal flux can be connected with
finite cost and that there always exists a minimizer. The construction is a branching
construction which gives the expected scaling (see [13, 19]) if the boundary data is
such that 1, =7_.

Prorosition 5.2. — For every pair of measures iy € #1(Qr) with i (Qr) =
i_(Qr) = @, there is p € o/} p such that pir =iy and

T®Y/2 &
I(p) < —.

JE.P — M., 2018, tome 5



A BRANCHED TRANSPORT LIMIT OF THE GINZBURG-LANDAU FUNCTIONAL 333

If i, =1_, then there is a construction with

TCI)1/2 T1/3¢2/3
(,LL) ~ T2 + 1A/

and such that the slice at 3 = 0 s given by ug = ®N 2 Zj 0x,, with X; the N2
points in [~L/2,L/2)?> N ((L/N)Z)?, and N := |1+ ®YVOL2/3/T%/3|. The measure p
s supported on countably many segments, which only meet at triple points.

Proof. — By periodicity we can work on [0,L)? instead of [—~L/2,L/2)2. We first
perform the construction for z3 > 0. The idea is to approximate fi, by linear combi-
nations of Dirac masses, which become finer and finer as x3 approaches T. Fix N € N,
chosen below. For n € N, fix x5, :=T(1 —37"), and let T}, :== 3, — 231 = 32nT
be the distance between two consecutive planes. At level x3, we partition @ into
squares of side length L, := L/2"N. More precisely, for z' , g =0,...,2"N — 1, we
let 2}, , = (Lni, Ly j) be a corner of the square Q;j ., := xi;,, + [0, L ) and we let

®ijn = iy (Qijn) be the flux associated to this square.
We define the measures p°* and mP* (here the suffix br stands for branching) by

br .
:LI’T3 . Z (I)ZJ nYX;; n(x3)

. dXijn
mgg = Z dmi ($3)(I)ij,n§Xi_7‘n,($3)
ij

zgn

for z3 € [23n-1,%3.n),

where X;j 1 [23,n—1,23n] = Q1 is a piecewise affine function such that

Xijn(z3n) = x;j,nv Xijn(T3m — %Tn) = xé*j,rm and  Xjjn(73,-1) = xl G,

where i, = 2[i/2], j. = 2|j/2]. Four such curves end in every iy, j. (which corre-
sponds to the pair . /2, j./2 at level n — 1), but they are pairwise superimposed for
T3 € [Tan—1,T3n — %TnL therefore all junctions are triple points (one curve goes in,
two go out).

Using that

S un = and 3B € (T Pun) Ay D = 92N
we get that the energy of pP* is given by

212
_ LZZZ(KT VOiim + BT T2)

n=1 1ij
+oo “+oo
2\ P 3\
SLETNO2 Y (5) 4 s o (5)
~ nz::o 3 + TN? ;::0 4
If we choose N = 1, then there is only one point in the central plane, ug = ®dy.

Therefore the top and bottom constructions can be carried out independently, since
by assumption the total flux is conserved, and we obtain the first assertion.
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If m, = T_, we can choose the value of N which makes the energy minimal. Up
to constants this is the value given in the statement. Inserting in the estimate above
gives the second assertion. O

If the boundary densities are maximally spread, in the sense that they are given
by the Lebesgue measure, the scaling is optimal, as the following lower bound shows.

Prorosition 5.3. For every measure i € <} 7 such that pyr = ®L=%dx’ one has

T(I)l/2 T1/3<I)2/3
6.7 oz

Proof. — The bound I(u) > L=2T®'/? follows at once from the subadditivity of
the square root. Hence we only need to prove the other one. We give two proofs
of this bound. The first uses only elementary tools while the second is based on an
interpolation inequality.

First proof. Let I := I(p,vu), where v := dm/du. Fix A > 0, chosen below. Choose
x3 € (=T, T) such that p,, =Y, ¢idx, obeys

L1
5.8 V222
(5.8) Z v'm <
For some set .# C N to be chosen below, let ¢ : @7, — R be a mollification of the
function max{(\ — dist(2’, X;))+ : ¢ € £}, where as usual the distance is interpreted
periodically. By the divergence condition,

P 3

vz, =73 [ wda'+ [ ] vuevan
QL QL -TJ/QL

(to prove this, pick & € C((=T,z3)) which converge pointwise to 1 and use &9 as

a test function in (5.1) and then pass to the limit). Since |V/¢| < 1,

P 3 P
Yodpi <5 > 2N +/ / oldu < — 3 TN + L(T®)/21'/2,
: L? &3 -t Jg L2 -
€S €S L i€ s

where in the second step we used Holder’s inequality and flux conservation. We choose
S ={i € N:g; > 49)\?/L?}. From the definition of .#, we have

1€S €S

Therefore, since m < 4, we obtain

(5.9) > A S LT,
ics
At the same time, again by the definition of .# and (5.8),
2)\P1/2 1/2 1o 1
, ; < e g =
(5.10) Do T et <L
¢S ¢S
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Adding (5.9) and (5.10), we obtain
1 I

> i S TLTONV? 4 ALY —,

: A T

€S
hence ) /

Y2 < ZL(TDHY? + AL =

and optimizing over A by choosing A = T3/4/1'/* yields I > ®2/3T/3[,=4/3,

Second proof. —  As before, let x3 € (=T, T) be such that p1,, =>", ¢idx, obeys (5.8).
By Young’s inequality and (5.5), we have

T 1/2 W22(/L;E ,(I)L_2d$/)
> _ . . 3
INL?(ZZ i )+ 2T

2/3
> 27/ (Z- ¢1/2> (W2(tty, ®L2da))"*

K2 K2

The desired lower bound would then follow if we can show that for every measure

p€ AT (Qr) with p =37, ¢idx, and -, ; = @,
1/2\%/3 2 —23 1

(5.11) (Ziwi?) " (Wan, oL 2da"))

By rescaling it is enough considering ® = L = 1. The optimal transport map is
necessarily of the form ¢(2') = X; if 2’ € E;, where F; is a partition of Q; with
|E;| = ¢; (the corresponding transport plan is (Id x ¥)fdz’). By definition, it holds

Wi (u,dx') > Z/E lz" — X;)? da’.

1/3 5 P2/31,-4/3

But since |E;| = ¢; = |8/ (X;, (i /7)),

Iy 12 g
;/Em dex>;/@(x(

|@'|*da’ 2 )@}
i:(pi/m)1/?) ;

By Holder’s inequality, we conclude that

2/3 1/3 2/3
1=Ye < (Soel?) T (Sied) T s (Deel?) T (WG da)
as desired. 0

Remark 5.4. The lower bound (5.7) can also be obtained as a consequence of the
scaling law proven in [19] for the Ginzburg-Landau model combined with our lower
bound in Section 6 (which does not use this lower bound). However, since the proof
here is much simpler and contains some of the main ideas behind the proofs of [13, 19],
we decided to include it. Similarly, the interpolation inequality (5.11) can be obtained
by approximation from a similar inequality proven in [16] (where it is used in the
same spirit as here to re-derive the lower bounds of [13]).

We end this section by proving existence of minimizers.
Prorosition 5.5, For every pair of measures iy with i, (Qr) = [i_(Qr), the

infimum in (5.6) is finite and attained.
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Proof. In this proof we assume L =T = 1 and 71 (Q1) = 1. By Proposition 5.2 the
infimum is finite. Let now p™ be a minimizing sequence for I. Since sup,, I(u™) < 400,
thanks to (5.5), the functions 3 — pJ, are equi-continuous in Z(Q1) (recall that s
metrizes the weak convergence in #?(Q1)) hence by the Arzela-Ascoli theorem there
exists a subsequence, still denoted p™, uniformly converging (in x3) to some measure u
which also satisfies the given boundary conditions. Moreover, if m™ is an optimal
measure in (5.3) for u”, since by the Cauchy-Schwarz inequality we have

n. 2 1/2 1/2
d|m"|<(/ (dmn)du”) (/ du”) <1,
Q11 Q1,1 dp Q11

there also exists a subsequence m”™ converging to some measure m satisfying (5.1).
By [2, Th.2.34 & Ex.2.36] we deduce that m < p and

d n\ 2 d 2
lim inf ( m ) du™ >/ (—m> du.
n=to0 Jo, d‘u” Q1,1 d'u

It remains to prove that pi., =, ©i(23)dx, (2, for a.e. 3 and that

(5.12) 1irninf/1 Z (ugg(a:’))l/z dxs > /1 Z (um(a:'))l/2 dzxs.

n—+4oo | _
' €Q1 ' €Q1

If iy, = > @i (23)0xn(23), with ¢} ordered in a decreasing order, we let f,(x3) :=
> i Ve (x3) and observe that f_ll fndxs < I(p™) < 1. Hence, by Fatou’s lemma,

1 1
(5.13) 12 liminf/ fn(zs)dzs > / liminf f,(z3) dzs,
~1 1

n—-+o0o _ 1 n—+o0

from which we infer that g(x3) := liminf, . fn(z3) is finite for a.e. x3. Consider
such an z3 and let 1¥(n) be a subsequence (which depends on x3) such that g(z3) =

lim,, 4 o0 fyp(n)(23). Up to another subsequence, still denoted ¢(n), we may assume

that for every i € N, 4,01-[)(")

K2

some X;(z3). By Lemma 5.6 (see below), for every N € N,

Ww(n) fy(n)(@3)
E P; (xS) z21- .
= VN

This implies, by tightness, g™ — > i(73)0x, (ag) and Y-, (pi(w3))'/? < g(w3). But

since ,ug’f;n) — fay, We have pz, = > 0i(23)0x,(a4)- Finally, by the subadditivity of

the square root, (5.13) and the definition of g we obtain (5.12). O

(z3) converges to some @;(23) and X' ™ (z5) converges to

Lemma 5.6. — If a nonincreasing sequence of positive numbers v; is such that

d vi=co and > 7 < Co,

then for all N € N one has
Z / Co
> — —.
Vi =2 Co Oo N

i<N
Proof. — Indeed ),  n v < VAN D isn Vi < Coy/IN, while ¢g > ZigN ~v; = Nvn.
O
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5.2. REGULARITY OF MINTMIZERS. We now want to prove regularity of the minimizing
measures . In order to prove that we can restrict our attention to measures containing
no loops, we first define the notion of subsystem.

Prorosition 5.7 (Existence of subsystems). Given a point x = (X,x3) € QLT
and | € ;sz*,T with I(p) < 400, there exists a subsystem [ of p emanating from x,
meaning that there exists i € A 1 such that

(i) ;< p in the sense that u — i is a positive measure,
(i) [z = adx, where a = g, (X),
(i)
~ afdm
s+ d1v'<—mu) =0.
dp

In particular, ii implies that (i, — fizs) L dx in the sense of the Radon-Nikodym
decomposition.

Proof. — Let us for notational simplicity assume that z5=0, L=T=1, u(Q1,1)=2.
Let us denote v = dm/du. According to [3, Th.8.2.1& (8.2.8)], since v € L?(Q1 1, i),
there exists a positive measure o on C°([—1,1];Q1) (endowed with the sup norm),
whose disintegration [3, Th. 5.3.1] with respect to po, i.e., o0 = le o dpo(z'), is made
of probability measures o,/ concentrated on the set of curves vy solving

Y(ws) = v(v(ws))
7(0) =2,

and such that for every zg € [—1,1], ftz, = (€s,)40, where e, denotes the evaluation

at x3, in the sense that

/ iy, = / o(v(xs))do(y)  for all ¢ € C°(Q1).
1 CO([-1,1];@Qq1)

Then, the measure i = fiz, @ drs with iz, = (eg,)#(acx), where a = po(X), satisfies
all the required properties. O

Lemma 5.8 (No loops). — Let u be a minimizer for the Dirichlet problem (5.6), T3 €
(=T,T). Let 1 = (X1,T3), 22 = (X2,T3) be two points in the plane {x : x3 = T3}.
Let py and ps be subsystems of p emanating from x1 and xo. Let xy := (X4, 24)
be a point with z4y > Tz and v— = (X_,z_) a point with z_ < T3, and such that
M1z, 2,2, both have Diracs at Xy, and py ._,p2,._ both have Diracs at X_ (with
nonzero mass). Then X1 = Xo.

Proof. — Let @1 = pz,(X1) be the mass of py and @2 be the mass of us. Let
P14 = P13, (X4) be the mass of (11 at x4, o 4+ the mass of po at x4, 1, the mass
of 11 at x_, o _ the mass of up at z_. Let ¢ := min{p1 4+, ¥1,—, P2 4+, P2, } which
by assumption is positive.

We define 11 4 as the subsystem of p; coming from z, it is thus of mass ¢ 4,
and at level T3 all its mass is at X; (since it is a subsystem of p; for which this is
the case). Similarly with p _, po 4, pto,—. We can now define fi; := (¢/¢1,4 ) 1,4 for
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xg > Tg and i1 := (p/p1,—)p,— for x3 < T3, and the same with fio. The measures fi;
and fio are “systems” of mass ¢ that join X_ and X . By construction, we have

- - o~ . dmy
O, (i = F) o 2] o A (i = Fo) L Lo 24) ) =0

and
P ~ ~ P
S — I - Liz— 24| S =7
min(p2 4, p2,-) w =) + min(p1,+, 1,-)
We now define fi,, := p + n(fin — f2) L [2—, 24], which is admissible for 7 small
enough (and different from g unless X; = X5), and evaluate

I(jin) — 1)

= K, /Z+ Z (,Ltm (1") + n(ﬁl)xa (x’) . 77(.[72).@3 (l‘/))l/2 B Z ('um3 (z’))1/2 drs
- x'e@Qy e
dm

+n/ (d—)Q(azﬁ1 — dily).
Q1X[z—,24] 12

But the function n — /a + nb is strictly concave for a > 0 and b # 0, therefore
I(fy) + I(fi—y) < 2I(p) for any n # 0, a contradiction with the minimality of . O

A consequence of this lemma is the following. Consider a minimizing measure pu
of I. Let z_ and z; be any two slices and let X_ be one of the Diracs at slice z_.
Let [t be a subsystem emanating from (X_,z_). Let X, be any point in the slice z
where fi carries mass. Then, there is a unique “path” connecting X_ to X, (otherwise
there would be a loop). Since this is true for any couple of “sources” in two different
planes, this means that there are at most a countable number of absolutely continuous
curves (absolutely continuous because of the transport term) on which pL [z_, z;] is
concentrated. So we have a representation of the form

(5.14) pn=> 2L,

i \/14+]X;[?
where the sum is countable and I'; = {(X;(z3),23) : 3 € [a;, b;]} with X; absolutely
continuous and almost everywhere non overlapping.

Another consequence is that if there are two levels at which p is a finite sum of
Diracs, then it is the case for all the levels in between. So, if there is a slice with an
infinite number of points, then either it is also the case for all the slices below or for
all the slices above.

For measures which are concentrated on finitely many curves we obtain a simple
representation formula for I(u).

Lemma 5.9. Let
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with T; = {(Xi(z3),x3) : w3 € [a;,b]} for some absolutely continuous curves X,
almost everywhere non overlapping. Every o; is then constant on [a;, b;] and we have
conservation of mass. That is, for x := (', x3), letting

I () ={i € [1,N]: 23 =b;, X;(b;) =2'},
I (x):={i € [l,N]: 23 =a;, X;(a;) =1'},

it holds
Z s > i
€S~ eIt (x)
Moreover,
m=Y X, LT,
i/ 1+ |X1‘2
and

1 bi .
(5.15) 0 =153 [ Kozt ol des.

Proof. — Let T = (T',73) with T3 € (=T,T) be such that pz,(T') # 0. Then,
by continuity of the X;’s, there exist § > 0, > 0 such that every curve I'; with
;N (BL(T) x [T3 — 6,T3 + I]) # O satisfies X;(T3) =T, and such that

pl (%5 (7)) N BL(T")) x [T3 — 6,73 + ] =0
(and thus also

mL (B (')~ BL(T')) x [T3 — 6,73+ ] =0
since m < p). Consider then ¢y € CX (A5 (T')) with 1 = 1 in B(T') and )2 €
C°(T3 — 6,73+ 6) and test (5.1) with 1) := 1)11)2 to obtain

T3+0 di/’ T340 d’l/) )
/136 clxj(x?’)( Z )da:s /z /, . dm:, z3)Y1 (2') dp

Xi(z3)eBL(T)
= / 3 dp = — V' - dm
Ql 1 x3 Ql 1

x3+5
/ / YoV - dm =0,
z3 Boe (T )N HBe(a')

from which the first two assertions follow. It can be easily checked that this implies

that

m:= LXie%lLFi

zi:\/l-‘rXiP

satisfies (5.1). Let m be any other measure satisfying (5.1) and let us prove that
v:=m —m = 0. Since div’ v, = 0, we have for every 1 € C*°(Q1)

ZV/T/’(Xi(fU?))) -vi(w3) =0,

where v, = > vi(23)0x, (z5), from which the claim follows. O
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We remark that Corollary 5.20 below will imply that representation (5.14) holds
for every measure p with I(p) < +oo.
The previous results lead to the following.

Prorosition 5.10. A minimizer of the Dirichlet problem (5.6) with boundary con-

ditions i, = ZZJ\LI O 0y+ and fi_ = Zivzl ©; O (some @; may be zero) satisfies

(i) p= Zﬁl (goi/\/l + \Xi|2)<%ﬂ1 LI for some M € N, where
I, = {(Xi(xg),l‘zg) 1 x3 € [al,bl]}
are disjoint up to the endpoints, and the X; are absolutely continuous.
(ii) Fach X; is affine.
(iii) If i_ = i, then there exists a symmetric minimizer with respect to the x3 =0
plane.

Proof. — Let p' be the subsystem emanating from (X;,—7') of the subsystem em-

anating from (X, T) of p, so that p = >4 1Y by pi < pizy and conservation of
mass. By Lemma 5.8 we have pu%, = ¢;;(x3)0xi; (x3) for all 23, otherwise there would
be loops. By Lemma 5.9, ¢;;(z3) does not depend on x3. By (5.5), if ¢;; > 0 then X%
is absolutely continuous. After a relabeling, (i) is proven.

Assertion (ii) follows from minimizing I(u) as given by (5.15) with respect to X;.

Letnow i =g, . If I'(p, (=T,0)) < I(p, (0,T)) we obtain a symmetric minimizer fi
by reflection of uL (—T,0) across {z3 = 0}, and analogously in the other case. This
proves (iii). O

We now show that for symmetric minimizers, at arbitrarily small distance from
the boundary we have a finite number of Diracs. We already know that at arbitrarily
small distance we have a countable number, and then that we have a representation
of u of the form (5.14). Let us point out that we will not use this proposition but
rather include it for its own interest.

Provosimion 5.11. — Fizp € #7(Qr). Let u be a symmetric minimizer of I subject
to prr = . Then for any 6 > 0 sufficiently small, the number of Diracs in each slice
w3 € [T + 0T, T — 6T is < 54

Proof. — We may assume L = T = 1, u(Q1,1) = 2. By symmetry, we need only to
consider the interval [0,1 —6]. If p1_5 = >, ¢idx,, it suffices to prove that p; > ¢
for every 4. For the rest of the proof we fix a point X; and in order to ease notation
we write ¢ := p; and X := X;. Let g be the subsystem emanating from (X,1 — §).
Thanks to the symmetry of 1 and to the no-loop condition, x4 and g — p are disjoint
for 3 > 1 —4. Indeed, if this was not the case, by symmetry they would meet also for
x3 < —1 + 6, and there would be a loop, which is excluded by Lemma 5.8. Therefore

1
(5.16) ) =11 > [ 3 Gin@)'" dos > 65
“CxeQr

where in the second step we used subadditivity of the square root.
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Let now Ji; be the trace of i on 23 = 1 and for z := p'/4, let i be the symmetric
comparison measure constructed as follows:

—in [07 1- ZL /7‘13 = (1 + ()0/(1 - 90))(/1‘13 - ﬁrs) and

= in [1=2,1], [z, = flag — flag +Va, Where v is a measure connecting 2 (1 —[i)1—-
to i1 constructed in Proposition 5.2, so that (recall (5.4))

1020 () S 2/G+ 2 ~ /4,
4

Since p is a minimizer it follows by subadditivity of the energy that, for some universal
(but generic) constant C,

HMéH@é(Hqézym—m+cﬁM

<I(p— i)+ Cp*/™,
Indeed, I(n— ) < I(n) S 1 while ¢ < 1 without loss of generality. Recalling (5.16),
we deduce that Cp3/* > §p'/2, which yields the result. |

Derinirion 5.12. — We say that a measure p is polygonal if
o= Z i : L T,
i /14 ]X;)?
where the sum is countable, I'; are segments of the form
T = {(X;(x3),z3) : x3 € [a;, b;]}

disjoint up to the endpoints, and for any z € (0,7) only finitely many segments
intersect Qr x (—z,z). We say it is finite polygonal if the total number of segments
is finite.

For any polygonal measure, the representation formula (5.15) holds.

Lemva 5.13. — Letm € #7(Qr). Then, every symmetric minimizer of I with bound-
ary data purr =1 is polygonal.

Proof. — Tt suffices to show that for any z € (0,7) the measure y is polygonal in
Qr X (—2z,2). By Proposition 5.11 the measures u, and p_, are finite sums of Diracs.
Since p is a minimizer, it minimizes I restricted to (—z, z) with boundary data ..
By Proposition 5.10 we conclude. g

. . .
5.3. DENSITY OF REGULAR AND QUANTIZED MEASURES. In this section we want to prove
that when 7i ;. = ®L~2dx2’, the set of “regular” measures is dense in energy.

Derizition 5.14. — We denote by #yeq(Qr,1) C 7 1 the set of regular measures,
i.e., of measures p such that:

(i) The measure p is finite polygonal, according to Def. 5.12.

(ii) All branching points are triple points. This means that any © € Q1 belongs
to the closures of no more than three segments.
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For N € N, we say that p is N-regular, u € reg(QL 1) C Myeg(Qr,1), if in addition

(iii) The traces obey pur = pu_7 = PN 2 >, 0x;, where the X are N? points on
a square grid, spaced by L/N, and ® > 0.

We can now state the main theorem of this section:

Tuaeorem 5.15. For every measure i € o} 1 with I(n) < +oc and per = OL2dx’,

there exists a sequence of measures pun € AN, with uxy — p and such that

reg’

limsupy ;o I(un) < I(p), pn(Qr.r) = (Qr,1)-
The proof will be based on the following intermediate result.

Lemmya 5.16. For every measure p € o p with I(n) < +o0o, and such that
the traces pp and p_7 are finite sums of Diracs, there exists a sequence of reg-

ular measures p'N) € Mreg(Qrr) with p™ — p, ugzl\;) = pxr, and such that

limsupy_, oo I(1™)) < I(p).

Proof. — We shall modify p in two steps to make it polygonal: first on finitely many
layers, to have finitely many Diracs on each of them, and then in the rest of the
volume, using local minimization.

Fix N € N and § > 0, both chosen later. We choose levels

€ (Tj/N,T(j +1)/N),

for j = =N +1,...,N — 1, with the property that u., = >,y goj)kéw;k, with

Y okeN <p1/ > < +4oo for every j. We shall iteratively truncate the measure at these
levels so that it is supported on finitely many points; for notational simplicity we also
define z4y := £T. The measures p/, j = —N,..., N will all satisfy ¢/ < p and
I(W) < I(p). , .

We start with = := p. In order to construct 7+ from p?, we first choose K j
such that Zk>K @1/2 < 6/N. Then we define /! as the sum of the subsystems of i/
originating from the points (2 ,, z;) with k < K. Clearly I < I(p?) < I(p).

At the same time, since Zk K, Pik S < P2 z:oon <pj1,/,€2,
@1/25
1
P (Qr) = 1, (Qr) — Z @ik = pl (Qr) — N

k=K;

so that |p/+! — ,U]‘(QL 1) < 20Y25T/N. Therefore |V — u|(QL T) < OTD/2,

We define iV as the minimizer with boundary data sz and /Azj+1 in each stripe
Q1 X (25, 2741). Then I(A™) < I(u™) < I(), and iy = p¥y.

At this point we fix the boundary data. For this, we let ;i be the minimizer on
Qr,r with boundary data g1 = pir — ,ui’T. These boundary data are finite sums
of Diracs, and their flux is |+ |(Qr) = |ur — p¥ |(Qr) < d®'/2. By Proposition 5.10
the minimizer is finite polygonal, by Proposition 5.2 it has energy no larger than
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a constant times 6®V2T~1 4 §1/2T®V/4L =2, Finally we set u¥) := Y + i. Then
N
uiT) = p+r, and

I(™))y <I1(EN) + I() < I(p) + C (6927~ 4 6Y219Y4L72).

Up to a small perturbation, we may further assume that all junctions are triple.
We can now choose for instance § = 1/N. It only remains to show that puV R
as N — 4o0. Recalling that |4V — p|(Qr.r) + [F|(Qr.r) < §®/2T, we only need to
show that v — ¥ — 0.

For x3 € (2;,2;+1) we have by definition of iV

Wa (i), Tigy) < Wapdl, pl) + Wa (il i),
and by (5.5)
W 1) + WRGEY ) < L2 (2500 — 23) (104™) + 1Y),
so that

. LT
max Wg(ﬂii,a Mivg) S TI(M)-

For x5 € (=T,T), let II,, be an optimal transport plan from ,ui\; to ﬁi\g . Considering
then the transport plan II := I1,, ® dzz between u and %, we get
T 1272
WHG ) < [ W) das S ST,

which yields that indeed v — pv — 0. O

Proof of Theorem 5.15. — Let € € (0,1/4), chosen such that it tends to zero as
N —00. We define i in Qp, (1—2¢)7 as a rescaling by (1 — 2¢) in the vertical direction,
[i(1—2¢)zs = Haos- An easy computation shows that

I, ~(1 = 22T, (1= 2)T) < 15 1(1).

In particular, fi(1_seyr = PL2da’. For x5 € ((1 — 2¢)T,T) we define i as the result
of Proposition 5.2. Then we set it = i on (—(1—¢)T, (1 —¢)T") and extend it constant
outside, in the sense that fi,, = fi1—or for z3 € ((1 —¢)T,T), and the same on
the other side. Since i(;_c)r is the midplane configuration of the branching measure
constructed in Proposition 5.2, [i,, is a finite sum of Diracs for |z3| > (1 —¢)T. We
obtain

N 1
1) < 7= 1w + Ce'/3(@BTYBL=43 4 2392 L72).

By Lemma 5.16 applied to the inner domain (—(1 — &)T, (1 — €)T) there is a finite
polygonal measure ji which is close to iz and has the same boundary data at x3 =
+T(1—¢). The measure given by [ inside, and & outside, has the required properties.

O

We now turn to the quantization of the measures.
Derinirion 5.17. — We say that a regular measure p € Miee(Qr,r) C ML*’T is

k-quantized, for k > 0, if for all (2/,2) € Q1 one has ku,({z'}) € 27N.
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Lemma 5.18. Let € MY (Qr,r) and ® = pp(Qr). For any k > 0 such that k® €
27N there is a k-quantized reqular measure p* € Myeg such that *(Qr.r) = u(Qr.1)

and
(- Sy < (140,

This implies in particular p* < u, pu* — p strongly, W2 (p, ux) < C(u)k~! and
I(uk) = I(pn) as k — oo.

Proof. The measure p consists of finitely many segments, each with a flux. To

prove the assertion it suffices to round up or down the fluxes to integer multiples of

2w /k without breaking the divergence condition, and without changing the total flux.
Since p € M (Qr.1), we have pp = ®N"23" 6x,. We select o} as

21 |k® /(27 N?)| 27 |k® /(27 N?) + 1]
A or 3 ,
depending on i. Precisely, we choose the first value for ¢ = 0 and then, at each i, we
choose the lower one if Z]—@(@f — ®N~2) > 0, and the upper one otherwise. This

concludes the definition of pf.

The fluxes in the interior of the sample are defined by propagating the rounding.
At each point where a bifurcation occurs, if there is more then one outgoing branch
we distribute the rounding as discussed for ,u?. This increases the maximal error by
at most 27/k, at each branching point. Since p is finite polygonal, there is a finite
number of branching points, hence the total error is bounded by a constant times 1/k.
Precisely |pf — ¢;| < C(u)/k for any segment i. Since ¢; only takes finitely many
values, |pF — ;| < p;C(p)/k for any segment i, which concludes the proof. O

5.4. Revarion with 1rricaTioN proBLEMS. — The functional I(u) bears similarities
with the so-called irrigation problems which have attracted a lot of interest (see for
instance [42, 7]). Besides their applications to the modeling of communication net-
works and other branched patterns (see again [7] and the references therein), they
have also been recently used in the study of Sobolev spaces between manifolds [8].
Let us recall their definition and for this, follow the notation of [7]. For E(G) a set of
oriented straight edges and ¢ : E(G) — (0,+00) we define the irrigation graph G as
the vector measure
G := Z ple)e A e,
e€E(G)
where e is the unit tangent vector to e. For a € [0,1], we then define the Gilbert
energy of G by
M(G) = Z o(e)*H (e).
e€E(G)

Given two atomic probability measures pt = Zle a;dx, and p~ = 25‘:1 b;dy;,
we say that G irrigates (u*,p”) if divG = p™ — p~ in the sense of distributions
(this implies in particular that G satisfies Kirchoff’s law). If we are now given any
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two probability measures (u™, ™) and a vector measure G, with divG = p™ —
(sometimes called an irrigation path between u and p™), we define

M (GQ) = inf{liminf M*(G;)},
1—+o00

where the infimum is taken among all the sequences of irrigation graphs G; with
G; — G in the sense of measures and such that divG = p — p; for some atomic
measures uf tending to p*. If no such sequence exists then we set M®(G) = +oo.
The irrigation problem then consists in minimizing M“(G) among all the transport
paths G between ut and p~. For a = 0 this is a generalization of the famous Steiner
problem while for o =1 it is just the Monge-Kantorovich problem.

Using some powerful rectifiability criterion of B. White, the following theorem was
proven by Q. Xia [42].

Turorem 5.19. — Given 0<a <1, any transport path G with M*(G)+M'(G) < +o0
1s rectifiable in the sense that
G=opr"'LT

for some density function ¢ and some 1-rectifiable set T' having T as tangent vector.

For minimal irrigation paths, much more is known about their interior and bound-
ary regularity [7]. For instance, as for our functional I(x) (see Proposition 5.10), it can
also be proven that minimal irrigation paths contain no loops and that for « > 1—1/n
(where n is the dimension of the ambient space i.e., n = 3 for us), any two probability
measures 4T can be irrigated at a finite cost (compare with Proposition 5.5).

Using Theorem 5.19 and Lemma 5.16, we can obtain the following rectifiability
result.

Cororrary 5.20. Every measure p for which I(u) < 400 is rectifiable.

Proof. — Using the construction of Lemma 5.16, we can find a sequence ™ such that
pt = p, limsup,, oo I(p") < I(p) and

pr=>y AT,
i=1 \/1—|—|X |2

for some straight edges I'; = {(z3, Xi(23)) : ©3 € (a;,b;)}. Letting

~n .__ ©i XZ 1 )
7 ,Z_(l)% T
i=1 /1 + | X;|?
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we have for o > 3/4,

b; -
Ma(ﬁn):Z/ @i/ 1+ | Xi|* das
% ;}Z .
<y / i1+ [Xi[2) + 2 drg
i Jai

b; .
S [ ) Ve S 16 +1,

so that liminf, 4o M(p") S I(w) + 1 < +oo and by Theorem 5.19, the claim
follows. O

In [33], an approximation of the functional M® in the spirit of the Modica-
Mortola [31] approximation of the perimeter was proposed. Even though their proofs
and constructions are completely different from ours, this approach bears some
similarities with our derivation of the functional I(u) from the Ginzburg-Landau
functional Ep(u, A).

6. L.LoWER BOUND

In the rest of the paper we consider sequences with
T,
(61) T’ﬂ — 00, an — 100, Bn — 07 = — 400, Oénﬂzl/2 — 4-00.
Qn
No constant appearing in the sequel will depend on the specific choice of the sequence.
We observe that (6.1) immediately implies 32 — +o00 and o283, — +oo. Let us
recall that in this proof we set L = 1 and that (see (1.5))

Er(u, A) = / 04_2/35_1/3|V;1/3571/3TA“’2
Ql.l

+ CY_4/35_2/3 |(va1/3ﬁ71/3TAu)3‘2 + 042/36_2/3 (Bg — (1 — \u|2))2 + ﬁ_llBl|2 dx
+ O[1/357/6”/3—133 _ 1”%{—1/2(@3:i1)-
In this section, we prove the following compactness and lower bound result.

Prorosition 6.1. — Fiz sequences of positive numbers oy, Bn, Tn such that (6.1)
holds, and let (uy,Ay) be such that sup,, ET(un,An) < 4o00. Then up to a subse-
quence, the following holds :

(i) B,1(1 — pn) — p for some measure u, B, B, — m for some vector-valued
measure m < p satisfying the continuity equation (5.1).

(ii) For almost every x3 € (—1,1), there exists some probability measure pg, on Q1
with @ = pizy ® dxs and such that py, — dz’ as x3 — £1.

(iii) For almost every x3 € (—1,1), pizy = Y ;c 5 0i0x, with . at most countable
and p; > 0.

(iv) One has (p,m) € < 1 with

liminf Ep(un, Ay) = I(p,m).

n——+o0o
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Let us first show that the energy gives a quantitative control on the failure of the
Meissner condition pB = 0 in a weak sense.

Lemwa 6.2. — For every Qy-periodic test function ¢ € H),.(Q11), if |pllec <1 then

13,823

/2
62 | [ opwds| s Eruw, 0l + = Eru, 012199 1o

and, if additionally (z',+£1) =0, for k=1,2 and o*B > 1
a2/335/ 6

~ T

1 362 /3 _ 1/2
& B, A2 992

(6.3) \ [ omvad 5 Br(u, A= +

Moreover, if £ € H}(—1,1) and ¢ is a periodic Lipschitz continuous function on Q1
then

?/335/6
7ET(U A)[EV Y| Lo

51/ [ 1/2 /
+TET(U7A) 105EV ]| 2.

(6.4) ‘/ pB' V' &dr| <

Proof. — Let A := a/3p71/3T. For (6.2) we use formula (3.3) with A substituted
by AA, that is |V ul? = |23 ul> + pABs + V' x ji 4. We integrate against a test
function 1,

’/ pBsi dx
1 al/3p2/3

~ T
041/362/3
~ T
where we have used that |5} 4| < |V 4u| in view of the definition (3.1) and the upper

bound p < 1. We obtain (6.3) similarly : One first checks from the definition of Zyau
that

Ozl/3ﬁ2/3
T

[ Ba s (il - 1984l ~ V' x o) e

(ETw Al +a0570 [ a1/3/31/6|j;,4||w|dx>

1,1

(Br(u, Al + a6/ B, 429" 12),

[Z3aul® = [(Vaaw)s* = [(Vaau)2?| < 2/(Vaaw)e| [(Vaauw)s].
Testing (3.4) with ¢ and integrating by parts the term with jya as above gives

A‘ | oBvds|s [ 20l(Vasulal (Vasual + [99] (Va0 do.
1,1 Q1,1
Estimating
2/(Vaau)z||(Vaaw)s| < a'/3BY0(Vaau)al* + o= /35710|(Vyau)s [
and IV aaul? < o383 Er(u, A)

concludes the proof of (6.3).
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The proof of (6.4) is very similar to the proof of (6.3). Arguing as above with {0y
playing the role of 1, we get

A B’ -V'yEd
'/Qp Ve de

< / 26V |(Vanw)a] |(Vaaw)s| di
Ql,l

The first term is estimated exactly as before, while the second one gives after inte-

gration by parts of Vx and using V x V =0,
1/2
<losev'uloa( [ 1al)

1,1

’/ (V X jra) - Vip€da

:‘ 0 VE - (jaa x V) dx

from which we conclude the proof. O

We now prove that for admissible pairs (u, A) of bounded energy, the corresponding
curves w3 — 1 B3(-, x3) satisfy a sort of uniform Hélder continuity. This is the analog
of (5.5) for the limiting energy.

Lemma 6.3. — For every admissible pair (u, A) with ||p|lcc < 1, and every x3,%3 €
(—1,1), letting E := Er(u, A) it holds (recall (2.6))

(6.5) 87" Bs(-,x3) — B Bs(,@s)llpr S E?|as — Ts|'/? + o(, B,T)(E'? + E),
where
o(a,B,T) := (oz/T)l/2 (a2ﬁ5/2)_1/6 n (a1/25)_1/3 + (al/?’/T65/6)l/27

which goes to zero in the regime (6.1). In particular, in that regime, if E < 1, for
every x3,T3 € (—1,1) with |x3 — T3| = 0'/?(a, B, T), there holds

(6.6) 187 Bs(-,x3) — B B3 (-, 73)|lpr S |z — &3] Y/2.

Proof. — The proof resembles that of [19, Lem. 3.13]. First, we show that for every
Q1-periodic and Lipschitz continuous function ¢ with ||¢||Lip < 1,

(6.7) ‘/ B~ Bs da’ —/ B~ Bg1p dx’
Q1 x{z3} Q1x{T3}
This follows from div B = 0 and integration by parts, which yields

‘ [ B~ [ s Bwar| <[ 6710, By da
Q1 x{z3} Qi1 x{Z3} Q1 x(x3,%3)
= ’/ B'B' V' da
QIX(IS7%3)

1/2
< los — B[ V/287 12 ( / 5-1|B'? dx)
Q1% (z3,T3)

<z — 553\1/2/3_1/2E1/2.

< |os — 5| V/287V2EY2,
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For |z3 — Z3| < T~ *a'/34%Y/6, this implies that
187 Bs(-,x5) — B B (-, 75)|sL < (/3T 55/ *E1/2 < o(a, B, T)E?,

and (6.5) is proven. Letting o (o, 8,T) = (a/T)l/2 (a2ﬁ5/2)71/6 + (@1/28)71/3 ) we
are left to prove that for Q1-periodic and Lipschitz continuous ¢ with ||?||Lip, < 1 and
|333 _ g3| > T71a1/3ﬁl/67

(6.8) ‘/ 5*133wdx’7/ B~ B3t dx’
Q1 x{z3} Qi1 x{Z3}

< |as — 23| Y2 EY2 +6(a, B, T)(EY? + E).

Up to translation we may assume T3 = 0 and x3 > 0. Let § < z3/2 and define
¢ :R — R by

z/d ifo0<z<d

1 fo<z<z3 -4
€(2) = , ’

(x3—2)/0 feg—0<z< a3

0 otherwise.

We then have, using again div B = 0 and integration by parts,

(6.9) B B31pdsé do = — B pB N € dr— B 1—p)B V' ¢ da.
Ql,l Ql,l Ql,l

The first term on the right-hand side of (6.9) is estimated by (6.4). For the second
term, we now estimate

(6.10) /Q B1(1 - p)|B|¢ du

1/2 >
S Si-pd - p)|BPdz)
s (/621><(0,x3)ﬂ ( p) SC) </Ql,1 B ( p)| | 93)

We rewrite the first factor as

[ stepde= [ gBedes [ g B- (- p)a
Q1><(O,fl'3) Q]X(O,lg) Q]X(O,xa)

from which we obtain

/ B (1—p)dx < ’/ B Bsdx
Q1x(0,x3) Q1x(0,x3)

This allows to make use of

1/2
+|x3|1/2( . B_Q(Bg—(l—p))2dx) .

B72(Bs — (1 - p))*de <o ?Pp74E,
Ql,l
and leX{Z} B~1Bsdx’ =1, yielding

(6.11) / B = p)dx < |ws| + |z 2~ 3B7 23 EY2,
Q1><(O,$3)
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The second factor in (6.10) is directly estimated by

5711 p)|B P de < .
Q1,1

so that inserting this and (6.11) into (6.10) gives

(6.12) ' B7Y1 = p)B' - V' dx| < |as|V2EY? 4 |as |V a6 g3 /A,
Ql,l

Letting f(z) := leX{z} B71Bst dx’, we thus obtain from (6.9), (6.12) and (6.4),

/ " fouede

Since by definition of &, [* f0s¢ dz = %foé fdz— %f;;’_é f dz, we have

(6.13) S B+ E'?|05¢] 12

T

a2/33-1/6 al/35-1/3
T

+ |£L‘3|1/2 E1/2 + |$3‘1/4E3/4Q_1/65_1/3.

z3

T3 1
flan) =10 = [ oz 5 [ = royaz+ 5 [ () - pa,

x3—6
/ Jose dz
0

In view of this elementary inequality, the estimates (6.7) and (6.13) combine to

so that

[f(z3) = fO)] <

+sup [f = fO)|+ sup |f— flzs)]-
(0,5) (:17376,933)

|f(z3) — £(0)] < |x3\1/2E1/2 + w]ﬂméq/z + 61/25*1/2E1/2
042/35:1/6E . |x3‘1/4E3/4a71/66—1/3.
We now optimize in § by choosing § = T~1a!/33'/6 which combined with
Oéz/gf:l/@‘ < a-l/o51

yields (6.8) in the form of
f(xs) — £(0)] < |x3|1/2E1/2 n (E1/2 JrE)((%>1/2(04255/2)71/6 +a71/6671/3). 0

Remark 6.4. We notice that thanks to the Kantorovich-Rubinstein Theorem [41,
Th. 1.14], if B3 is non-negative then we can substitute the Bounded-Lipschitz norm
in (6.5) by a 1-Wasserstein distance. In particular, it would imply that if (e, Bn, Th)
satisfy (6.1) and if (uy, A,) are admissible with |[pn|lec < 1, E7(tn, 4,) < 1, and
B} > 0, then the corresponding curves z3 — 3,1 B%(-,23) would be in some sense
equi-continuous in the space of probability measures endowed with the Wasserstein
metric.
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Ne We

\ s \ T
€ € 1

Ficure 2. The cutoff function 7. and the two-well potential W used
in Lemma 6.5.

For € > 0 fixed, we define the following regularization of the singular double well
potential x,0(1 — p)? :

(6.14) W.(p) = 1e(p)(1 = p)*  with n(p) := min{p/e, 1},

see (1.7) and Figure 2. We next show that the energy controls W,(p). Similar ideas
have been used in the context of Bose-Einstein condensates [24].

Lemma 6.5. For every € > 0 there exists C. > 0 such that for every (u, A) with
1plloo <1 it holds,

(6.15) / 023323 () da g/ 0357205 (By — (1 - ) do+C.Br(u, A) .
Ql,l Ql,l

Proof. — As above, to lighten notation, we let E := Er(u, A). Writing (1 — p) =
B; — (B3 — (1 — p)), we obtain by Young’s inequality

(1=p)*=Bs(1—p) = (Bs — (1= p))(1 — p)
1 1
<Bs(1=p)+ 5(1=p)*+ 5(Bs = (1= p)*.
Multiplying by 27n.(p) and using that 0 < 7. < 1 we obtain for W, (p) the estimate
(6.16) W=(p) = n:(p)(1 = p)* < (Bs — (1 = p))* + 2n-(p)(1 — p) Bs.

Let

eels) = 2 (12 ) Zomin{1/e,1/s}(1— s).

S

Then 4. is bounded by 1/e and is Lipschitz continuous in s'/2 with constant of order
e73/2 e, sup, [(¥:(t?))'| S ¥/ Since 2n.(p)(1 — p)Bs = pBsy(p), using (6.2)
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with ¢ = 1< (p), we get
ol/332/3
[ - pBaad £

1,1
1/332/3
,S « /153 / (EflE+673/2a71/3ﬁ71/6E1/2Hv/p1/2||L2)
1/3 92/3
se (B [ o e
T Q1,1

al/32/3

T

(7 B+ 0351 BY 2|V ()12

< C.

~ E7
where we used that

V02| < |Vl agijapaul  and thus / a BT P de < B
Q1,1

Estimate (6.15) follows from inserting this estimate into (6.16). O
To prove the lower bound, we will need the following two dimensional result.

Lemma 6.6. — Let x,, € BV(Q1,1{0, 8,1}) be such that lim,, o le Xndz' =1 and

n

Sup/ 5,1L/2|D/Xn| < +o0.
1

Then, up to a subsequence, X, — >, pidx, for some at most countable family of
w; >0 and X; € Q1, and

(6.17) lim inf/Q BY2ID xul = 2V/7 > /.
1 %

n—-+oo

Proof
Step 1 (Compactness). — For each n we split the cube @ into small cubes of side

length 3&1/ % Let Q7 be an enumeration of theses cubes such that

o ::/ Xn dz’
Qr

is nonincreasing in 4. Since [{x, = 8,1} = Bn le Xndx' = B + o(B,), we have
Q7 N {xn = By} < Bn+0(Bn) < 2|QF| and thus by the relative isoperimetric
inequality [2, Th. 3.46], we have on each Q7

2
or :/ Xn dx’ S (/ 5711/2|D/Xn|> .
Q7 QP

> Ver §/ BY21D' x| < C,
i Q1

by the energy bound. Arguing as in the proof of Proposition 5.5, we deduce from

It follows that

Lemma 5.6 that up to extracting a subsequence, x, — >, » @idx, for some @; >0
and X; € 1, pairwise distinct.
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Step 2 (Lower bound). Assume now that the ¢; are labeled in a decreasing order
and fix N € N. Choose r € (0,1/4) sufficiently small so that
(6.18) B (Xi,r) B (X;r) =@ Vi, j <N with i # j,

and let ¢ € C°(#' (X, 7); [0, 1]) be a smooth function such that ¢ = 1 in B'(X;,r/2)
and |[Vy| < C/r. Let Ciso = (24/7) "1 be the isoperimetric constant in dimension 2,
then we may write

1/2

1/2
( / B;lxndx'> <( / (sznfdx') <Cuo [ 1D'0x0)
B'(Xi,r/2) 1 Q1

C
< Ciso (/ |D1Xn‘ + */ Xn dl‘l>
B (Xi,r) T JB (Xir)NB (Xi,7/2)
C
< [ DI+
"(Xi,r) r

since le Xn dz’ — 1. Multiplying by ,87{/ % and summing over N, we get

N 1/2 CON
(619) Z (/ Xn df/) < Ciso/ 571L/2|D/Xn| + ﬁrl/27
i—1 \Y B (Xi,r/2) Q1 r
Next observe that since x, — >, ¢i0x,, we have for every i =1,..., N,

1/2
lim inf (/ Xn dx') = @3/2.
n=too \J @ (Xi,r/2)

Therefore, passing to the limit in (6.19), we obtain

N
Z @}/2 < Ciso hglinf/ B%/2‘D,Xn|'
i=1 " > Ql
Since N was arbitrary this implies (6.17). O

With this lemma at hand, we can prove the compactness and lower bound result.

Proof of Proposition 6.1. — We fix for the proof a sequence (uy,, 4,) with
Er(un, An) S 1.
We then let B, := (B, B}) :=V x A, and p,, := |u,|*.

Step 1 (Compactness). — Notice first that
Bn

By [19, Lem. 3.7] there is @,, with p,, := |u,|*> = min{p,, 1} such that
ET(anvAn) <1+ QO‘H/Tn)ET(una An)

BE — (1— pu)\2 s
(6.20) / (M) dz < a2/3B43 By (up, An) — 0.
Q1,1

(the error comes from the last two terms in (3.5)). In particular, also

(BY = (1= 5n))/Bn — 0 in L*(Q1,0).
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Using this and |BY| < |BY — (1 — p,)| on {Bf < 0} we obtain
1/2
(o [ ep-0-p)ra)
Q1,1

S o)

and since le ) B, 1By dx = 2 the sequence 3, !B% is bounded in L' and, after ex-

(6.21) ‘/ B, By dx
{By <0}

Er(un, Ay) — 0,

tracting a subsequence, 3, 1B} — pu for some measure pu. From (6.20) we also get
B1(1 — pn) — p, and the same for p,,. It also follows from (6.21) that

B (1—p)da =2+
Q1,1

5[ B - -p)de 2
Q1,1
Moreover, since

Bt (1= pn) By do < BB de < Er(un, Ay),

n

Q1,1 Q1,1
it holds

Byt (1= pn) Bl | dx
Q1,1

1/2 1/2
< ( - ﬁn>|B;|2dx) ( g1 - mdm) <1,
Q1,1 Q1,1

thus (up to a subsequence) 3, 1(1 — p,) B!, — m for some vector-valued measure m.
By [2, Th.2.34],

n—+oo n—-+4oo

> /Ql,1 (%)2 dp,

and m < p. Moreover, from Lemma 6.2 we have that 3, 'p, Bl, — 0 in a distributional
sense and therefore 3, !B, itself converges to m. Letting n — +o0 in

liminf/ B BL|? dx >1iminf/ B (1 — pn)|BL|? dx
(622) Q1,1 Q1,1

By div B, = 85 [, By +div' [8;'B.] =0,

we obtain O3 + div' m = 0. This proves (i).

We now prove that p = piz, ® dzs, that 8, 1By (-, 23) — iy, for a.e. x3 € (—1,1)
and that p,, — dz’ as r3 — £1. By (6.21) we have that, up to a subsequence in n,
for a.e. z3 € (—1,1),

: —1npn
ngrfoo Q1n{By<0} P By dw =0
Let 4 C (—1,1) be the set of z3 for which this hold. For every z3 € ¢, the L!
norm of S, 'B%(-,z3) is bounded thus if we fix a countable dense set ¥; C ¥, we
can assume up to extraction that for every x3 € ¥, B, 1B (-, x3) — vy, for some
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probability measure v,,. For x3,Z3 € ¢, thanks to the weak lower semi-continuity of
||'||BL and (65),

[Vay — Vi, llBL < limsup |8, " B3 (-, 3) — 8, B (-, 23) L
n—r—+00

5 lim (|5U3 — EC/3|1/2 + U(awm /Bna Tn))

n—-+o0o
= |$3 — %3|1/2.
Therefore, there exists a unique Holder-continuous extension of v, to (—1,1) 3 x5 —
Vs € P(Q1). We claim that p = v,, ® dzs. For K — 400, let {ZJK}jK;il € %, be an
increasing sequence such that

2 =BG S KT 41 SKTY and e, -1 S KT

Notice that for n large enough, we have for every j that [2X — 2K | = 0/2(a, Bn, Tn)
(where o is defined in Lemma 6.3) so that (6.6) applies. Let ¢ be a Qq-periodic and
Lipschitz continuous function on Q1,1 with ||?¢||rip < 1. By the continuity of x5 — vy,
we have

K

Y(dp — dvg, @ drg) = lim Pdu — Z(zﬁ_l - zJK) ¢( )dv x

Q11 K—too Q1,1 j=1

K 2K
. . i+l / —1pn/./
i > [ /Qz"w‘% il
j:l j 1
— (2, )5 'BY (a2, ]K)d:v’dxg.

Using the finite difference version of Leibniz’ rule,

(x', x3) By (2, x3) — (2, ZK) 22, ZJK)
= By (2!, w3)((a w3) — (2, 2]1)) + (2, 25 ) (By (2, w3) — By (2, 2"))

and using that ||¢||Lip < 1, we can estimate for fixed K, j and n large enough,

wx x3)B, "By (¢!, x3) — (2, 2 Byg 1By (2, ]K)dx’dacg
/ //3 By — K|dx+/j 1871 (BE (' w3) — B, 25) s

i
5K*1/ / BB de + KVEK2,
o,

where in the last line we have used that |x3 — ZJK\ < K~! and (6.6). Summing this
estimate over j, we obtain

Y(dp — dvg, @ drs)| S

< lim K~ {lim BBy de 4+ K~Y%| = 0.
K—+o0 n——+oo Q1.1

‘ Q1,1
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This establishes that y = v, ® dzs. Moreover, this proves that for every z3 € ¥, the
whole sequence 3, ! B} (-, x3) weakly converges to fi,,. Since the set ¢, was arbitrary,
this proves the above convergence for all z3 € ¢.

We finally show that the boundary conditions hold. For this we focus on z3 = 1.
For x3 € 4, it holds by the weak lower semi-continuity of || - ||gL,

11— ptos 8L < liminf |1 — 8,7 BY (-, z3)||BL
n—-+o0o

<liminf |1 — 87" BY (-, 1)||pr + limsup |5, By (-, 1) — B BE (-, x3) | bL-
n——+00

n——+00

By (6.5), the second right-hand side term is controlled by |1 — x3|'/2. For the first
right-hand side term we note that because of ||| g1/2 S ||¢]|Lip, We have

|‘B;13g(’ 1) - 1||2BL 5 ||ﬁ;1B§L(7 1) - 1”?{1/2 < 047:1/3/67:7/6ET(1/;7L7A7L)~

Hence, it is the last assumption in (6.1) that ensures that this term vanishes in the

limit n — 4+o00. We thus obtain the desired estimate
11 = prasllBL S 1 — 23]/

Step 2 (Lower bound and structure of ). — The starting point is an application of the
usual Modica-Mortola trick. In this step we only deal with u,, and p,,, and drop the
hats for brevity. By (6.15) and |V’p!/2| < |V 4u| we obtain from the Cauchy-Schwarz
inequality:

(6.23)  (1+C2™) Br(un, An) > ) B 22 Wepa) IV pY/2| + B, 1 B, 2 da,
n 1,1

for any € > 0. We momentarily fix a small § > 0 and estimate by the co-area for-
mula (4.2),

1-5 1
/ 2V We(pn) IV /| da > / / 2/ We(82) 1 (0{pn (-, x3) > 5°}) das ds.
Q1,1 5 -1

In particular there exists s, € [§,1 — ¢] depending on n such that
1-5 1
/ 2\/W5(82)/ A pn(-y23) > s2}) des ds
5 -1
1-5 1
> (/ 24/ We(s?) ds) / A pu (- x3) > s2}) dxs.
5 -1
Letting xn (2", 23) := B, (1 = X{pn (- 25)>s2} (2')) this reads

(6.24) 5;1/22\/ We(pn) ‘V’p}z/2| dx > 06,6/ ﬁi/2‘D/Xn| dzs,
Q1,1 Q1,1

where Cs . := f51752\/WE(52)ds.
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Let 7, — 0 to be chosen later. For n large enough, if p, < v,, then x,, = 3.1
while if p, > 1 — v, X = 0 so that

/ IXn — By (1= pp)| dz < B, pn dx + B, (1—pn)dx
Ql,l {png')’n} {pn}l_"/n}

+5;1|{7n < pn <1 =}
< 25;1’}% +5;1|{7n <pn <1 =}l

By definition of W (recall (6.14), min(,, 1_,,] W. = min(y,/e,72) = 72 so that using
that le ) a%/s 772/31/1/5(@1) dr <1,

Bt < pn < 1=} < Brtn2 We(pn) dz < B3, 20,23,
Q1,1

Therefore, if we choose 7, such that 5, > v, > ap Y Sﬂ; 1 6, which is possible since
by hypothesis anﬁz/ 2 400, we obtain that

lim Ixn — Byt (1 — pn)| dz = 0.

n—-4o0o Q11

Combining this with (6.20), we obtain that

lim |Xn — B, ' By | dx = 0.

n—-+oo Ql,l
By Fubini, this implies that, after passing to a subsequence in n, for a.e. x3€(—1,1),

if 8, BY(-,23) — pz, then also x, (-, 23) — fizy. Moreover, from

B tBy (2 x3)da’ =1 for a.e. x3 € (—1,1),
Q1

we obtain that

ngrfoo o Xn(2' z3)da’ =1 for ae. z3 € (—1,1).

We thus can use Lemma 6.6 to prove that p,, = ZZ pidx, for some ; > 0 and

n—-+oo

1
(6.25) liminf/ BY2\D' x| ds > 2\/7?/ Z\/@dxg,
Q1,1 -1

where we used Fatou lemma. This shows (iii). Putting (6.23), (6.24), (6.25) and (6.22)
together we find

1
~ dm\ 2
liminf Er(u,, A,) > 2 C’EE i dxs + — | du,
W:m_sl_n (u ) /1 s s, i Vi dxs /QL1<dH) "

for any € and §. Since
g iy Cac =2 [ 1~ )b = 5,

and K, = 84/m/3, this concludes the proof of (iv). O
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7. UpPER BOUND

In this section we construct a recovery sequence for any sequences T}, c,, 8, which
obey (6.1) and additionally the condition of quantization of the total flux

(7.1) L2T, a0, € 27N,

where L, := Loy Y 35; 18, Recalling the form of the gradient term in the func-
tional E7 defined in (1.5), to discuss quantization of the flux of individual domains
it is convenient to introduce

(7.2) ky = ol/382/3T,,.

The global flux quantization (7.1) then reads anQ € 27N and, in the L =1 case we
are considering here, simplifies to k,, € 27N. Condition (6.1) implies k,, — +oco and
in particular k, /8, — -+00, so that the quantization condition becomes less and less
stringent with increasing n. Aim of this section is to prove the following:

Provosirion 7.1. — Assume L=1, (6.1) and (7.1). Then, for every p with I(1) < +oco
and p1 =p_1= dx’ there exist sequences u, : Q11 — C and A, : Q11 — R? such that
lim sup ET(um An) < I(:u)

n—-4o0o
The fields py := |u,|? and B, :=V x A,, are Q-periodic and it holds
Bt —pn) = p and B,'B, —m,
where m is the measure such that I(p) = I(u, m).

The idea of the construction is to use the density result Theorem 5.15 to separate
the construction in two regions. In the bulk, the measure will be approximated by
a finite polygonal measure for which the construction is made in Section 7.1. In the
boundary layer, we plug in the construction of [19], see Section 7.2, which is optimal
up to a factor. Since the energy in the boundary layer is small, its suboptimal effect
disappears in the limit.

We shall first construct the density p and the magnetic field B. The appropriate
energy is F 3 = ﬁéjﬁT’T) + ﬁg"g, where
(7.3) ﬁ(i(jéb)(p’ B) ::/Q - a_2/36_1/3|V'p1/2\2 —|—a_4/3/3’_2/3|83p1/2|2

1 X(a,

+a?3372% (Bs — (1—p))* + 87| B/ | da,
and

(7.4) ngﬁt?(B) = a1/357/6||5_133 - 1‘@1*1/2((9“{11})'

Their sum corresponds to the energy E‘T, up to a reconstruction of u and A that
will be discussed in Section 7.3. A pair (p, B) is admissible for Féag’) if p and B are
Q1-periodic, div B = 0 and le Bs(2',x3) dx’ = 8 for all x3.
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We say that a pair (p, B) is k-quantized if there is a closed set w C Q1,1 such that
B = 0 outside w, p = 0 in w, and the flux of 37! B3 over every connected component
of wN{z3 = z} is an integer multiple of 27 /k, for all z € (—1,1).

7.1. ConstructioN 1N THE BULK. — This section is concerned with the local construc-
tion of flux tubes. For notational simplicity we present this construction in R? x (a, b),
without the periodicity assumption; since p = 1 and B = 0 outside a small region, its
periodic extension is immediate (see proof of Proposition 7.9 below). We start from
the optimal profile at the boundary of the individual tubes, with the lengths mea-
sured in units of the coherence length (recall (3.9)). For the purpose of the upcoming
constructions, we cut the profile at a lengthscale R > 1 towards the normal region.

Lemva 7.2. — Consider the functional

+oo
Glv) = 2\/7?/0 02 + (1 — v?)2 dt.

Then,

8

inf{G(v) :v(0) = O,tEva(t) = 1} =K, = §ﬁ

Furthermore, for all R > 3 there is vg € C*°(R;[0,1]) with vr(t) = 0 fort < 0,
vr(t) =1 fort > R, |0r| < 2, and, setting Kr := G(vg), one has

lim KR: gﬁ,

R—o0

and f0+oo t (|i)R|2 +(1— v%)Q) dt <1.

Proof. — The lower bound follows from the usual Modica-Mortola type computation
+oo +oo 1 4
/ |1}|2+(1—U2)2dt22/ (1-&)@&:2/(1—82)(13:3.
0 0 0

To prove the upper bound, we recall that v(¢) := tanht is the minimizer of G under
the constraint v(0) = 0. A direct computation shows that G(v) = K,. We then define
for R > 0,

0 ift <1/R,

tanh(t — 1/R)

vg(t) =8 ——————~ ifte[l/R,R—1/R
1 ift>R—-1/R,
and vg 1= Y1 /R * Ur, With ¢y /p € C°(—=1/R,1/R) a mollifier. By construction, this
has the desired properties and verifies G(vg) — G(v) as R — oc. O

We start with the simple case in which the limiting measure comes from a Lipschitz
curve; in practice this will be used only for affine or piecewise affine curves.

Lemma 7.3, Let X : (a,b) — R? be a Lipschitz curve, ¢ >0, R > 0. We define

o) o= i (=X )l = VBRI

Ui
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where 1 := a~2/381/6 < 1 is the coherence length (see (3.9)) and vg was introduced
in Lemma 7.2, and define B through

Ba(2) = X oy 775 () B(0) = Baw) X ().
Then, pB = 0 almost everywhere, div B = 0, and

b
7(a,b) ¢ C -2
Fayﬁ (0, B) < (1 + (pat/332/3)1/2 + 90044/352/3)/a (KRﬂ+W|X| )d$3'

The constant C' is universal. Moreover, if 1 1= @dx (3,) @ dr3,

(7.5) WE(6~ By, 1) < |b — a] 5.

Proof. — The condition pB = 0 follows from vg(t) = 0 for ¢ < 0. To check the
divergence condition, pick ¢ € C}(R? x (a,b)) and compute

b
(Bydath + B - V') da = / / (95t + V't - X () da’ dics
/]R?x(a,b) a (X (23):4/Bep/m)
b
d
= — (X (x3) + 3y, x3) dy’ das = 0.
/a / 1(0,3/Bo/m) 3

We now estimate the energy. We start from the interfacial energy at fixed z3
(see (7.3)),

El(xd) = ‘/2 04_2/3ﬁ_1/3\v’p1/2|2 + a2/35—2/3(33 N (1 B P))2 dz’.
R

If |2/ — X (z3)| < \/Be/m then p = 0and Bs = 1, whereas if |2'— X (x3)| > nR++/fp/7
then p = 1, B3 = 0. In the intermediate region, we use |V’p'/2| = |ig|/n. Passing to
polar coordinates and using r = |2’ — X (z3)| as an integration variable,

VBe/m4nR . —2/30-1/3 _ ./
Ey(z3) = / [% |1')R|2+a2/35_2/3(1—7)12%)2} (M)%Tr dr.
\/Be/m n n

We change variables according to r = \/B¢/7 + sn, insert the definition of n, and by
Lemma 7.2 obtain

R
By (1s) = / 12 [Jogl? + (1 — v3)?) 2n(v/ B/ + sm) ds

C
—2/3p—-1/3
< KB+ Ca*5 700 < V(K + Spposrors )

The other contributions to the energy are the cost of transport and the vertical
part of the gradient,

EQ(JI?,) ::/ a74/3ﬁ72/3|63p1/2‘2+671‘B,|2d$/.
R2
By definition of B’, we have for the second term,

/ BB de! = |X (23) 2.
R2
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T3
b
£
%aJr %b
QO
§a+ %b

s

e
T

-

x1

Ficure 3. Construction around a branching point

For the first one we use |d3p'/2| < |0g||X|/n and change variables as above to obtain
~4/33-2/3

R
/ aY3E72/310,p" 2P da’ < 2 X (a3)|? / (VBeo/m + sn)|v|* ds
R2 0
< a™ BB X (a3) (1 + /Bo/ )

. 1 1
_ 2
= ‘X($3)| SO(SOQ4/BB2/3 + (p1/2a2/3ﬁ1/3)'
To prove (7.5) we consider the transport map T'(z/,z3) = (X (x3),z3) which gives

b 2
W2(5~ B, ) </ 5—1/ 2 — X(2s)|2 da’ dvs = [b—a Bzi.
a (X (z3):4/Be/m) m

We now turn to the construction around branching points. Since the total length
around branching points is small, the construction here does not need to achieve the
optimal constant but only the optimal scaling. The idea of the construction is the
following. We first transform disks into squares, then split the square into two rect-
angles and then retransform each rectangle into a disk. The construction is sketched
in Figure 3. We start with the transformation from a rectangle to a disk.

Levva 7.4, — Leta <b€ER,v>0,X € R?, 0 >0, and R > 3. Let then Q C R? be a
rectangle with side lengths w and h centered in X, such that wh = B, w/h+h/w <~
and a~43372/3 L . Let as before n := a~2/35Y/6 be the coherence length.
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Iicure 4. The construction in Lemma 7.5 transforms a rectangle into
a circle, keeping det V'u = 1. Each curve corresponds to a different
value of x3, and plots the solution of 7(r,#) = ¢, which corresponds
to r(0) = t/[M(x3) cos(Ox3)] for 0 € (—m/4,7/4).

Then there are p € L*®(R? x [a,b];[0,1]) and B € L*(R? x [a,b];R?) such that
divB =0, pB = 0, with B =0 and p = 1 on (R? \ #'(X,r)) x [a,b] for some
r~nR+ /B, and

~(a,b
F(p,B) S /@la—b|R? +

r 2

where the implicit constants only depend on ~y. Further, p and B satisfy the boundary
conditions

pla',a) = v (

/ cet 2
2" — X[ - \/690/77)7 o' b) :min{L dist <f ,Q)}7
n n
and Bs(2',a) = X1 (x,\/Bo/) (z'), Bs(z',b) = xq(a').

We note that our assumptions on the parameters w,h,, just mean w ~ h ~
V/Bp = n. That is, the thread diameter is large compared to the coherence length. Note
that 7 ~ nR + /By behaves like the maximum between the thread diameter w ~ h
and the cut-off scale nR. The proof of Lemma 7.4 is based on an explicit construction

for a bilipschitz bijection with unit determinant that transforms a rectangle into a
circle, which we first present.

Levva 7.5. — Assume that z_, zy, h,w > 0, X € R? are given, z_ < zy. Then there
exists u: R? x [z_, 24 ] — R? such that

u(@’, 22 )=a', w(X + (3w, 3w)x (=1h, 3h), 24 ) =% (X, \/hw/7), det V'u=1 a.e.

The function x — (u(x),x3) is bilipschitz, its inverse is of the form y — (U(y),ys),
and w(X,x23) = X for all z3. If additionally h/w + w/h < 7, then the bounds

Viul + VU S 1, [Osul + 105U < h/]zg — 2|
hold, with constants which only depend on .
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Proof. By scaling and translation we may assume that hw =7, 24 =1, z_ =0,
X = 0. We can further assume h = w = /m, as the general case is obtained by
taking the composition at each z3 with the linear map diag(g(xs),1/g(x3)), where
g(x3) == y/h/w(l — x3) + x3. We work in polar coordinates, and construct functions
7, 0 of r, 6 and x3 such that
u(rcosd,rsinf, xz3) = (7 cos 5, 7sin 5)7
with 7 > 0 and 0 < 6 < 7/4, and then extend by symmetry. We set
= f(0,z3), 7T =rA(xs)cos(zsb),
where A and f are two functions still to be determined (see Figure 4). The ex-
1_

tension of the g-sectors by reflection is feasible provided that f(0,2z3) = 0 and

f(m/4,z3) = w/4 for all x3, the boundary data are attained provided that f(6,0) = 6,
A(0) =1, A(1) = 2/4/. The latter ensures that indeed the straight segment r cos =
w/2 = /m/2 is mapped into the unit circle ¥ = 1. The determinant condition is
equivalent to

L= 20,7 0of = N(as) cos? (230) 0 (6, 3),
which can be solved (using f(0,z3) = 0) to give

f(0,23) = m

smoothly extended to f(#,0)=60/A?(0). The condition f(m/4,x3)=m/4 determines \,
_ (tan(mw3/4)\1/2
o) = ()

which obeys A(1) = 2/4/m and smoothly extends to A(0) = 1. Clearly A ~ 1 so that
Ogf ~ 1. This implies that the change of variables defines a smooth deformation of
the é—sector which smoothly depends on x3 € [0, 1]. O

tan(0x3),

Proofof Lemma 7.4. — After a rotation and a translation, we may assume that X =0,
a =0 and b > 0; so that @ = (—w/2,w/2) x (—h/2,h/2). We treat two regions
separately.

In the lower region R? x [0,b/2], we interpolate between %, := %'(0,/By/7)
and @. To do this, let w and U be the functions from Lemma 7.5, using it for the
rectangle @Q and z_ = 0, zy = b/2. The magnetic field is defined by

Bs(x) = xa, (w(x)), B'(2) := X (u(2))05U (u(x),23) for 3 € [0,b/2].
The density is defined by
plx) := U%(W(x)—n W) for x5 € [0,b/2].
The condition pB =0 follows immediately, as well as the boundary data at z3=0.

Since B = 0 and p = 1 whenever |u(x)| > nR 4+ \/Be/m and since |u(x)| >
|2’|/||IV'U ||, we have B =0 and p = 1 whenever |2'| 2 ||V'Ul|oo(nR + V/B¢).
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In order to check divB = 0, we fix ¢ € C}(%. x (0,b/2)). Performing then a
change of variables at each z3 gives, since det V'U = 1,

/ 0 Bat V' - B do = / (D583 + V' - B) U (y), s) dy
R2x (0,b/2)

R2x(0,b/2)

- / xaay 1050 (U W), ys) + BsU () - V' b(U (), vs))] dy
R2x (0,b/2)

dys dy’ = 0.
= [, O G v s

By the properties of u we obtain Bs(z',b/2) = xq(z').

In the upper region R? x [b/2,b], we keep B(x',x3) := e3xq (') concentrated on Q
and linearly interpolate the profile between p'/?(z’,b/2) and the profile p/2(z’,b)
given in the statement:

P2(g) = % (01720 b/2)(b —5) + 9 (2’ B) (w5 — b/2)] for 3 € (b/2,)

It is immediate to check that Bs and p match continuously at all interfaces, pB = 0
and div B = 0. This concludes the construction.

We estimate the energy similarly to the proof of Lemma 7.3. Lemma 7.5 gives
[V'u| <1, |03u|l < h/b, |05U| S h/b, with constants depending only on . This yields
|B’| < h/b. Furthermore, by Lemma 7.2 |vg| < 1 and |[0g| < 2, so that p < 1,
[V/p!/2| < 1/n and |93p"/?| S h/ (1))

We start with the region x5 € [0, b/2]. All integrals in 2’ can be restricted to the set

Qu, = {2’ : \/Bo/m < Jula’,z3)| <R+ \/Bo/r}.

Since det Vu' = 1, we have

Q| = |2'(0,nR + \/Bo/7) ~ Byl = 70° R* + 23/ BennR < v/ By R?,

(in the last step we used the assumption on ¢ and R > 3). Therefore

b/2 a-2/3 1/3 h2a—4/33-2/3
(o b2, ﬁ p 2/38-2/3 h?
F) / / e + a2 153 / 5132) dz’ dzs

b/2 h2

< 2/3 2/3

N/O €2z, | d333( g~ 5b2)

h2
< (b+ ?a_2/3ﬂ_1/3)R2\/@

2
< VbR + %g@Rz,

where in the last line we have used that h? < r? and a=2/3571/3 < \/®. The region
(b/2,b) is simpler, as the |B’|? term does not appear, the others are the same with
the exception of |d3p'/2| < 1/b, which is smaller by the factor n/h < 1. O

Using this building block we can finally produce the construction that will be used
at branching points.
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Levmva 7.6. Leta<beR,v>0,>0,R>3,X;cR? and ¢; >0 fori=0,1,2
with o = @1+pa, ©o/P1+vo/we < v and /Beo = 1, where as above n := a=2/331/6,
Then, if
| Xo — Xi|,[Xo — Xo| < €/4, /Bpo < [X1—Xo| and nR <Y,
there exist p € L>°(R? x [a, b];[0,1]) and B € L?*(R? x [a, b]; R?) satisfying div B = 0,
pB=0,B=0and p=1 on (R*\ %' (Xy,30/4)) x |a,b], such that
62

|a — 0|
where the implicit constants only depend on vy, and which satisfy the boundary condi-
tions

F(p, B) < /o la — b|R* + woR?,

p(a’,a) _U%(Iz’an ‘ WOM) p(a’,b) —irg}gv}"z(llein ‘ ﬂwﬂ),

and Bs(2',a) = X (X0, T;O/ﬂ)(x’), Bs(2',b) = Z X (x.. Tw/ﬂ)(x/)'

i=1,2
Note that our assumptions on the parameters g, 1,2 and h just mean that
N S VBp: < X1 — Xa| S0 and nR < £. That is, the thread diameter is at least

as large as the coherence length n but small compared to the distance between the
threads. Likewise, ¢ is large compared to the cut-off scale nR.

Proof. — After a translation and a rotation we may assume that a = 0,5 > 0, X, = 0,
X5 — X; = Cer, with ¢ > 0. Let
wo = h:= (B<,00)1/27 wy 1= ﬂwo and wy = @wo.
%0 ¥0
Let then Q' := X; + [—w;/2,w;/2] x [~h/2,h/2], for i = 0,1,2. Notice that since
| Xi| < /4 and w; <wo =h < €, Q' C B'(3(/8).

We divide the interval (0,b) in three parts (see again Figure 3). In (0,b/3), we
apply Lemma 7.4 to transform %'(\/Byo/m) into Q¥ (in particular we have p = 1
on (R*\ #'(3¢/4)) x (0,b/3)). In (b/3,2b/3), we connect Q° to Q' and Q? by an
explicit construction (see below). Finally, in (2b/3,b) we apply again Lemma 7.4 to

transform Q' and Q? back into %'(X1, /By1/7) and B'(Xa,\/Bp2/7). Notice that
in (2b/3,0), if p(2’, x3) # 1 then by Lemma 7.4 and our hypothesis on the parameters,
necessarily

L
|2'| < max|X;| +O(nR+ /Beyo) < 1T o(0).
Thus, p =1 on (R? \ #'(3(/4)) x (2b/3,b).
It only remains to discuss the construction in the central region. Let
1= X1+ weer /2, y2i=Xa—wier/2 and, fori=12 Q" :=Q' -y,

so that up to a null set, Q¥ is the disjoint union of él and @2 (see Figure 5). Since
Yo —y1 = Xo — X1 —wopeq /2, and by assumption wg = (Bpg)/? < |X; — Xs|, we have
(yg — yl) -e1 > 0.
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o oo X
R X9 Xl
Q() Q2
Y1 Y2

Ficure 5. The construction in (b/3,2b/3)

For i =1,2 and z3 € (b/3,2b/3) we set
éz(ﬂﬂzs) = Qi + ac;),l;;)/?) Yi-
Since (y2 — y1) - €1 > 0, we have Q' (x3) N Q*(x3) = @ for all 3. Furthermore, since
Q' C #'(3¢/8), also Q' (z3) C B'(3(/8) for x5 € (b/3,2b/3). We finally let
p/2(z) := min {1, L dist (2, Q% (x3) U @2(@;3))} for x5 € [b/3,20/3),
and correspondingly
B B)w) = ¥ (5755 (@)
All admissibility conditions are easily checked. In particular,
p=1 if dist(z/,Q" UQ?(z3)) =,
which holds if |2/| > 3¢/4. The energy estimate is immediate. O

7.2. BOUNDARY LAYER

Prorosition 7.7. Let N € N, o, 3,T,t > 0 be given. Let k := o'/36%/3T and let
©1,.-.,pN2 be positive numbers such that

N2
kp; € 2rN  and Z(pi =1.
i=1
Assume that in the regime B < a, ay/2/T < 1, we have t > o™, 1/N > 072/36*1/3

Of)

and p; ~ 1/N? for every i. Then there are p and B, admissible for F and

k-quantized, such that

7.6 FOD(p,B) StN
(7.6) (P, B) SN + 150
1/3 1/2
1/327/6 1 B 6 1/337/6
(7.7) o' PBONBT By = 131/ (nym0) S 15 + g T BT

and, denoting by Q' the squares centered in the N2 points of the square grid of spacing
N~ with |Q'| = By,

(7.8) Bs(2',t) ZXQl Y and  p'2(2',t) = min{1, 7~ dist(2’, U, Q) }.
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Note that the assumptions on the parameters N and ¢; mean that the sidelength
V/Bgi of the squares is larger than the coherence length a=2/331/6 (see (3.9)) and that
both of them are small compared to the distance (equal to 1/N) between the squares.
The assumption on the parameter ¢t means that the thickness ¢ of the boundary layer is
large with respect to the coherence length, where we recall that vertical and horizontal
lengths have different units.

Proof. — The key construction is described in [19, Lem.4.7]. However, the nota-
tion and the scalings are different in that paper. Indeed, since there was no need to
rescale z3 by the thickness and &’ by the distance between the threads Ta~1/33-1/6,
in that paper length was measured in terms of the penetration length. We first let r;
be a square of side 1/N centered on the square grid of spacing N~!, Q* C r; be a
square with the same center and area given by |Q?| = By;, and b; := Bp; N2. Denoting
with a star the quantities from [19], we set

T :=Tt/2, ky:= a\/i/T, L, :=Ta /35716 rf = Lery, 75 = L.Q"
and dy = L/N, g = BY2LoIN, No =N, b i= (11/Ir e/ VE = biea V3.
[19, Lem. 4.7] gives Q,,-periodic fields

X« € BVioo(R? x (0,72);{0,1}) and  B. = (B[, B;) € Li(R*R?)
such that div B, = 0, B.(1 — x.) = 0, and,

X« (2", Ty) = ZX?{ (z') and Bj(a',T.) = %ZX?’; (') forz' €Qp,,

with energy

1

* Rox 2
9 5 [ e Dl + 1B 4 x (B — 25
* QL*X(O,T*)

s (S SR (1)
and
) ()

1 * * >'e *
ﬁHBB - Zbin; %{—1/2@“) SEX = ("f*(PO)2 +

We extend x, and B, to Qr, x (Ty,2T,) by
X«(x) = x«(2',T) and B. = (0,B5(z',T.)) forz' € Qr, x (T., 2T,),
so that (7.9) holds in Qr,, x (0,27). We set
ps(w) = min{1, K3d(z, w.)?},

where w, = {x : x«(x) = 1} (here d(-,w,) is the 3D distance, periodic in the tangential
directions). Since w, is invariant in the z3-direction inside (7%, 27} ) and since t > a =1,
giving T, > s, !, for x3 = 27T,

min{1, k}d(z,w,)*} = min{1, &7 dist(2’,w, N {3 = 27,})*} for z = (2, 2T}).
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Hence,

pi(2’,2T) = mln{mln (1, k2 dist (a2’ N‘)}

*

The same computation as in the proof of [19, Th. 4.9] leads to

1 / 1/2)2 12 «  Rx 2 int
- Vo' 7" + |BLl" + (B3 — —= (1= py)) " do S E.
L2 Jg, x(0,2T.) 3 V2

We scale back in the tangential direction to obtain

V2 (B’/“ B3)(L*x’,a:3).

p(z',x3) == p*(Lux’,2z3) and (B, Bs)(z',x3) := 7

Rox

We have div B = 0 and (7.8) holds. Changing variables gives
Vo2 (x) = L.V pr/ (L.’ z3) and  95p"/%(x) = Osp/*(Lua’, 23),
so that

- 1 . 2
FOD (5, B) < a=/35- 2/3L2/Q (OQT)Wpi/QIQHBL\Q—F<B§—%(1—p*)) dx
Ly X *

5 a74/3572/3Eint'

Since Ei"t = o*/332/3(Nt/2 + 2/(N?t)), this concludes the estimate for F(0 ")
We now estimate the boundary term. By the embedding of L> into H~ 1/ 2 (recall
that since 37, ¢; =1, [, 3° B)xr; dx’ = 0) we have

13236 = B)xr,

Rescaling the boundary estimate for B; leads to

a0 10— Bli%.

9 . . 9 67/6 54/3
HB3 — 23 bixr, H-1/2(Q1) 5 [Tz, EHBB -2 biXT_;’kHH*1/2(QL*) S a2/3 + al/3N2t

Adding terms and using that ). x,, = 1, we conclude that

1/347/6 1 2 pe 51 /2 /3 2
« 5 Hﬁ BS_l”H*l/z(Ql) g Oll/g N2t + 55/6 ||bl_ﬂ||oo D
7.3. Back 10 THE FULL GINZBURG-LANDAU FUNCTIONAL. In this section, we relate the

functional ﬁa,g, as defined in (7.3)~(7.4), with the functional Er, as defined in (1.5).

Prorosition 7.8. Let k = a/382/3T and let p, B be k-quantized admissible func-
tions for Fo g with pB=0. Letw := {p = 0} and then for z€ (—1,1), w, :=wn{zz=2}.
Assume that w is closed, that w® is connected and that for every 3 € (—1,1), wg_ is

also connected. Then, there is a pair (u, A), admissible for Er, such that p = |ul?,
B=VxA, and

(7.10) Er(u, A) = Fap(p, B).
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Proof. — We shall construct a function A on R? x (—1,1) so that B = V x A ev-
erywhere, and then a multivalued function 6 on the set Q¢ := Z2 x {0} + w® such
that VO = 37 'kA. Here B and p are Qi-periodic, but A and @ not necessarily. Set-
ting u = p'/2e" we then have Va-1pau = e"?Vp!/2, which directly implies (7.10).
Notice that thanks to the hypothesis on w, the set €2 is a connected open set.

We start from the construction of A. By [19, Lem. 4.8] applied to B — fes there
is a Qi-periodic potential Ape, such that V x Aper = B — fes and divA = 0. We
define A(x) := Aper(x) + Bx1e2 so that V x A = B. We remark that on any open set
where B = 0 the vector field A is curl-free and divergence-free, therefore harmonic,
and in particular smooth. In particular, since {2¢ is open and since by the Meissner
condition, B = 0 in Q°¢, A is smooth in ¢,

We now turn to the existence of 6. For a fixed level z3, let h + wfm, h e 72,
i=1,...,1(x3) be the connected components of (R? x {z3}) N (Z? +w,, ). Denote the
flux going through wfvS by

CI)Z(x;;) :/ Bg dl‘/.
w}TS

By assumption we have
(7.11) Bk®(x3) € 27Z  for every i.
Fix a smooth curve
Lo == {(v0(23),23) 1 23 € (-1,1)} C Q"
For z3,y3 € (—1,1), let
Lo :={(0(t),t) : t € (x3,93)} C To.

For x = (yo(x3),x3), let

O(x) := B_lk/ A-rdA?.

0,23
Ty

Now, for a generic = (2/,x3) € Q°, let

0(x) := 0(vo(xs), 23) +5_1/€/ A-rdn,

x

where T'* is any (horizontal) curve in ¢ (R? x {x3}) connecting = to (yo(x3),3).
This gives a well defined 6 : Q¢ — R/27Z since for every closed (horizontal) curve T
in Q°N (R? x {x3}),

(7.12) ﬁ‘lk/ A-rds" € 21
I

Indeed, this follows by Stokes’ Theorem and (7.11). Let us show that V8 = 3~1kA
in Q°. Let o = (2/,23) be fixed and let I'* be a fixed simple smooth curve joining
to (y0(w3), z3) inside QN (R? x {z3}). Since Q¢ is open, there is a simply connected
neighborhood V of I'* such that V' C Q€. Let then y = (3', y3) € V. Upon shrinking V,
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we may assume that (vo(ys3),y3) € V. Let T% C V be a smooth curve joining y to
(v0(ys3),ys) and let I'*¥ C V be a smooth curve joining = to y. By definition, we have

0(z) = 0(vo(xs), w3) + B 'k [ A-7dA#", 6(y) =0(10(ys),ys)+ B~ 'k [ A-rdA"

Iz Ty
and
0(v0(y3),y3) = 0(vo(x3), v3) + 571k/rw3)y3 A-rdat,
so that i
O(y) —0(z) = B~k A A-rdA + 5*11@/Fm3,y3 A-rdAt — 5*%/ A-rdA?.

However, by Stokes Theorem (and B =0 in V),

/ A-Td%1+/ A~de£ﬂ17/ A~7d%1:/ A-rdt,
Ty ngws z

Iy
so that
0(y) — O(x) = B~k A-rdA?,
rey
proving that indeed, VO = 37 'kA in Q°. O
7.4. Proor or tHE UPPER BOUND. — We start from a construction for an N-regular

measure and finite R.

Prorosirion 7.9. - Let p € M3, (Q1,1) for some N € N, R > 3, and assume (6.1)
and (7.1) hold. Then, there exist sequences u, : Q1,1 — C and A, : Q1,1 — R? such
that
1) + 57 (14 1)

N1/2 ’

with |u,| and V x A, Qq-periodic. Here Kg and K, are as in Lemma 7.2, C is
universal. Moreover,

7.14 limsup W2(B; By, ) < N73/2,
2 n 3

n—-+oo

~ K
(7.13) limsup Er(un, Ap) < il
n—-4oo K*

Proof. We first modify slightly @ in order to be able to use Proposition 7.7 for the
boundary layer. Set ey := N=3/2. For 3 € [~1 +en,1 —epn] let fip, = My /(1—en)
and for z3 € [—1,—1+en] U [l —en, 1], let Ly, := 1 = pu—1 = N2, x,, where
the {X;HY 21 form a regular grid with spacing 1/N (recall Definition 5.14). We then
have

R 1
I(p) < I(u) +2K.enN.
1 —EN

Moreover, since (@1 x (1 —en, 1)) = en, the same on the other side, and
W22((1 _EN)/JvﬁL(Ql X (_]— +en,1 _EN)) S 5%V7
so that
W3 i) Sen +ey SN2,

it is enough to prove the estimates for g instead of u.
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z3
Zj+€ +
) Wi
Zj i
Zj -0 1
X
2 FO

T
Ficure 6. The construction in (b/3,2b/3)

We start by characterizing the geometry of the construction, which will not depend
on n. The measure ji is supported on finitely many polygonal curves, parametrized
by X; : [a;, b;] = Q1, which are disjoint up to the endpoints and carry a flux ¢; > 0.
The endpoints are either on the boundary of 1,1, or they are triple points. Those on
the boundary constitute a regular grid. We let ¢p,i, := min; ¢;, @Ymax = max; @;, and
v 1= 8Pmax/Pmin- Since there are finitely many curves, these quantities are finite and
positive. We define as before n,, := 04;2/3 71/6 to be the coherence length; by (6.1) we
have n,, — 0.

Let y; = (Yj,2z;) € Q11 denote the internal endpoints of the curves. For
¢ > 0 sufficiently small one has that, for any j, the only curves which intersect
By (Y;) x (zj — €, z; + ) are those with an endpoint in y;. Since y; is a triple point,
there are three such curves I'g, I'y and I'p, intersecting only at y;. If we let M
be the maximal slope of all curves and ¢, := ¢/(8M), then no curve intersects
0%,5(Y;) X (zj — te, zj + t¢) (this means, they all “exit” from the top and bottom
faces). Without loss of generality, we can assume that

(Xo,2; —te) =To N (Z'(Y},0) x {zj — tc}),

(X1,2j +t0) =T1 N (B (Y], €) x {2 +1e}),

(X, zj + te) =TaN (%/(}/J,é) X {Zj +te})
(see Figure 6). By definition of t,, it holds |Xo — Y| < ¢/8 and |X; — Xo| < ¢/4 for
i=1,2. We set w; := By(Y;) x (z; — te, zj + t¢) and let 6, be the minimum distance
between any two curves outside |J; w;.

To explain the strategy, we first carry out a construction which ignores quanti-
zation. For sufficiently large n we have 7, R + \/@maxfn/m < 0¢/2 and can thus
use the construction of Lemma 7.3 in a &p/2-neighborhood of each curve (outside
of Y I w;), extending by p, = 1 and B,, = 0 to the complement. In the cylinders wj,
since the geometry is fixed, for n sufficiently large the conditions v/3,%¥min = Mn,
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VBn@max < | X1 —Xz| and 1, R < £ are satisfied and we can use Lemma 7.6. We then
have that p, = 1 outside &' (Xo,3¢/4) X (zj — tg, z; + t7) C wj.

In order to obtain a quantized field, we define k, as in (7.2), which obeys
k, € 27N and k,, — +o00. Let " be the k,-quantized approximation of [, as given
by Lemma 5.18. For sufficiently large n we have 27 < i" < 27 and for |z3] > 1 —e,

o, = @iox,
l

where [ — 1/N%| < O(1) /kn, ¢} < 2/N?. The fluxes @7 obey 1¢; < @7 < 2¢;.

We then construct B,, and p,, using Lemma 7.3 and Lemma 7.6 as discussed above.
The geometry is the one determined by fi. In particular, the points y;, and the con-
stants M, ©min, Pmax, O¢ and t; do not depend on n, and only §; and t, depend on .
Adding terms gives for sufficiently large n (as a geometry dependent function of ¢
and R)

b.

F(-LD) ¢ ¢ (K /G0 X2

FoBn (Pn, Bn) < Z<1+(@na4/3ﬂ2/3)1/2+<p”a4/3ﬂz/3>/a-(KR o7 o7 | Xil )d$3
i &n n i n n i

[2
+ C(A/) Z vV (PmathRQ + E@maxR27
J

i

where the first sum runs over all curves and the second over the cylinders and where
C(y) > 0 is a constant depending on «. In the limit n — 400 we have ¢ — ¢,
a2 3, — +oo and therefore, inserting the definition of t;,

lim sup ﬁa(;lﬁ’i) (pn, Bn)

n—-+o0o

b; .
<3 [ B il el des 4 OB (VIR M)
i Y j

The sum over j depends only on ji. Therefore if ¢ is chosen sufficiently small we have

Kr !

. ~(-1,1
lim sup F,iﬁ '(pn Bn) < I(p) + Nz

n—-+4o0o K*
Moreover, thanks to (7.5) and Lemma 5.18, we have
W28, By, A) S WE(B, BYL ") + W2, ")
S C()Bn + te t{Y5} + C()ky, "
~ 14 g
< OB + 12 8} + Ok
Again, since #{Y}}/M only depends on [, if we choose ¢ sufficiently small then
(7.15) limsup W2 (6, 1By, i) < N~3/2,

n——+0o

We finally address the boundary layer, focusing for definiteness on the side x3 > 0.
We first apply once more Lemma 7.4 to each curve for z3 € (1—en,1—en/2), so that
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the resulting fields B,, and p,, obey for all x3 € (1 —en/2,1),
Bu(z) =) esxqi(a’) and py(z) = min{1, ;" dist(«', U, Q")},
1

where Q! are squares centered in the N2 points X; with |Q'| = B¢l, and |pr —1/N?| <
C(f1)/kyn. Then we modify p, and B, in the set z3 € (1 — en/2,1) using Proposi-
tion 7.7. This results in new fields p,,, B, which obey

ﬁ(l*EN/2,1)<ﬁn’ En) + a711/35771/6”5;1(§n>3 o 1”%[71/2(1;3:1)

an,Bn
1/3 1/2 1/3 ~
~ N1/2 a}L/S N1/2 /875/6 k%

By (6.1) and (7.2) all terms up to the first one tend to zero as n — +o0o. Therefore
~ PPN Krp . c
li Fy ny Bn) < —1 ~175
:Lrgilig nw@n (p ) K* (:u’) + N]_/2

~

Finally, we pass from (p,, By) to (un, 4,) via Proposition 7.8 and conclude the proof
of (7.13). We also obtain (7.14) since

W2 (8, (Bu)s i) S WE(B; B, ) + N3/, 0
It only remains to combine the different steps.

Proof of Proposition 7.1. — By density (Theorem 5.15) there is a sequence
TS ///r]gg(Ql,l)

of N-regular measures converging weakly to u, with limsupy_, . I(u"V) < I(p).
Fix R > 3 and let (ul), AY) be as in Proposition 7.9. Taking a diagonal subsequence
(first with N, then with R) we obtain

limsup Exp(ul) ™, AY™) < I(p),

n
n—-+oo

and 551(35@))3 — p. From the compactness statement of Proposition 6.1 and

. . _ N _ N
uniqueness of m one obtains 3, (B, ("))’ —m and B;1(1 — |uy (n)|2) — u. O
RerERENCES
[1] G. Auserti, R. Cuoksi & F. Orro — “Uniform energy distribution for an isoperimetric problem

with long-range interactions”, J. Amer. Math. Soc. 22 (2009), no. 2, p. 569-605.

[2] L. Amsrosio, N. Fusco & D. Patara — Functions of bounded variation and free discontinuity
problems, Oxford Mathematical Monographs, Oxford University Press, New York, 2000.

[3] L. Amsrosto, N. GicLt & G. Savaré — Gradient flows in metric spaces and in the space of proba-
bility measures, Lectures in Math. ETH Ziirich, Birkhaduser Verlag, Basel, 2005.

[4] P. BeLa & M. GoLpman — “Nucleation barriers at corners for a cubic-to-tetragonal phase trans-
formation”, Proc. Roy. Soc. Edinburgh Sect. A 145 (2015), no. 4, p. 715-724.

[5] H. Ben Bercacewm, S. Conri, A, DeSmvone & S. MiLLer — “Rigorous bounds for the Foppl-von
Kéarméan theory of isotropically compressed plates”, J. Nonlinear Sci. 10 (2000), p. 661-683.

[6] —, “Energy scaling of compressed elastic films”, Arch. Rational Mech. Anal. 164 (2002),
p. 1-37.

[7] M. Bernor, V. CaserLres & J.-M. Morer — Optimal transportation networks. Models and theory,
Lect. Notes in Math., vol. 1955, Springer-Verlag, Berlin, 2009.

JE.P.— M., 2018, tome



]

9
[10]
[11]
[12]

(13]

(19]
20]
(21]
(22]
23]
(24]

25]

JLEP

S. Contr, M. Gorpman, F. OtT0 & S. SERFATY

F. Bernuer — “A counterexample to the weak density of smooth maps between manifolds in
Sobolev spaces”, arXiv:1401.1649, 2014.

A. Brampes — I'-convergence for beginners, Oxford Lecture Series in Mathematics and its Appli-
cations, vol. 22, Oxford University Press, Oxford, 2002.

A. Brancorintg, C. Rossmanitu & B. Wirtn — “Optimal micropatterns in 2d transport networks and
their relation to image inpainting”, Arch. Rational Mech. Anal. 228 (2018), no. 1, p. 279-308.
A. Brancorint & B. Wirtn — “Optimal micropatterns in transport networks”, arXiv:1511.08467,
2015.

A. Cuan & S. Conti — “Energy scaling and branched microstructures in a model for shape-memory
alloys with SO(2) invariance”, Math. Models Methods Appl. Sci. 25 (2015), p. 1091-1124.

R. Cuokst, S. Contr, R. V. Kou~x & F. Orro — “Ground state energy scaling laws during the onset
and destruction of the intermediate state in a type-I superconductor”, Comm. Pure Appl. Math.
61 (2008), p. 595-626.

R. Cnokst, R. V. Konx & F. Otro — “Domain branching in uniaxial ferromagnets: a scaling law
for the minimum energy”, Comm. Math. Phys. 201 (1999), p. 61-79.

R. Cuokst, R. V. Konx & F. Orro — “Energy minimization and flux domain structure in the
intermediate state of a type-I superconductor”, J. Nonlinear Sci. 14 (2004), p. 119-171.

E. Cintr & K. Orro — “Interpolation inequalities in pattern formation”, J. Funct. Anal. 271
(2016), no. 11, p. 3348-3392.

S. Conti — “Branched microstructures: scaling and asymptotic self-similarity”, Comm. Pure

Appl. Math. 53 (2000), p. 1448-1474.

S. Conrr, J. DiervEIER & B. ZwicknacL — “Deformation concentration for martensitic microstruc-
tures in the limit of low volume fraction”, Calc. Var. Partial Differential Equations 56 (2017),
no. 1, p. 56:16.

S. Conti, F. Otro & S. Serraty — “Branched microstructures in the Ginzburg-Landau model of
type-I superconductors”, SIAM J. Math. Anal. 48 (2016), no. 4, p. 2994-3034.

S. Conti & B. ZwicknacL — “Low volume-fraction microstructures in martensites and crystal
plasticity”, Math. Models Methods Appl. Sci. 26 (2016), no. 7, p. 1319-1355.

G. DAL Maso — An introduction to I'-convergence, Progress in Nonlinear Differential Equations
and their Applications, vol. 8, Birkhduser Boston Inc., Boston, MA, 1993.

R. L. Frank, C. Hainze, R. SEmincer & J. P Sovoves — “Microscopic derivation of Ginzburg-Landau
theory”, J. Amer. Math. Soc. 25 (2012), no. 3, p. 667-713.

M. Gorpmax — “Self-similar minimizers of a branched transport functional”, arXiv:1704.05342,
2017.

M. Goroman & B. MerLer — “Phase segregation for binary mixtures of Bose-Einstein Conden-
sates”, SIAM J. Math. Anal. 49 (2017), no. 3, p. 1947-1981.

A. Jarre & C. Tauses — Vortices and monopoles. Structure of static gauge theories, Progress in
Physics, vol. 2, Birkhduser, Boston MA, 1980.

W. Jin & P Sternserc — “Energy estimates of the von Kdrmén model of thin-film blistering”,
J. Math. Phys. 42 (2001), p. 192-199.

H. Kntrrer, R. V. Konx & K. Otro — “Nucleation barriers for the cubic-to-tetragonal phase trans-
formation”, Comm. Pure Appl. Math. 66 (2013), no. 6, p. 867-904.

H. Kntprer & C. B. Muratov — “Domain structure of bulk ferromagnetic crystals in applied fields
near saturation”, J. Nonlinear Sci. 21 (2011), no. 6, p. 921-962.

R. V. Kon~ & S. MiLLER — “Branching of twins near an austenite-twinned-martensite interface”,
Phil. Mag. A 66 (1992), p. 697-715.

, “Surface energy and microstructure in coherent phase transitions”, Comm. Pure Appl.
Math. 47 (1994), p. 405-435.

L. Mopica — “The gradient theory of phase transitions and the minimal interface criterion”,
Arch. Rational Mech. Anal. 98 (1987), p. 123-142.

E. Orro & T. Vienmany — “Domain branching in uniaxial ferromagnets: asymptotic behavior of
the energy”, Calc. Var. Partial Differential Equations 38 (2010), no. 1-2, p. 135-181.

E. Ouvber & F. SantamBrocio — “A Modica-Mortola approximation for branched transport and
applications”, Arch. Rational Mech. Anal. 201 (2011), no. 1, p. 115-142.

M., 2018, tome 5


http://arxiv.org/abs/1401.1649
http://arxiv.org/abs/1511.08467
http://arxiv.org/abs/1704.05342

(34]
(35]

(36]

BRANCHED TRANSPORT LIMIT OF THE ;INZBITR(,;- JANDAU FUNCTIONAL ‘ "5
A ( [ 3

R. Prozorov — “Equilibrium topology of the intermediate state in type-I superconductors of
different shapes”, Phys. Rev. Lett. 98 (2007), p. 257001.

R. Prozorov, R. W. Gianxerra, A. A. Porvanskir & G. K. Perkins — “Topological hysteresis in the
intermediate state of type I superconductors”, Phys. Rev. B 72 (2005), p. 212508.

R. Prozorov & J. Hoserc — “Dynamic formation of metastable intermediate state patterns in
type-I superconductors”, in 25th international conference on low temperature physics, Journal
of Physics: Conference Series, vol. 150, IOP Publishing, 2009, article # 052217.

E. Saxpier & S. Serrary — Vortices in the magnetic Ginzburg-Landau model, Progress in Non-
linear Differential Equations and their Applications, vol. 70, Birkhduser Boston, Inc., Boston,
MA, 2007.

S. Serkary — Coulomb gases and Ginzburg-Landau vortices, Zirich Lectures in Advanced Math-
ematics, European Mathematical Society, Ziirich, 2015.

M. Tinkuam — Introduction to superconductivity, Int. series in Pure and Appl. physics, McGraw
Hill, New York, 1996.

T. Vienmann — “Uniaxial ferromagnets”, PhD Thesis, Universitdt Bonn, 2009.

C. ViLLant — Topics in optimal transportation, Graduate Studies in Mathematics, vol. 58, Amer-
ican Mathematical Society, Providence, RI, 2003.

Q. X1a — “Interior regularity of optimal transport paths”, Calc. Var. Partial Differential Equa-
tions 20 (2004), no. 3, p. 283-299.

B. ZwicknacrL — “Microstructures in low-hysteresis shape memory alloys: scaling regimes and
optimal needle shapes”, Arch. Rational Mech. Anal. 213 (2014), p. 355-421.

Manuscript received 5th April 2017

accepted 13th February 2018

Sercro Conrr, Institut fiir Angewandte Mathematik, Universitat Bonn
Endenicher Allee 60, 53115 Bonn, Germany
E-mail : sergio.conti@uni-bonn.de

Url

:https://www.iam.uni-bonn.de/aaa2/people/sergio-conti/

Micuaer Gorpman, LJLL, Université Paris Diderot, CNRS, UMR 7598
Bat. Sophie Germain, 75205 Paris Cedex 13, France
E-mail : goldman@math.univ-paris-diderot.fr

Url

FErL

:https://www.1ljll.math.upmc.fr/~goldman/

ix Orro, Max Planck Institute for Mathematics in the Sciences

Inselstrae 22, 04103 Leipzig, Germany
E-mail : otto@mis.mpg.de
Url : https://www.mis.mpg.de/applan/members/felix-otto/cv.html

SyLvia SErrary, Courant Institute, NYU

251 Mercer Street New York, N.Y. 10012-1185, USA
and

Institut Universitaire de France & UPMC

4, place Jussieu, 75252 Paris cedex 05, France
E-mail : serfaty@cims.nyu.edu

Url : https://math.nyu.edu/~serfaty/

JE.P.— M., 2018, tome 5


mailto:sergio.conti@uni-bonn.de
https://www.iam.uni-bonn.de/aaa2/people/sergio-conti/
mailto:goldman@math.univ-paris-diderot.fr
https://www.ljll.math.upmc.fr/~goldman/
mailto:otto@mis.mpg.de
https://www.mis.mpg.de/applan/members/felix-otto/cv.html
mailto:serfaty@cims.nyu.edu
https://math.nyu.edu/~serfaty/

	1. Introduction
	2.  Notation and preliminary results
	3. The Ginzburg-Landau functional
	4. The intermediate functionals
	5. The limiting energy
	6. Lower bound
	7. Upper bound
	References

