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HOMOGENIZATION OF
WEAKLY COERCIVE INTEGRAL FUNCTIONALS IN
THREE-DIMENSIONAL LINEAR ELASTICITY

BY Marc Briane & ANToN10 JESUS PALLARES MARTIN

Asstract. — This paper deals with the homogenization through I'-convergence of weakly coer-
cive integral energies, with the oscillating density L(z/e)Vv:Vu, in three-dimensional elasticity.
The energies are weakly coercive in the sense where the classical functional coercivity satisfied
by the periodic tensor L:

/ ]L(y)Vv:Vvdy}A(]L)/ |Vo|? dy,
R3 R3

for any smooth function v with compact support in R3, with A(L) > 0, is replaced by the
relaxed condition A(LL) > 0. We prove that the homogenized tensor L° remains strongly elliptic,
or equivalently A(IL?) > 0, for any tensor L. = L(y1) satisfying the pointwise inequality:

L(y)M:M + D:Cof (M) >0, ae.y€R3 VM € R3>3

adding a quadratic null-Lagrangian for some matrix D € R3%3 and assuming the periodic
functional coercivity Aper(L) > 0 (using smooth test functions v with periodic gradients).
However, we derive rigorously the loss of strong ellipticity for the homogenized tensor, which
is based on a I'-convergence result under the sole assumption A(L) > 0, and on a rank-two
lamination.

Riésumie (Homogénéisation de fonctionnelles intégrales faiblement coercives en élasticité linéaire
tridimensionnelle)

Dans cet article on étudie la I'-convergence d’énergies intégrales faiblement coercives, de
densité oscillante L(xz/e)Vv:Vu, en élasticité tridimensionnelle. Les énergies sont faiblement
coercives du fait que la coercivité fonctionnelle classique satisfaite par le tenseur périodique L :

/ L(y)Vu:Vody > A(]L)/ |Vo|? dy,
R3 R3
pour toute fonction réguliere v & support compact dans R3, avec A(L) > 0, est remplacée par
la condition relaxée A(L) > 0. On montre que le tenseur homogénéisé L. reste fortement ellip-
tique ou, de maniére équivalente, A(L®) > 0, pour tout tenseur L. = L(y1) vérifiant I’inégalité
ponctuelle :
L(y)M:M + D:Cof(M) >0, p.p.y€cR3 VM e R3*3,

par P’addition d’un lagrangien nul pour une matrice D € R3%3 donnée, et en supposant la
coercivité fonctionnelle périodique Aper(L) > 0 (obtenue avec des fonctions test v de gradient
périodique). Cependant, on obtient une perte d’ellipticité du tenseur homogénéisé, fondée sur
un résultat de I'-convergence sous la seule hypothése A(L) > 0, et sur une lamination de rang 2.

MATHEMATICAL SUBJECT CLASSIFICATION (2010). 35B27, 74B05, 74Q15.
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1 . IV\TROI)L,CTIO\J

In this paper, for a bounded domain Q of R? and for a periodic symmetric tensor-
valued function L = L(y), we study the homogenization of the elasticity energy

(1.1) vE HY (R —s / L(z/e)Vv-Vuodr ase— 0,
Q

especially when the tensor L is weakly coercive (see below). It is shown in [12, 5] that
for any periodic symmetric tensor-valued function . = L(y) satisfying the functional
coercivity, i.e.,

(1.2) A(L) := inf {/ LVv:Vudy, v e CZ(R?R?), / |Vo|? dy = 1} >0,
RS RS
and for any f € H~(Q;R3), the elasticity system

—div(L(z/e)Vu®) = f in Q
(1.3) { (if/i)o ) ! on 00

H-converges as £ — 0 in the sense of Murat-Tartar [10] to the elasticity system with
the so-called homogenized tensor IO defined by

(1.4) L'M:M := inf{/y L(M + Vv):(M + Vo) dy, v € H;er(yg;R?’)}

for M € R3*3.

Equivalently, under the functional coercivity (1.2) the energy (1.1) T'-converges for
the weak topology of H}(;R?) (see Definition 1.2) to the functional

(1.5) v e Hy(QR?) — [ LVu:Vuda.
Q

The functional coercivity (1.2), which is a nonlocal condition satisfied by the sym-
metric tensor L, is implied by the very strong ellipticity, i.e., the local condition

(1.6) ayse(LL) = ess—ﬂi{glf(min{L(y)M:M, M e R>*® |M|=1}) >0,
ye

and the converse is not true in general. Moreover, condition (1.2) implies strong
ellipticity, i.e.,

(1.7)  ase(L) := ess—ﬂi{ralf(min{L(y)(a ®@b):(a®b), a,b € R?, |a| = |b] =1}) > 0,
ye
but contrary to the scalar case, the converse is not true in general.

JEP M., 2017, lome /4
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Here, we focus on the case where the tensor L is weakly coercive, i.e., relaxing the
condition A(L) > 0 by A(L) > 0. In this case the homogenization of the elasticity
system (1.3) associated with the energy (1.1) is badly posed in general, since one has
no a priori L2-bound on the stress tensor Vu¢ (assuming the existence of a solution u®
to the elasticity system (1.3)) due to the loss of coercivity. However, it was shown by
Geymonat et al. [7] that the previous I'-convergence result still holds when A(L) > 0,
under the extra condition of periodic functional coercivity, i.e.,

(1.8)  Aper(L) == inf{/ LVv:Vudy, v € H}, (Y3 R?), / Vo2 dy = 1} > 0.
Y3 Y3

Furthermore, using the Murat-Tartar 1*-convergence for tensors which depend only
on one direction™) (see [9] in the conductivity case, see [8, §3] and [2, Lem. 3.1] in the
elasticity case), Gutiérrez [8, Prop. 1] derived in two and three dimensions a 1-periodic
rank-one laminate with two isotropic phases whose tensor is

(1.9) Li(y1) = x(y1) Lo + (1 — X(yl)) L, fory; €R,

which is strongly elliptic, i.e., age(IL1) > 0, and only weakly coercive, i.e., A(L;) > 0,
but such that the homogenized tensor L] induced by 1*-convergence, which is shown
to agree with the I'-limit LY of formula (1.4) (see the proof of Theorem 3.9, step 4), is
not strongly elliptic, i.e., as(Ly) = 0. However, the 1*-convergence process used by
Gutiérrez in [8] needs to have a priori L2-bounds for the sequence of deformations,
a property which is not compatible with the weak coercivity assumption. There-
fore, Gutiérrez’ approach is not a H-convergence process applied to the elasticity
system (1.3). Francfort and the first author [2] obtained in dimension two a similar
loss of ellipticity through a homogenization process using the I'-convergence approach
of [7] from a more generic (with respect to (1.9)) 1-periodic isotropic tensor L = L(y;)
satisfying

(1.10) AL) =0, Aper(L) >0 and ag (L) =0.

They also showed that Gutiérrez’ lamination is the only one among rank-one laminates
which implies such a loss of strong ellipticity.

The aim of the paper is to extend the result of [2] to dimension three, namely
justifying the loss of ellipticity of [8] by a homogenization process. The natural idea
is to find as in [2] a 1-periodic isotropic tensor L = L(y;) satisfying (1.10). Firstly, in
order to check the relaxed functional coercivity A(L) > 0, we apply the translation
method used in [2], which consists in adding to the elastic energy density a suitable
null Lagrangian such that the following pointwise inequality holds for some matrix
D e R3%3:

(1.11) LM:M + D:Cof(M) >0, VM € R3*3,

(DRecall that the 1*-convergence enables us to obtain the homogenized tensor L from a coercive
local tensor . = L(y1) thanks to a cascade of weak convergences based on the fact that there are no
oscillations with respect to the variables ya, ..., yq.

JE.P.— M., 2017, tome 4
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Note that in dimension two the translation method reduces to adding the term
ddet(M) with one coefficient d, rather than a (3 x 3)-matrix D in dimension three.
But surprisingly, and contrary to the two-dimensional case of [2], we prove (see The-
orem 3.3) that for any 1-periodic tensor L. = LL(y;), condition (1.11) combined with
Aper(L) > 0 actually implies that age (L) > 0, making impossible the loss of ellipticity
through homogenization. This specificity was already observed by Gutiérrez [8] in the
particular case of isotropic two-phase rank-one laminates (1.9), where certain regimes
satisfied by the Lamé coefficients of the isotropic phases L,,L; are not compatible
with the desired equality age(IL?) = 0.

To overcome this difficulty Gutiérrez [8] considered a rank-two laminate obtained
by mixing in the direction ys the homogenized tensor L], in the sense of 1*-convergence
(see above), of the local tensor L;(y;1) defined by (1.9), with a very strongly elliptic
isotropic tensor L.. In the present context we derive a similar loss of ellipticity by rank-
two lamination, but justifying it through homogenization still using a I'-convergence
procedure (see Theorem 3.9). However, the proof is rather delicate, since we have
to choose the isotropic materials a, b, ¢ so that the 1-periodic rank-one laminate ten-
sor Lo in the direction yo obtained after the first rank-one lamination of L, Ly in the
direction y;, namely

(1.12) La(y2) = x2(y2) L + (1 — x2(y2)) Le  for y2 € R,
satisfies
(1.13) A(Lz) >0 and ag(L3) =0,

where ILJ is the homogenized tensor defined by formula (1.4) with L. = L. Moreover,
the condition A(L2) > 0 without Aper(L2) > 0 (which seems very intricate to check)
forces us to extend the I'-convergence result of [7, Th.3.1(i)]. However, Braides and
the first author have proved (see Theorem 2.4) that the I'-convergence result for the
energy (1.1) holds true under the sole condition A(L) > 0.

The paper is divided in two sections. In the first section we prove the I'-convergence
result for (1.1) under the assumption A(IL) > 0, and without the condition Aper (L) >0.
The second section is devoted to the main results of the paper: In Section 3.1 we prove
the strong ellipticity of the homogenized tensor IV for any isotropic tensor L = L(y;)
satisfying both the two conditions (1.11) (which implies A(L) > 0) and Aper (L) > 0.
In Section 3.2 we show the loss ellipticity by homogenization using a suitable rank-
two laminate tensor Lo of type (1.12), and the I'-convergence result under the sole
condition A(ILg) > 0. Finally, the Appendix is devoted to the proof of Theorem 2.2
which provides sufficient conditions on a periodic tensor L for satisfying the periodic
coercivity Aper(L) > 0.

NorATioN
o The space dimension is denoted by N > 2, but most of the time it will be N = 3.
o RYXN denotes the set of the symmetric matrices in RV*V.
e Iy denotes the identity matrix of RV*¥,

JEP M, 2017, lome /4



HOMOGENIZATION OF WEAKLY COERCIVE INTEGRAL FUNCTIONALS IN THREE-DIMENSIONAL LINEAR FL:\STICITY/|87‘

e For any M € R¥*N_ MT denotes the transposed of M, and M?* denotes the
symmetrized matrix of M.

o : denotes the Frobenius inner product in RV*N ie, M:M' := tr(MTM') for
M, M' € RVXN,

o Z,(RV*N) denotes the space of the symmetric tensors L on RV*V satisfying

LM =LM* ¢ RY*N and LM:M'=LM"M, ¥VM,M cRN*N.

In terms of the entries L;;x; of L, this is equivalent to Lijx = Lji = Ly for any
i,jkle{l,... N}

o I, denotes the unit tensor of .Z,(RV*Y) defined by I,M := M* for M € RV*N,

o M;; denotes the (i, j) entry of the matrix M € RV*V,

o M denotes the (N—1) x (N—1)-matrix resulting from deleting the i-th row and
the j-th column of the matrix M € RV*N for i, j € {1,...,N}.

o Cof(M) denotes the cofactors matrix of M € R¥*¥ ie., the matrix with entries
(Cof M);; = (—1)9 det(M*) for i,j € {1,...,N}.

o adj(M) denotes the adjugate matrix of M € RV*N ie., adj(M) = (Cof M)T.

o Yy :=[0,1)" denotes the unit cube of RV.
Let L € L

per
the whole paper we will use the following ellipticity constants related to the tensor L

(see [7, §3] for further details):
o 0e(LL) denotes the best ellipticity constant for L, i.e.,

ase(LL) := ess—}i/nf(min{]]_d(y)(a ®b):(a®b), a,b e RY, |a| = b = 1}).
YeYN

(Yn; Z(RY*N)) be a Yy-periodic symmetric tensor-valued function. In

o yse(IL) denotes the best constant of very strong ellipticity of L, i.e.,

Onvse(IL) := ess-inf (min{L(y) M:M, M € RY>N M| =1}).
yeYN
o A(L) denotes the global functional coercivity constant for L, i.e.,
A(L) := inf {/ LVv:Vody, ve CRY;RY), / IVol2 dy = 1} .
]RN RN

o Aper(L) denotes the functional coercivity constant of L with respect to
Yn-periodic deformations, i.e.,

Aper(L) := inf {/ LVu:Vudy, v € H;er(YN;RN)7 /
YN

|Vol? dy = 1} .
YN

Remark 1.1
o The very strong ellipticity implies the strong ellipticity, i.e., for any tensor L,
ayse(L) >0 = (L) > 0.
o According to [7, Th. 3.3(i)], if ase(L) > 0, then the following inequalities hold:
(1.14) AL) < Aper(L) < age(LL).
o Using a Fourier transform we get that for any constant tensor Ly,

ase(Lg) >0 < A(Ly) > 0.

JE.P.— M., 2017, tome 4
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In the sequel will always assume the strong ellipticity of the tensor L, i.e.,
ase(L) > 0.

We conclude this section with the following sequential definition of I'-convergence
(see, e.g. [4, 1]):

Derintrion 1.2. Let X be a reflexive and separable Banach space endowed with the
weak topology o(X, X’), and let #°:X — R be a e-indexed sequence of functionals.
The sequence .#¢ is said to I'-converge to the functional .#%:X — R for the weak
topology of X, and we denote .#¢ LX0 20 if for any u € X,

o Yu, — u, F(u) < lim inf 7= (ue),
e—
o JU. — u, F°(u) = lim F°(7.).
e—0

Such a sequence . is called a recovery sequence.

Note that the weak topology of X is metrizable on closed balls of X. This will be
used in the proof of Theorem 2.4 below.

Acknowledgments. — The authors wish to thank A.Braides for the helpful Theo-
rem 2.4. They are also grateful to the unknown referees for their careful reading and
relevant remarks (especially about the I'-convergence procedures) which have clarified
the presentation of the paper. A.J. P.-M. is also grateful to the Institut National des
Sciences Appliquées de Rennes for its hospitality, where this work was carried out
during his stay March 2-June 29, 2015.

2. The I'-CONVERGENCE RESULTS

It is stated in [12, Ch. 6, §11] that the first homogenization result in linear elasticity
can be found in Duvaut’s work (unavailable reference). It claims that if the periodic
tensor L is very strongly elliptic, i.e., ayse(IL) > 0, then the solution u® € H{ (2;R?)
to the elasticity system (1.3) satisfies

u® — u weakly in H}(Q;R?),
(2.1) L(z/e)Vu® — L°Vu weakly in L*(Q;R3*3),
— div(L°Vu) = f,

for some f € H~1(Q;R3), where L is given by

(2.2) LOM:M := inf {/Y L(M + Vv):(M + Vo) dy, v € H;er(Yg;R3)}
for M € R3*3,

which is attained when Ape (L) > 0. The previous homogenization result actually
holds under the weaker assumption of functional coercivity, i.e., A(L) > 0, as shown
in [5].

JEP M., 2017, lome /4
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Otherwise, from the point of view of the elastic energy consider the functionals

(2.3) FE(v) ::/QL(Q:/s)Vv:Vvdx,

(2.4) FO(v) = / LOVu:Vodr for v e H'(Q,R?).
Q

Then, the following homogenization result [7, Th. 3.4(i)] through the T'-convergence
of energy (2.3), allows us to relax the very strong ellipticity of L.

Tueorem 2.1 (Geymonat et al. [7]). — Under the conditions
AL) >0 and Ape(L) >0,

one has

F< I-Hj (Q;R?) ﬁo’

for the weak topology of HL(Q;R3), where LV is given by (2.2).

2.1. GENERIC EXAMPLES OF TENSORS SATISFYING A(LL) > 0 axD Aper(L) > 0

Reference [2] provides a class of isotropic strongly elliptic tensors for which Theo-
rem 2.1 applies. However, this work is restricted to dimension two. We are going to
extend the result [2, Th.2.2] to dimension three.

Let us assume that there exist p € N phases Z;, © =1, ..., p satisfying

Z; is open, connected and Lipschitz for any ¢ € {1,...,p},
(2.5) ZinZ;=2 Yi#je{l,...,p},
?3 = U?:l 71’7
such that the tensor L satisfies
L(y)M = Xy) tr(M) I3 + 2u(y)M, Yy €Yz, VM € R3*3
(2.6) Ay) =Xi, ply) = piin Z;, Vie{l,...,p},
i >0, 2u; + X >0, Vie{l,...,p}
We further assume the existence of d > 0 such that
(2.7) - min {20+ 30} <d <4 min {u).
Now, we define the following subsets of indexes
I={ie{1,...,p}: d=14u},
(2.8) J:={je{1,...,p}: 2u; +3\; = —d},
K:={1,...,p} ~(TUJ).
Note that the three previous sets are disjoint. This is true, since we have 4pu; >
—(2u; + 3X;) due to 2u; + A; > 0.
In this framework, we are able to prove the following theorem which is an easy

extension of the two-dimensional result of [2, Th. 2.2]. For the reader convenience the
proof is given in the Appendix.

JE.P.— M., 2017, tome 4
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Turorem 2.2. Let L be the tensor defined by (2.6) and (2.7). Then we have
A(L) > 0. We also have Aper(L) > 0 provided that one of the two following condi-
tions is fulfilled by the sets defined in (2.8):

Case 1. — For each j € J, there exist intervals (a; ,a ) (b ,bj') [0,1] such that
(aj,j) (b],bj) {0,1} c 90Z;, or
(J,j)x{Ol}X(bJ,bj)CaZ or
{0,1} x (aj ,af) x (b;,b]) C 8Z;.

Case 2. For each j € J, there exists k € K with *(0Z; N 0Zy) > 0, where 77
denotes the 2-dimensional Hausdorff measure.

Remark 2.3. — Recently, Francfort and Gloria have proved in [6, Th.2.1] that in
dimension two a two-phase periodic isotropic tensor L(y) with Lamé’s coefficients
AMy), p(y) composed of inclusions of a very strong elliptic material 1, i.e., with uq >0,
A1+ p1 > 0, imbedded in a strongly (but not very strongly) elliptic connected mate-
rial 2, i.e., with o > 0, Ao + 22 > 0, such that p3 = — (g + ua2), satisfies A(L) > 0
and Aper (L) > 0.

Using similar arguments as the ones of the proofs of [2, Th.2.2] and Theorem 2.2,
we can check that the two-dimensional result [6, Th.2.1] can be extended in dimen-
sion three to a two-phase periodic isotropic tensor composed a very strong elliptic
material 1 (see Remark 3.2 below) imbedded in a strongly (but not very strongly)
elliptic connected material 2, satisfying

w1 >0, 3A1 4+ 2u1 >0, pe >0, Ag+2us >0 and 4p; = — (3)\2 + 2#2).

2.2. ReLaxatiox or connItioN Ape (L) > 0. — According to Theorem 2.1 the I'-con-
vergence of the functional (2.3) holds true if both A(L) > 0 and Ape (L) > 0. However,
the following theorem due to Braides and the first author shows that in N-dimensional
elasticity for N > 2, the I'-convergence result still holds under the sole assumption
A(L) > 0.

Turorem 2.4 (Braides & Briane). — Let Q be a bounded open subset of RY | and let L
be a bounded Yy -periodic symmetric tensor-valued function in L2 (YN;,ZS(RNXN))

such that
(2.9) A(L) > 0.

per

Then, we have
(2.10) FE

for the weak topology of HE(Q;RY) in the sense of Definition 1.2, where F° is given
by (2.4) with the tensor LO defined by (2.2).

[-H (;RY) 0
—_— 7,

Proof. — For 6 > 0, set Ls := L + 61 where I is the unit symmetric tensor, and
let #5 be the functional defined by (2.3) with Ls in place of L. We claim that

(2.11) A(Ls) > 0.

JEP M., 2017, lome /4
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To prove it consider v € C°(RY;RY) and take R > 0 such that suppv C B(0, R).
Then, by (2.9) we have

/ LsVu:Voudy = / LVv:Vvdy + 5/ I,Vu:Vudy > 5/ le(v)]? dy,
RN B(0,R) B(0,R) B(0,R)
and since the constant of the Korn inequality is invariant by homothecy, there exists
a constant o > 0 independent of R such that A(Ls) > da > 0.

Thanks to (2.11) we can apply Theorem 2.1 with the functional .#§. Hence,
FE BRI F9 for the weak topology of Hg(Q;RY), where

N

S(u) = / LIVu:Vudxr for u € H}(Q,RY),
Q

and LY is given by (2.2) with L = L.

On the one hand, since the weak topology of HJ (€2;RY) is metrizable on the closed
balls of H}(©; RV ), we can apply the compactness of I'-convergence on these balls. Fix
k € N, and denote dj, any metric inducing the H{(€2; RY)-weak topology on the ball
By, C HE(Q;RYN) centered on 0 and of radius k. Then, there exists a subsequence ¢;
such that .7 T'(dy)-converges to some functional .Z%* in By. Let u € By, and let Ue;
be a recovery sequence for .#¢ which converges to u in (Bg,dy). Since F%i < Fy?
which T-converges to .#? in the sense of Definition 1.2, we have

FOF(u) = (T(dp)-lim F) (u) < F(u)

< liminf/ Ls(x/e;)Vue,;:Vue,; dx
Q

614)0
< lim inf/ L(z/e;)Vue,;:Vue, dv + O(0)
EjA)O Q

— (T(dp)-1im Z5) (u) + O(8) = FO (u) + O(5),

which implies that .7 (u) converges to .#%*(u) as § — 0. Hence, the T'(dj,)-limit .7 %"
of Z¢i is equal to £ := lims_0 ﬁg in By, and is thus independent both on k£ and on
the subsequence ;. Then, repeating the previous argument, any subsequence of .7
has a further subsequence which T'(dy)-converges to .Z° in Bj. Therefore, thanks
to the Urysohn property (see, e.g. [1, Proposition 1.44]) we can conclude that the
whole sequence .Z¢ I'(dy)-converges to .FY = lims_,0.# in By. Finally, since any
sequence converging weakly in H3 (Q; RY) belongs to some ball By, as well as its limit,
it follows that the I'-liminf and I'-limsup properties of Definition 1.2 hold true for
the sequence .Z°.

On the other hand, let IL.° be given by (2.2). For > 0 and for M € RV XY consider
a function ¢, in Hl, (Yy;RY) such that

per

/ L(y)(M + V,):(M + V,) dy <LOM:M + 7.
YN

JE.P.— M., 2017, tome 4
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We then have
LOM:M < LIM:M

< / La()(M + Vo,):(M + Ve,) dy
Yn

< | LG + 00 + Vo) dy +0,(6).
N
Hence, making § tend to 0 for a fixed 7, we obtain
LOM:M < liminf (L$M:M)
6—0

< limsup (LYM:M)
6—0

< /Y L(y) (M + Vip,):(M + Vipy) dy
N
< LOM:M + 1.

Due to the arbitrariness of 7, we get that ]Lg converges to L.? as § — 0.
Therefore, by the Lebesgue dominated convergence theorem we conclude that for
any u € H}(Q;RY),

FO(u) = lim F(u) = 1im/Lgvu;vudx:/Lovu:vudx. O
5—0 6—0 Q O

3. IJ()SS OF ELLIPTICITY IN THREE-DIMENSIONAL LINEAR ELASTICITY THROUGH THE
HOMOGENIZATION OF A LAMINATE

In this section we will construct an example of a three-dimensional strong elliptic
material I which is weakly coercive, i.e., A(IL) > 0, but for which the strong ellip-
ticity is lost through homogenization. Firstly, let us recall the following result due to
Gutiérrez [8].

Prorosition 3.1 (Gutiérrez [8]). For any strongly, but not semi-very strongly
elliptic isotropic material, referred to as material a, i.e., whose tensor L, satisfies
ayse(Lg) < 0, there are very strongly elliptic isotropic materials such that if we
laminate them with material a, in appropriately chosen proportions and directions,
we generate an effective elasticity tensor that is not strongly elliptic.

Remark 3.2 (Isotropic tensors). — The elasticity tensor L € L> (Y3;.%,(R3*3)) of an
isotropic material is given by

L(y)M = \(y) tr(M) I3 + 2u(y)M, for y € Yz and M € R3*3,
where A and p are the Lamé coefficients of L. As a consequence, we have

ase(L) = ess-inf (min{u(y), 2u(y) + AW)}),

Quse(IL) = ess-inf (min{pu(y), 2u(y) + 3A)})-
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Here is a summary of the proof of Proposition 3.1. Consider two isotropic, homo-
geneous tensors L, and IL; such that L, is strongly elliptic, i.e.,

Aa +2ug >0, pg >0,
but not semi-very strongly elliptic, i.e.,
3a + 2u, < 0.
and such that L, is very strongly elliptic, i.e.,
3Ny +2up >0, pp > 0.

Considering the rank-one laminate in the direction y; mixing L, with volume fraction
01 € (0,1) and L with volume fraction (1—6), Gutiérrez [8] proved that the effective
tensor Lj in the sense of Murat-Tartar 1*-convergence (see, e.g. [8, §3]) satisfies the
following properties:

o If 0 < g + Ay, then
ase(LY) > 0.
o If —pp < g + Ag <0, then

=0 if//éb:_lj/a_)\aa
ase(L1) § 20 if — pg — Ao < iy < =320 + 3Na),
>0 if — 2(2pa +3Xa) < o

e The case p, + A\g < —pp is disposed of, since L] does not even satisfy the
Legendre-Hadamard condition.

In the case where age(L}) > 0, Gutiérrez (see [8, §5.2]) performed a second lami-
nation in the direction ys mixing the anisotropic material generated by the first lam-
ination with volume fraction 65 € (0,1), and a suitable very strongly elliptic isotropic
material (L, fie, Ac) with volume fraction (1 — 63). In this way he derived a rank-two
laminate of effective tensor L5 which is not strongly elliptic.

In this section we will try to find a general class of periodic laminates for which
the strong ellipticity is lost through homogenization. To this end we will extend to
dimension three the rank-one lamination approach of [2] performed in dimension
two. However, the outcome is surprisingly different from that of the two-dimensional
case of [2]. Indeed, we will prove in the first subsection that it is not possible to
lose strong ellipticity by a rank-one lamination through homogenization following the
two-dimensional approach of [2]. This is the reason why we will perform a second
lamination in the second part of the section.

3.1. RANK-ONE LAMINATION. In this subsection we are going to focus on the rank-
one lamination. As noted before, in the two-dimensional case of [2] it was proved
a necessary and sufficient condition for a general rank-one laminate to lose strong
ellipticity. Mimicking the same approach in dimension three we obtain the following
quite different result.
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Tueorem 3.3. LetL € Ly, (Yl; Zg(]RSXS)) be a Y1 -periodic isotropic tensor-valued
function which is strongly elliptic, i.e., age(L) > 0. Assume that Aper (L) > 0 and that

there exists a constant matriz D € R3*3 such that
(3.1) L(y1)M:M + D:Cof(M) >0, a.e.y; €Yy, VM &R
Then, the homogenized tensor LV defined by (2.2) is strongly elliptic, i.e., ase(IL°) > 0.

Remark 3.4. — In dimension two for any periodic function ¢ € H}.,(Y2;R?), the only
null Lagrangian (up to a multiplicative constant) is the determinant of V. Although
the two-dimensional case seems a priori more restrictive than the three-dimensional
case from an algebraic point of view, the two-dimensional Theorem 3.1 of [2] shows
that for a suitable isotropic tensor I = IL(y1), satisfying for some constant d € R, the

condition
(3.2) L(y,)M:M + ddet(M) >0, a.e. inY;, VM € R**?

it is possible to lose strong ellipticity through homogenization. On the contrary, the
three-dimensional Theorem 3.3 shows that it is not possible to lose strong ellipticity
under condition (3.1) which is the natural three-dimensional extension of (3.2).

Remark 3.5. — Observe that condition (3.1) implies that L is weakly coercive, i.e.,
A(L) > 0, but the converse is not true in general. Therefore, it might be possible
to find a weakly coercive, strongly elliptic isotropic tensor L = L(y;) for which the
strong ellipticity is lost. However, we have not succeeded in deriving such a tensor.

Remark 3.6. — In the proof of Proposition 3.1 Gutiérrez implicitly proved the result
of Theorem 3.3 when the matrix D has the form D = dI3 and L is of the type

L(y1) = x(y1) La + (1 = x(31)) Lo.
Moreover, it is worth mentioning that the cases for which Guitiérrez obtained the loss

of ellipticity with a rank-one lamination do not contradict Theorem 3.3, since in those
cases condition (3.1) does not hold.

The rest of this subsection is devoted to the proof of Theorem 3.3. For any Y;-
periodic tensor-valued function L € L3 (Yy;.Z,(R**3)) which is strongly elliptic,

per

i.e., age(IL) > 0, define for a.e. y; € Y7, the y;-dependent inner product
(&n) eR*XR* — L(y)(E @ er):(n@en).

It is indeed an inner product because age(L) > 0. The matrix-valued function

Li(yr) hiz(y1) Lis(yr)
(3.3) L(y1) = [ lia(y1) la(y1) l2s(vn)
li3(y1) l23(y1) ls(y1)
L(y1)(e1 ® e1):(ex1 ®e1) Ly1)(e1 @ e1):(e2 @ e1) L(y1)(e1 @ e1):(e3 @ e1)
= | L(y1)(e1 ®e1):(e2 @e1) Lyr)(e2 @ e1):(e2 @ er) L(y1)(e2 @ e1):(e3 @ e1)
L(y1)(e1 @ e1):(es ®e1) L(y1)(e2 @ e1):(ez @ e1) L(y1)(es @ e1):(e3 @ e1)
is therefore symmetric positive definite.
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Similarly to [2, Lem. 3.3] the next result provides an estimate which is a direct
consequence of condition (3.1) with a matrix of the type D = dI3. Observe that for
the moment we are not assuming that the tensor L is isotropic.

Lemwa 3.7. — Let L € L (Y1; % (R3*3)) be a Yi-periodic bounded tensor-valued

per

function with Aper(L) > 0. Assume the existence of a constant d € R such that L
satisfies condition (3.1) with D = dI3. Then, we have

(3.4) Ly )M:M > Q(M), a.e. inYy, VM € R¥3 M rank-one,

where N

QM) := dSZJE(L;) (LMi(el ®e1) + gM33 + gMzz)z
% (LM:(62 ®er)— %lM12>2 + dj;i(zzj) (]LM:(eg ®e1)— ngg)Q
2((1122(532) (]LM:(el ®er)+ gMgg + ng) (]LM:(eQ ®e1) — ngg)
L) 10 B ) s
T TR PR

Furthermore, if IL° is the homogenized tensor of L, then as(IL°) = 0 if and only if
there exists a rank-one matriz M such that

(3.5) L(y)M:M = Q(M), a.e. in Yy,
together with

e T13
(3.6.2) /Y 1 M(t) (I[,(t)M:(el ®er)+ gMQQ n gMgg)dt

= /Yl {d;\:g;j)(t) (L(t)M:(€2 ®eq) — ng)
— M(t) (L(t)M:(eg ®ep) — ng)}dtv

det(L)
e T12
(3.6.b) /Y 1 ddZ‘E(LL))(t) (L(t)]\{:(el ®e1) + ng n gM33>dt
= /Yl |:ddeZE€L))(t) (]L(t)M(eg ® 61) - %lMlg)
~ det(L*)

det(r) (L(t)M (es®er) — ngg)]da

e 711
(3.6.c) /Y ddZE(LL))(t) (L(t)M:(el ®er) + gMQQ + gMgg)dt

= /Yl {CldeZEij))(t) (L(t)M(eg ® 61) — ngg)
det(L3)

_ W(t) (L(t)M:(eg, ®ep)— ng,)]dt.
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Finally, we state a corollary of the previous result in the particular case of isotropic
tensors.

Lemma 3.8. Let L € L2, (Y1; Zs(R3*?)) be a Y1 -periodic bounded isotropic tensor-
valued function with Aper (L) > 0. Assume that there exists a constant d € R such that
the Lamé coefficients of L(y1) satisfy

(3.7) max{0, —2p(y1) —3A(y1)} < d < 4p(y1) for a.e. y1 in Yi.
Then, the homogenized tensor IL° defined by (2.2) is strongly elliptic.

Thanks to the previous lemmas, we are now able to demonstrate the main result
of this section.

Proof of Theorem 3.3. — Firstly, assume that (3.1) is satisfied with the matrix D be-
ing of the type D = dI3 for some d € R. This is equivalent to condition (3.7), as it
was proved by Gutiérrez in [8, §4.2]. By virtue of Lemma 3.8, L? is strongly elliptic,
which concludes the proof in this case.

In the sequel we will show that if there exists a constant matrix D € R3*3 such that
condition (3.1) is fulfilled, then there exists a constant d € R such that (3.1) holds
with D = dI3. This combined with Lemma 3.8 implies that L° is strongly elliptic.

Assume that (3.1) holds for some matrix D € R3*3, namely for any M € R3*3 we
have a.e. in Y7,

0 < A(Myy + Moy + Ms3)?
+ 2 (M + M3, + M3,

M Mo1\2 M Ms1\2 M- Maso\2
+2[< 12 + 21) +< 13 + 31) +< 23 + 32) D
2 2 2
+ D11 (Moo M3z — Moz M3

( )
— D1o(May Msz — Moz M3y) + Di3(Mayy Msy — Moo Msy)
— Da1 (M2 M3z — My3Msz)
( )
( )
)

+ Do (M1 M3z — M3 M3,
+ D31 (Mo Moz — M3 Moo
— D3o(My1 Moz — My3Ma1) + D3s(My1 Mag — M1aMay).

- DQB(M11M32 - M12M31)

The previous condition is equivalent to the matrix (3.10) below being positive semi-
definite a.e. in Y7. In particular, this implies that the following matrices are positive
semi-definite a.e. in Y7:

—Dy;/2
(58) ( pooop /
w—Di/2 p
A+2u A+ Ds3/2 A+ Daa/2
(39) B := )\+D33/2 )\+2u )\+D11/2

A+ Da/2 A+ D11/2 A+2u

) fori=1,2,3,
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A+2p /\+%>\% 0 0 0 0 —% —%

)\+% A+2p )\+% 0 0 —% % 0 0

)\+% A+% A+2p —% —% 0 0 0 0

0 0 —% " —% 0 % D231 0

0 —% 0 0 % I u—% 0 %
D D D D

_1)232 : : % DO D0 712 i) _%

Marrix (3.10).

Now, we will prove that there exists ¢ € {1, 2,3} such that
(3.11) —ess-inf{2u(y1) + 3A\(y1)} < Dy < dess-inf{u(y1)}.
€Y y1€EYL
Note that we can assume

(3.12) esséi;;lf{%(yl) +3A(y1)} <0.
y1exy

Otherwise, since the matrix (3.8) is positive semi-definite, or equivalently
(3.13) 0 < Dj; <4dess-inf{u(y;)} fori=1,2,3,

y1€Y1
condition (3.11) holds immediately.

We assume by contradiction that (3.11) is violated for any ¢ = 1,2, 3. Since the
matrix B defined by (3.9) is positive semi-definite, we get for any i = 1,2,3,
A+2u A+ Dy/2
>0 a.e. in Yy,
A+ Dy/2 A+2u

which is equivalent to
—4dess-inf{u(y1) + AMy1)} < Dy; < dess-inf{u(y1)} fori=1,2,3.
Yy1€Y1 y1€Y1

Since by assumption (3.11) is not satisfied for any ¢ = 1,2,3 and (3.13) holds, then
the previous condition yields

(3.14) —4dess-inf{pu(y1) +A(y1)} < Dy < —ess-inf{2u(y1) +3A(y1)} fori=1,2,3.
y1€Y1 Yy1€YL
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Set d := max;=1,23{D;;}. By (3.14) there exists ¢ > 0 such that
(3.15) d+e < —ess-inf{2u(y1) + 3A(y1)}-
Yy1€EYL

Define the set P. C Y7 by

p. .= {xl € Y1:2u(x1) + 3A(x1) < ess-inf{2pu(y1) + 3A(y1) } + 5}.

Yy1€YL
It is clear that |P-| > 0, and from (3.15) and the definition of P. we obtain
d+e< —esséi}rllf{Zu(yl) +3A(y1)} < —(2u(z1) + 3A(z1)) + ¢ ae. x1 € P,
yiexr
which leads to
d 1

(3.16) Azy) + 5 < —5()\(:31) +2p(z1)) <0 ae. zq € P

Since the matrix B from (3.9) is positive semi-definite, its determinant is non-negative
a.e. in Yj. In particular we have

0 < det(B(z1)) = (A(z1) + 2u(w1))3

#2(3en) + 55 (e + ) (o) + )

s+ 2

(M >+D2 ) + (e + ),

(3.17)

a.e. 1 € P.. Then, it follows that

det(B(a)) < (Mar) + 20(e) +2(Mar) + )

—3(Ma1) + 2u(z1)) ()\(xl) + g)z a.e. x1 € P-..

To derive a contradiction let us show that the right-hand side of inequality (3.18) is
negative. By (3.16) we get

(3.18)

4(A($1) + 2)2 > (Ma1) + 2u(x1))2 a.e. 1 € P.,

which, multiplying by A(z1) + 2u(z1) > 0, leads to

(A(z1) + 2,u(x1))3 —4(Mz1) + 2p(z1)) ()\(xl) + g)2 <0 ae z; €P..

Again using (3.16) we deduce that

2()\(:101) + g)3 < —(Az1) + 2u(z1)) ()\(xl) + g)2 a.e. 1 € P..

Adding the two last inequalities we obtain

(A(x1)+2u($1))3+2</\(x1)+g>3—3(/\(x1)+2u(x1)) (/\(xl)+g)2 <0 ae x€P.,

which by (3.18) implies that det(B) < 0 in P, a contradiction with (3.17).
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Therefore, condition (3.11) is satisfied by D;; > 0 (due to (3.13)) for some ¢ = 1,2, 3.
Hence, condition (3.7) holds with d = D;;, or equivalently (3.1) is satisfied by the
matrix D;;I3, which concludes the proof. O

Now, let us prove the auxiliary results of the section.

Proofof Lemma 3.7. — Let M € R®*3 be a rank-one matrix. Then, we have det(M)=0,
and adj;; (M) = 0 for i = 1,2, 3. Therefore, we get

LOM:M = min{/ L(M + V¢):(M + Vo) dy:p € H . (Ys; R3)}
Y3

per

(3.19) _ min{ / (L(M + V) (M + V)
Y3

+ dI3: Cof (M + V):p € Hy..(Y3;R?)) dy} > 0.

Take ¢ = @(y1) = (@1, 2, p3) € Cher(Y1;R?). Then, the matrix
Vo =¢ ®e1=¢i(e1®er) +py(e2 @ e1) + pilez ®er),
is either a rank-one or the null matrix. Also, note that
adj;; (M) = (—1)"* det(M7Y).
Considering the previous expressions, from (3.1) it follows that
0 < L(M + Ve):(M + Vo) +d Y, adj,, (M + V)
=LM:M + 2LM:(e; ® e1)p) + 2LM:(e2 ® e1)ph
+2LM:(e3 ® e1)s + L(91)? + 2h2¢ 05
+ 2039195 + l2(95)? + 2230505 + l2(25)°
+ d(Ms3¢) — Mz + Mooy — Miagh)
= LM:M +1i(p)* + la(¢5)* + I3(¢5)
+ 2L2p1 95 + 2li3¢ 05 + 2la3ph ey
+ [2LM:(e1 ® e1) + d(Mss + dMas)] )
+ [2LM:(ez ® e1) — dMn2]h
+ [2LM:(e3 ® e1) — dMy3]¢h.

For the previous equalities we have used that

adj,;(A+ B) = adj;(A) + adj,;;(B) + Cof(fl”);ﬁii‘
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The purpose is to rewrite the last expression as the sum of squares. With that in
mind, one obtains

0 < L(M + V):(M+ Vo) + dlz: Cof (M + Vo)

= LM:M — Q(M)

h {410/1 " %24;0/2 * lllT?’(pé * %(LMZ(@I ®e1) + gMQQ + gM33>r
S S

(3.20) - detl;%gs)(LM:(lel Der) + gMQQ + ;l]\tg) |

’ W}L‘”) <LM:(62 ®e1) = §M12>}
di:E(ZL?aZ) [‘Pé deElej) (]L,Mi(e1 ®er)+ ng + nga)
_ Cm(LMI(GQ ®ep)— ng)
%(LM:(% ®e1) - ng)r,

Since ¢}, ¢4 and ¢4 can be chosen arbitrarily, the three square brackets in the previous
equality can be equated to 0 at any Lebesgue point y; € Y7 of L, and thus (3.4)
holds. Using a density argument the previous equality also holds a.e. in Y7, for any
ZBS Héer(}/l;RB)'

Now, we are going to prove the second part of Lemma 3.7. Assume L° is not
strongly elliptic. Then, there exists a rank-one matrix M such that LOM:M = 0.
Taking into account expressions (3.19), the minimizer vy, associated with LOM:M

(see [2, Lem. 3.2]) satisfies vpy = vpr(y1) and

0=1L"M:M= | L({t)(M + vy (1) @e):(M + vy, (t) @ ey )dt
Y1

. / [L(6) (M + Vorr (8):(M + Von (1)) + dIz: Cof(M + Voa)]dt.
Y1

The first inequality in (3.20) implies that the integrand of the previous expression
must be pointwisely 0, and thus the inequality in (3.20) for ¢ = vy is actually an
equality. From this we deduce

LM:M = Q(M),
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and
o b, liz, ,
0= (vp )1+ Z(UM)Q + X(UM)?)
1 d d
+ E(LM:(el ®e1)+ §M22 + §M33),
det(L23
0= (Wh)a + M (),
det(L33) iy d d
_ m (LM:(el ® 61) + §M22 + §M33>
(3.21) L . d
+m<LM.(€2®61) §M12),
det(L'3) d d
— . @ e
0= (vy)3+ det(L) (LM-(€1 ®e1)+ 2M22 + 2M33)
det(L?) d
- W (]LM(@Q X 61) - §M12)
det(L33) d
W (]LM(eg X 61) - §M13).

Since vy is Yi-periodic, we have
/ (’U;V[)i dyl =0 = 172,3.
Y1

Integrating the third equality in (3.21) we obtain (3.6.a). Replacing (v},)s in the sec-
ond equality of (3.21), we end up getting (3.6.b). Finally, replacing (v},)2 and (v},)s
in the first equality of (3.21) it yields (3.6.c).

Conversely, let us assume that equalities (3.5) and (3.6.a)—(3.6.c) hold. Considering
(3.6.a), taking into account that the all the integrands belong to L°°(Y7), there exists
a function @3 € W);2°(Y1) such that, a.e. in Y7, it holds

0:¢/+M(LM‘(€ ®e)+é +(—iM)
31 det(L) R T T
det(L23)
~ det(L)

det(L33)

"ot (ILM:(eg ®er) — ngg).

(]LM:(GQ ®e) — ngz) n

Repeating the argument with (3.6.b) and (3.6.c), we get the existence of functions ys9
and ¢ in W1°(Y7) respectively, such that

per
det(Z23) l12 d d
’ /
+ S - B (LMi(ey @ 1) + 5 Moo+ 5 Mag)
©h det(L33)<p3 det(L33) (e1®eq) l g 22 T 5 s .
1

—_— = ]LM' o 7M ) - ’
+det(L33) ( (e2 ®er) 5 M2 0

l l 1 d :
O+ 2+ g+ (LMi(el @ 1)+ oM + 7M33> -
ll ll ll 2 2
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These three equalities together with (3.5) imply the equality in (3.20), and thus by
(3.19) it follows that

0= / (L(M + V):(M + V) + dI3: Cof (M + V) dy > L°M:M >0,
Y1

which shows that L9 is not strongly elliptic.
Finally, due to the equality L°M:M = L°MT:M7 conditions (3.5) and (3.6) are
equivalent to the similar equalities replacing M by MT. O

Proof of Lemma 3.8. Since L is isotropic, condition (3.7) is equivalent to the con-
dition (3.1) with D = dI3. As a consequence, (3.7) implies A(LL) > 0. By [7, Cor. 3.5],
we have age(IL°) > A(L). Therefore, we get that ase(L%) > 0.
Assume that L% is not strongly elliptic, i.e., as(L°) = 0. Then, there exists a
rank-one matrix M := £ ® n in R3*3, with £, n € R® \ {0}, such that LYM:M = 0.
Since L is isotropic, the matrix L defined in (3.3) is

Moreover, the following equalities hold

Mi; =&mn; i,5 € {1,2,3},

LM:(e1 ® e1) = (A + 2u)&m + A(Eamz + E3m3),

LM:(ex ®e1) = p(&imz + Eam),

]LM:(€3 ® 61) = /J(fln + 53771)a

LM:M = (A + p)(&m)? + plé]?(nl>.
Because LYM:M = 0, from equalities (3.5) and (3.6) in Lemma 3.7 we obtain a.e.
inY;
A+ w)(&n)? + plg?Inl?

d 2
(3.22) = 12# [(/\ +20)&a + AEanz + Ea11s) + 5 (Ea2mz + 537)3)}

FRRRE i, 12
+ % {M(fmz +&m) — 551772] + % {M(ﬁms +&m) — 551773] ,

together with

_ §113 d
(3.23) 0= 51773 + 537]1 — 72 /Yl p(t) dt,

_ G [ d
(3.24) 0==¢&m2 +&m — > /Y1 M(t) dt,

- At d)2
(3.25) 0=&m + (San2 + &13) /Y1 >t 2 (t)dt
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After some calculations, from (3.22) we get

(A +2u)? — (A +d/2)?

3.26
( ) A2

(&amz + &3m3)? + p(Eams — &3m2)?

d(p—d/4 .
+ (uu/)ff(ng + ng) =0 a.e. inY;.

Observe that, since L is isotropic and (strictly) strongly elliptic in Y7, we have
w>0,2u+A>0 a.e. in Y7,

which implies that

(A +2u)? — (A+ g)z >0 ae inY.

Hence, taking into account assumption (3.7), equality (3.26) implies the following
three conditions:

(3.27) [(A +2p)? - (A + g)z] (Eamp + E3m3)2 = 0 ave. in V7,
(3.28) §amz = &3m2,
(3.29) d(u - g)gf(ng +92) =0 ae. inY;.

We will now prove by contradiction that we cannot have d = 4y a.e. in Y;. Other-
wise, equalities (3.23), (3.24) and (3.25) can be written as
0==&mns —&m,
(3.30) 0=2&mn2 — &om,
0= &um + &ama + &313.
Under these conditions, if 1 # 0, then the first and second equalities of (3.30) lead to
&1

§3=U3é7 o =12 —.
m m

Replacing & and &3 in the third equality in (3.30), we obtain

& (i +n3 +n3) =0.

Since 1 # 0, we get & = 0. This implies that £&; = £5 = 0, a contradiction with £ # 0.
Therefore, we necessarily have 71 = 0. Moreover, using the two first equalities of
(3.30) and the fact that n # 0, we obtain & = 0. As a consequence, (3.30) reduces to

(3.31) §amz + &3 = 0.
If 1y # 0, then using (3.28) we get
&3 =& Ly
2
and replacing &3 in the previous equality, it yields

&(ns +n3) = 0.

Again, since 7 # 0, we have &, = 0. Using (3.28) and the assumption ne # 0, it
follows that &3 = 0, again a contradiction with &,7 # 0. Thus, we necessarily have
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72 = 0. Taking into account that 71 = 72 = 0 we have n3 # 0, hence from (3.31)
we deduce that &3 = 0. Now (3.28) is written as £mns = 0. However, recall that
& = &3 =mn = 12 = 0. This implies that either £ = 0 or n = 0, a contradiction.

We have just shown that the set {d < 4u} has a positive Lebesgue measure.
Similarly, we can check that d > 0. Using (3.27) and (3.29) together with 0 < d < 4y,
we deduce that

Eamp + &3z = E7 (03 +13) = 0,
which combined with (3.25) also gives {111 = 0. As above, using the three previous
equalities, (3.23), (3.24) and (3.28), we get a contradiction with the fact that £,n # 0.
Therefore, we have proved that L0 is strongly elliptic if (3.7) holds for some d. |

3.2. Rank-two ramination. — In the proof of Proposition 3.1 for dimension three
[8, §5.2], Gutiérrez performed a rank-one laminate mixing a strongly elliptic but
not semi-very strongly isotropic material LL,, and a very strongly elliptic isotropic
material L. However, as it was noted at the beginning of the section, there are some
cases for which the strong ellipticity of the homogenized tensor is not lost after this
first lamination. In fact, our Theorem 3.3 shows that for a general rank-one laminate,
it is not possible to lose the strong ellipticity through homogenization if there exists
a matrix D € R3*3 satisfying condition (3.1). As done in [8], we need to perform
a second lamination with a third material L. which can be very strongly elliptic, in
order to lose the strong ellipticity in those cases.

Our purpose is to justify Gutiérrez’ approach using formally 1*-convergence (see
[8, §3]), by a homogenization procedure using the T'-convergence result of Theo-
rem 2.4.

Turorem 3.9. — For any strongly elliptic but not semi-very strongly elliptic isotropic
tensor L, whose Lamé coefficients satisfy
(3.32) Apig + 3Xg > 0,

there exist two very strongly elliptic isotropic tensors Ly,IL. and volume fractions
01,02 € (0,1) such that the tensor Lo obtained by laminating in the direction yo the
effective tensor L} — firstly obtained by laminating in the direction y; the tensors
Lg, Ly with proportions 61, 1 — 01 — and the tensor L. with proportions 6 and 1 — 0y
respectively, namely

(3.33) Lo(y2) := x2(y2) LT + (1 — x2(y2)) Le  for y2 € Y1,

where x2 1s a 1-periodic characteristic function with fol X2(t) dt = 02, satisfies
(3.34) A(Ly) =0,

and

(3.35) /QILQ(&UQ/E)VU:VU dx DH @7 /QL(Q)VU:VU dx,

where the homogenized tensor L is not strongly elliptic, i.e.,

(3.36) ase (L) = 0.
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Remark 3.10. Theorem 3.9 shows that for certain strongly elliptic but not very
strongly elliptic isotropic tensors, namely those whose Lamé parameters satisfy (3.32),
it is possible to find two very strongly elliptic isotropic tensors for which the homoge-
nization process through I'-convergence using a rank-two lamination leads to the loss
of ellipticity of the effective tensor.

Proof of Theorem 3.9. — We divide the proof into four steps.

Step 1. Choice of L, Ly, 01, 02. — Let L, be a strongly elliptic but not semi-very
strongly elliptic isotropic tensor satisfying (3.32). Our aim is to find two very strongly
isotropic tensors Ly, L. and two volume fractions 61, 65 such that the strong ellipticity
is lost through homogenization using a rank-two lamination.

Let x1, x2:R — {0,1} be two 1-periodic characteristic functions such that

/ x1(y1)dyr =61 and x2(y2) dy2 = 02,
Y1 Yl
where 61,6 € (0,1) will be chosen later.

The 1*-convergence procedure of [8, §5.2] applied to the tensor

(3.37) Li(y1) == xa(y1) La + (1 — x1(y1)) Ly for yy € Y7,

yields a non-isotropic effective tensor Li. The computations of [8, §5.2] lead to an
explicit expression of the tensor L] whose non-zero entries are

1
L)1 = e
* * * * B
(L1122 = (L7)2211 = (L7 )1133 = (LY)3311 = T
1
(L1)1212 = (L7)1221 = (L7)2112 = (LY)2121 = —,
E
1
538 (L1)1313 = (L7)1331 = (L7)3113 = (L])3131 = Ik
(3.39) .
(L7)2222 = o +2(C+ D),
B2
(L1)2233 = (L] )3322 = o +2D,
(LY)2323 = (L7)2332 = (L7 )3223 = (L})3232 = C,
BQ
(LY)3333 = o +2(C+ D),
where
S Tt /7 VI Rt 02
2/’% + )\a 2/”’1) + )\b’ 2“11 + Aa 2/-“7 + >\b ’
0110 Na (1 - ol)ﬂb)\b
3.39 C = vt + (1 — 00 s, -
( ) 1Ha ( 1),% Uta + Mo 215+ Ao
1—
po 120
Ha b
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Now, let us specify the choice of the two very strongly elliptic isotropic tensors
Ly, L., and the volume fractions 61, #5. For the Lamé parameters of material ¢ we
denote A. = apie as done in [8]. We assume that

1 2t + 3N
(3.40) L 9 1 30) < pup < MalPHa £32a)
4 3
2 2
(3.41) Ap > HpAa

ta(20ta + 3Xa) — 3upAs’
o *Ab(Q,Ufa + )\a)

3.42 0, — :
( ) ' 2(:“47)\(1 - Ma)\b)
-D

. c 2 ~ |
(3.43) 0> g

.44 c = )
(3-44) e =C D0 an)

D

(3.45) 0y = ac(C+ D)

a.(C+D)—D2+a.)

Observe that, thanks to the first inequality in (3.40), the tensor L; given by (3.37)
satisfies A(LL1) > 0 (see [8, §4.2]). Hence, by Theorem 3.3 the homogenized tensor
LY = IL} (see Step 4 below) is strongly elliptic. This justifies the first lamination from
the point of view of homogenization through I'-convergence.

To conclude the first step, let us check that the previous conditions satisfy the
assumptions of Theorem 3.9. The tensor L, is strongly elliptic but not semi-very
strongly elliptic, i.e.,

e >0, 2pq 43X, <0,
which implies that p, > 0. The fact that necessarily A, < 0 together with (3.40)
implies that A, > 0 thanks to (3.41), and thus Ly is very strongly elliptic. The volume
fraction 6; clearly belongs to (0,1), since (3.42) reads as

)\b(QMa + /\a)
Ao (24t + Aa) — Aa (210 + >‘b).
The choice of ; implies that in (3.39)
(3.46) B=0.

In addition, C' + D > 0 as it was proved in [8, App.C] and C + 2D < 0 by (3.40),
(3.41) and (3.42). This also implies that D < 0. Thanks to the previous inequalities
we have 05 € (0,1), o > 0 and p,. > 0, which implies that L. is very strongly elliptic.

0, =

Step 2. A(Lg) > 0. — To get A(LLz) > 0 we will prove that for

dp. 0 0
D = 0O 0 0],
0 0 0

we have

(3.47) Lo(y2)M:M + D:Cof (M) >0 a.e. y; € Y7, for all M € RV*V,
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We need to prove that the previous inequality holds in each homogeneous phase of L.
Firstly, for the phase LL. which is isotropic and very strongly elliptic, we get for any
M € R3><37

L.M:M+D: Cof(M)
= 2pc [M121 + M3, + M3,

M Mo\ 2 M M3\ 2 M. Mo\ 2
+2( 12 + 21) +2( 13 + 31) +2< 23 + 32) }
2 2 2
+ Ac(Mi1 + Mag + Ms3)? + 4pte(Mao Mss — Moz Mss)

= (Ac 4 2pe) (M7 + M3, + M3y)
+ 2X (M1 Moo + My Mss) + 2(Ae + 2p0) Moo Mss
+ pre(Mia + Moy)? + pe(Msy + My3)? + pie(Mas — M3z)?.

This quantity is non-negative for any M € R3*3, since the following matrix is positive
semi-definite:
A + 2pc Ac Ac

Ao Aet2me Aet2ue |,

Ao Aot 20 Aot 2ue
due to the strong ellipticity of L.. Therefore, the desired inequality holds for the
homogeneous phase L..

Secondly, we need to check the same inequality for the phase with Lj. By (3.38)

we have for M € R3*3,

L [P

LiM:M + D: Cof(M) = < M3, + | = +2(C + D)| (M3, + M)

B
+ 22(M11M22 + My1 Ms3)
BQ
+2 {I +2D + 2/%} (Moo M33)
1 o 1 2
+ E(Mm + Mo1)* + E(Mw + Ms31)
+ C(M3s + M3y) + 2(C — 2410) Moz M3s.

Since E > 0, this quantity is non-negative for any M € R3*3 if the following two
matrices are positive semi-definite:

1/A B/A B/A
(3.48) B/A B?/A+2(C+ D) B*/A+2D+2pu. |,
BJ/A B2?/A+2D +2u. B%/A+2(C+ D)
c  C-2u.
(3.49) fel
C—-2u. C

Since C' > 0, the matrix (3.49) is positive semi-definite if and only if u. < C. Taking
into account that p. < C, we can check that the matrix (3.48) is positive semi-definite
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if —(C'+2D) < . Therefore, the matrices (3.48) and (3.49) are positive semi-definite if
(3.50) —(C+2D) < pe < C.

By the definition (3.44) of u., we deduce that the first inequality of (3.50) holds if

and only if
a.C

- 2 1’

—D(1+ a)
which is satisfied due to inequality (3.43). For the second inequality of (3.50), we need
to check that (see (3.44))

a.(C +2D)
D(1+a.)
or equivalently,
< D
Qe > .
C+D
This is true since a, > 0 by (3.43) and CJFLD < 0. Therefore, condition (3.47) holds
true, and consequently
(3.51) A(Ly) > 0.
Step 3. Ly loses the strong ellipticity through homogenization. — On the one hand, due

to A(Lz) > 0, by virtue of Theorem 2.4 the T'-convergence (3.35) holds with the
homogenized tensor LY which is given by the minimization formula (2.2) replacing L
by Lg.

On the other hand, following Gutiérrez’ 1*-convergence procedure we obtain a
homogenized tensor L} such that (see [8, §5.2] for the expression of IL3)

Li(es @e)(es @ s) = I + S,
where by (3.46),
I = 4(1 - 6y) ;12 +292000172§,
Gr=(1—0y) =Y 4, L

2+ o, C+D’
P #0.

It is not difficult to check that the choice of Ly, L., 01, 02 leads to I; = Gy = 0, which
yields

(3.52) ]L;(63 (39 63):(63 ® 63) =0.
To conclude the proof it is enough to show that
(3.53) L; =L3.

Indeed, thanks to L5 = L equality (3.52) implies the loss of ellipticity (3.36), and
(3.36) implies A(L2) < 0. This combined with (3.51) finally shows the desired lost of
functional coercivity (3.34).
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Step 4. L5 =13. By formally using 1*-convergence in terms of [2, Lem. 3.1], Gutiér-
rez’s computations for the tensor L3 in [8, §5.2] can be written as

—1 %1 ! —1
ALy = / A La)(1) dt,

1
AR s = [ (AL L)1)
(L5)ijht — (13 )ig2m A IL5] (L5 ) 2kt
= /0 ((L)ijra(t) — (La)ijom (t) Ap [La] (8) (L2) 2na (1)) dt,

where in the present context, for any L € L2 (Y1; % (R3*3)), A[L] € L2, (Y1;R3*3)
is defined by

AL (12)€ := [L(y2)(€ @ ea)]ea  for y, € Y7 and & € R3.
By focusing on the first equality of (3.54) we have

(3.54)

1
(355 AL = [ ATLal(0)dt = 624N (LE) + (1 - 0204 L
0
where all the quantities are finite. Now, similarly to the proof of Theorem 2.4 we
consider the perturbation of L, defined by
(3.56) Ls:=Ly+0I; foréd>0.

On the one hand, due to A(Ls) > 0 (which by (1.14) implies 0 < Aper(Ls) < ase(LLs)),
thanks to [2, Lem. 3.2] the 1*-limit L} of Ls; and the homogenized tensor LY of L
defined by (2.2) agree. Then, applying [2, Lem. 3.1] with Ls we get that

1

357) ALY = / A VL] ()t = 03 A LT + 5] + (1 — 62) A~ [Lo + 61,].
0

Observe that we have

ALy + 01 > A[LY],  A[L; + 0L — A[L}] asd — 0,
where the previous inequality must be understood in the sense of the quadratic forms.
This combined with the fact that both L} + 6 I, and L} are strongly elliptic tensors
(which implies that the previous matrices are positive definite), yields
ALY +61) < ATHLY),
and thus,
ALY +01,) — ALY asé — 0.
Similarly, we have

AL, 4+ 61,) — AL, asé — 0.

Hence, from the two previous convergences and taking into account (3.55), (3.57), we
deduce that

ALY — AL asd — 0.
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On the other hand, following the proof of Theorem 2.4 we have
Lj=Ly — L asé§—0.

Therefore, we obtain the equality

(3.58) ALY = ALY

Using similar arguments, we can prove that L9 and L} satisfy for any i,75,k,l €
{1,2,3},

(3.59) A L33 2mre = Ajpy L] (LS) 2kt
(3.60)  (IL3) skt — (L3)ijom Apm [IL31(L3)2nkr = (L) ijut — (L) ij2mAmn L (L) 20

Since the set of equalities (3.54) completely determine the tensor L3, equalities (3.58),
(3.59), (3.60) thus imply the desired equality (3.53), which concludes the proof. [

APPENDIX

Proofof Theorem 2.2. We simply adapt the proof of [2, Th.2.2] to dimension 3.
Firstly, let us prove the first part of the theorem, i.e., A(L) > 0. The quasi-affinity
of the cofactors (see [3]) reads as

(3.61) / adj,; (Vo) dy =0, Yve CX(R%R?), Viec {1,2,3}).
Y3
As a consequence, for any d € R, the definition of A(LL) can be rewritten as

A(L) = inf{ /R 3 []Le(v):e(v) +dS2 adjy, (Vo) |dy, ve 0> (R3;R3)}.

If we compute the integrand in the previous infimum, we obtain

(3.62) A(L) = inf{/ [P(y;@lm,azvz,asvs) + Q(y; O3v2, Oav3)
Ra
+ Q(y; O3v1, O1v3) + Q(32U1781U2)} dy, v e C?(R?’;R?’)},

where
A2 A+d/2 A+d/2\ [a
P(y;a,b,c):=(abc) [ A+d/2 X+2u A+d/2 b1,
A+d/2 A+d/2 N+ 2 c

Q(y; a,b) := (a b) <u _Md/z 8 _MCW) <Z> '

We can check that condition (2.7) with d > 0 implies that the quadratic forms P
and @ are non negative. Hence, the integrand in (3.62) is pointwisely non-negative,
and thus A(L) > 0.
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Now, let us prove that Aper(L) > 0. By the definition of Aper(L) and using the
same argument as before, we have

Aper (L) = inf{/y []Le(v):e(v) +d), adj”»(Vv)} dy,

v e H) (Y3 R?), g |Vo|? dy = 1}.
3

Similar computations lead to

(3.63) Aper(L) = inf{/y [P(y;alvl,ﬁzvg,agvg) + Q(y; O5v2, Dav3)
3 + Q(y; O3v1, 01v3) + Q(Dav1, alvg)}dy}.
Take y € Z;,¢ € I. Then, using that 4u; = d, we have
P(y;a,b,c) = (A +2u:)(a+b+c)* >0,
and Q(y; a,b) = pi(a —b)* > 0.
For y € Z;,j € J, using that 2u; 4+ 3\; = —d, we get

P(y;a,b,c) = (.Uj + %) [(a=b)2+(a—e)*+(b—c)?] >0,

and Q(y;a,b) = d(uj + g) > 0.

Finally, for y € Zy, k € K, since —(2ux + 3A\x) < d < 4puy, it is easy to see that the
quadratic forms P and @ are positive semi-definite. Therefore, we have just proved
that there exists o > 0 such that

y;a,b,c) = ala+b+c)?

(3.64) il ) > ola ) ye€ Z, 1€l
Q(y;a,) > ala—b)*,
P(y;a,b,c) =z af(a—b +(a—e)?+(b—0)?,

(3.65) ) [(2 )2 (@=c)”+(b—c)] vez, je
Q(y;a,b) > a(a® +b7),
P(y;a,b,c) = ala® + b* + ),

(3.66) ) yeZy ke kK,
Q(y;a,b) > a(a® +b)

which implies that Aper (L) >

Assume by contradiction that Aper(L) = 0. In this case there exists a sequence
v € HY (Y3;R3) with
/ " dy =0,
Y3

per
(3.67) |Vu"|?dy =1, Vn €N,
Y3

such that

together with

/ L(y)e(v™):e(v™) dy — 0.
Y3
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By the Poincaré-Wirtinger inequality, v™ is bounded in L?(Y3;R3). Moreover,
by (3.63) we have
(3.68) /Y [P(y; Ovvy, vy, 03v%) + > Q(y; ajvfﬁiv}f‘)}dy — 0.
3 i<j
Take k € K. Using (3.66) we get
/Z [P(y; O, Ol Ogv8) + Z Q(y; 0;v;, Biv;})}dy > a/Z Vo™ % dy.
k Z<j k

Then, using (3.68) and the fact that both P and @ are non negative, it follows that
/ V" |?dy — 0 Vke€K,
Zk

and therefore
. 2 o
(3.69) nll)n;o Z /Z Z (Orvg)” dy = 0.
keK k q,r=1,2,3
Next, take j € J. By (3.65) we obtain

/ [P(y; 1o}, Davy, D50y + 3 Qly: Aol aiv;;)] dy
Z,

J i<k

>a [ 3 [@r - ) + @ty + @)y
Z.

J i<k

Again using (3.68) and the non-negativity of P and @ we get

(3.70) lim [(aﬂ;p — Opo)? + (Opu)? + (awg)ﬂ =0 forike{1,2,3}, i<k

n—oo J,.

From (3.70) and the continuity of the operator d;:L*(Z;) — H~'(Z;) we deduce that
Do (1)) = 91 (0207) — 0 strongly in H(Z;),

{ O (O1v]) = 01 (010} — Davy) + Da(01vy) — 0 strongly in H(Z;).

By (3.67) we also have

(3.72) O1v} is bounded in L?(Z;).

(3.71)

However, thanks to Korn’s Lemma (see, e.g. [11]) the following norms are equivalent
in L*(Z;):

{ IVl z-1(z,r8) + Il H-1(2,)

Illz2(z,)-
Hence, from estimates (3.71), (3.72) and the compact embedding of L? into H 1!,
it follows that
Oy} is strongly convergent in L?(Z;).

Furthermore, by (3.71) and the fact that Z; is connected for all j, there exists ¢; € R
such that

O1vy — ¢; strongly in L?(Z;),
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which combined with (3.70) yields

Vo™ — ¢;13 strongly in L*(Z;)?.

Since v™ is bounded in L?(Y3;R3), we can conclude that there exists V; € R? such
that

(3.73) v — vi=cjy+V; strongly in H1(Z;;R?).

o In Case 1, by the periodicity of the limit c;y + Vj it is necessary to have c¢; = 0.
o In Case 2, since Zj, is connected, by (3.69) there exists a constant ¢ such that v,
converges to xz;v + X z,ck strongly in Hl(Zj U Z4). Hence, since the sets Z; and Zj,
are regular, the trace of v must be equal to ¢ a.e. on 0Z; N 0Z. Therefore, the only
way for ¢;y+V; to remain constant on a set of non-null 7#%-measure is to have ¢; = 0.

In both cases this implies that Vo™ converges strongly to 0 in LQ(Z]-;RSX3), and
thus

(3.74) lim > / > (Ogvp)dy = 0.

jeJVZirq=1,2,3
Finally, take ¢ € I. By (3.64) we have

/ [P(y; D107, 008, 0508) + > Q(y; Ogv7, &w?)] dy
Z;

r<q
> a/ (D0 + 0303 + Dgui)? + (D0 — Orv3)?

Z;
(D = Dol)? + (g — Dav)? | dy.

By virtue of (3.68) we also have

(3.75) / (000 + w05 +0308)? + (B0 — O10)?
B + (9307 — 01vF)* + (O3v% — 821);})2] dy — 0 asn — o0.
Limits (3.74), (3.69) combined with (3.61) yield
3
HILII;O;/Z ;adj,.,.(Vv )dy = 0.

Therefore, upon subtracting twice this quantity to the sum over i € I of (3.75) we
conclude that

3
(3.76) nuﬁnoloz:/z‘ 3" (@guryPdy =o.

el ¥ 4irg=1

Finally, limits (3.74), (3.69) and (3.76) contradict condition (3.67). The proof is thus
complete. O
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