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ON A COUNTER-EXAMPLE TO QUANTITATIVE

JACOBIAN BOUNDS

by Yves Capdeboscq

Abstract. — This note provides a counter-example to the local positivity of the Jacobian
determinant for solutions of the conductivity equation in dimension 3. It shows that the sign
of the determinant cannot be imposed by an a priori choice of boundary data in H1/2(∂Ω)

depending only on the upper and lower bound of the conductivity, even locally. The argument
uses a scalar two-phase conductivity constructed by Briane, Milton & Nesi [11, 10].

Résumé (Sur un contre-exemple aux bornes quantitatives du jacobien)
Cette note fournit un contre-exemple à la positivité locale du déterminant jacobien des

solutions de l’équation de conduction en dimension 3. On montre que le signe du déterminant
ne peut pas être imposé par un choix a priori de données au bord dans H1/2(∂Ω) dépendant
seulement des bornes inférieure et supérieure de la conductivité, même localement. L’argument
utilise une conductivité scalaire à deux phases construite par Briane, Milton & Nesi [11, 10].
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1. Introduction

Let B1 be the unit open ball centred at the origin in Rd. Given γ ∈ L∞
(
Rd,R

)
such that 1 6 γ(x) 6 β for a.e. x ∈ B1, consider U =

(
u1, . . . , ud

)
whose components

are solutions of the Dirichlet boundary value problems

−div
(
γDui

)
= 0 in B1,

ui = φi on ∂B1,

Mathematical subject classification (2010). — 35J55, 35R30, 35B27.
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172 Y. Capdeboscq

where φ =
(
φ1, . . . , φd

)
is an homeomorphism from ∂B1 onto a Jordan curve Γ which

is the boundary of a bounded convex domain. The vector valued map U is called the
γ-harmonic extension of φ.

When d = 2 it is known that without further assumption on γ this implies that
detDU > 0 almost everywhere in B1 – for more precise bounds see [1, 2]. When φ is
also a C1,α diffeomorphism from Bρ with ρ > 1 and γ ∈ C0,α then detDU is bounded
below by a positive constant on B1, see [7]. For harmonic maps, this fact follows from
the Radó-Kneser-Choquet Theorem [13, Chapter 3.1].

The Radó-Kneser-Choquet Theorem (and its extensions) does not hold when d = 3,
see [24, 18, 11, 13]. The recent paper [3] contains a review of the numerous pathologies
and open problems that appear in this case. All currently available counter-examples
are based on specific boundary data : this is natural, as for example the boundary data
x = (x1, x2, x3) has an harmonic extension (which is itself) of determinant 1 in B1. In
any dimension d > 3, for a fixed sufficiently regular conductivity γ, it is known that
there exists a set of Dirichlet data (φ1, . . . , φN ) with N ∈ {d, d+ 1, 2d+ 1} such that
the rank of [Du1, . . . , DuN ] is d over all the whole domain, and a positive determinant
constraint is satisfied locally by d of the associated γ-harmonic maps (u1, . . . , uN ),
see section 3.

In the context of coupled, or hybrid, inverse problems, it is desirable to be able to
choose the Dirichlet data independently of the conductivity γ, which is an unknown
of the problem.

When d = 3, extrapolating from the existence results mentioned above for fixed
conductivities, one could think that given a priori bounds on the conductivity,
1 6 γ(x) 6 β in B1, and possibly assuming that γ is sufficiently regular, if a large
enough variety of boundary conditions is used, the positivity of the determinant can
be guaranteed locally for any such γ. Indeed, this is true if β − 1 is small enough by
a perturbation argument.

This note shows that if β is larger than some universal constant δ0 defined in
Lemma 2 then in any C1 bounded open domain Ω ⊂ R3, no Dirichlet data in
H1/2(∂Ω)3 can enforce a local determinant constraint for every real two-phase con-
stant conductivities (or all real C∞ conductivities) satisfying 1 6 γ(x) 6 β.

The proof is constructive. It uses a function γ introduced in [11] which is defined
over [0, 1]3 and repeated periodically, together with a regularity result in the theory
of homogenization proved in [19]. The argument is that any Dirichlet data whose
harmonic extension would satisfy locally a given positivity determinant constraint
has a γ(n·)-harmonic extension whose determinant changes sign locally, for n large
enough. The frequency n depends on the positive lower bound for the determinant
and the size of the open set where the constraint is imposed, but not on the boundary
condition.

Acknowledgement. — The author is grateful to the referee who made him aware of
the results of Greene & Wu [15, 14], and to both referees for their valuable comments
that improved the presentation of this note.
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Figure 2.1. Sketch of the periodic set. The various colors were added
for readability, to highlight which elements correspond to the same
ring, once the cell is repeated periodically. Q is the union of all rings.

2. Main result

Let Ω ⊂ R3 be an open bounded domain with C1 boundary. Let Ω′ a sub-domain
of Ω, such that d (Ω′, ∂Ω) > 0.

Given φ =
(
φ1, φ2, φ3

)
, with φi ∈ H1/2 (∂Ω;R) for i = 1, 2, 3, let U0 = (u1

0, u
2
0, u

3
0) ∈

H1(Ω;R3) be the harmonic extension of φ, that is, for i = 1, 2, 3, ui0 ∈ H1(Ω) is the
unique solution of

∆ui0 = 0 in Ω,

ui0 = φi on ∂Ω.
(2.1)

Let γ be a piecewise constant 1-periodic function γ such that in Y = [0, 1]3 we have

γ (y) = 1 + (δ − 1)χQ(y) for all y ∈ Y,

where χQ is the Y -periodic characteristic function Q, made of rotations and trans-
lations of a scaled copy of the tori (that is, circular annuli whose cross-section is a
disk), with cubic symmetry. An illustration of one such Q is given in Figure 2.1.

This type of construction was originally introduced in [11]; the variant presented
here was introduced in [10] (see also [16]). The value of δ is fixed, and decided by
Lemma 2 below.

Write Un = (u1
n, u

2
n, u

3
n) where for i = 1, 2, 3, uin ∈ H1(Ω;R3) is the solution of

div
(
γ (nx)Duin

)
= 0 in Ω,

uin = φi on ∂Ω.
(2.2)

Note that due to cubic symmetry the corresponding effective (or homogenized) con-
ductivity is a positive real number and therefore as n→∞,

Un ⇀ U0 weakly in H1(Ω).

Given ρ > 0, x0 ∈ Ω′ such that Bρ(x0) ⊂ Ω′, and λ > 0 let

(2.3) A(φ, x0, ρ, λ) :=
{
φ ∈ H1/2(∂Ω;R3) : det(DU0) > λ ‖φ‖3H1/2(∂Ω) in Bρ(x0)

}
,

where U0 is the harmonic extension of φ given by (2.1). The set A(φ, x0, ρ, λ) contains
all boundary data whose harmonic extensions in Ω satisfy the stated lower determi-
nant bound in Bρ(x0). We write |X| the Lebesgue measure of the set X.
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174 Y. Capdeboscq

The main result is the following.

Theorem 1. — Given ρ > 0, x0 ∈ Ω′ such that Bρ(x0) ⊂ Ω′, and λ > 0, let
A(φ, x0, ρ, λ) be defined by (2.3). There exist n, depending on ρ, Ω, Ω′ and λ only, a
universal constant τ > 0 and two open subsets B+ and B− of Bρ(x0) such that

|B+| > τ |Bρ(x0)| and |B−| > τ |Bρ(x0)| ,

and for any φ ∈ A(φ, x0, ρ, λ),

det (DUn) (x) < −τλ ‖φ‖3H1/2(∂Ω) on B−,

and
det (DUn) (x) > τλ ‖φ‖3H1/2(∂Ω) on B+,

where Un is the γ (n·)-harmonic extension of φ given by (2.2).

In other words, there is no a priori choice of boundary data which can ensure a
quantitative lower bound of the Jacobian determinant for piecewise constant scalar
conductivities without additional a priori information, as any given boundary condi-
tion would fail either for harmonic maps or the two-phase composite γ(n·) at a fixed
scale n. This result is an application of two existing results in the literature. The first
key result is a part of Theorem 3 in [11].

Lemma 2 (see Theorem 3 in [11]). — There exist δ0 > 0, τ > 0, Y+ and Y− open sub-
sets of Y both of positive measure 2τ such that the periodic corrector matrix P = Dζ,
where ζ is the solution of

div (γDζ) = 0 in R3,

ζ(y)− y ∈ H1
#(Y ),

satisfies
det (P ) (y) > 2τ in Y+ and det (P ) (y) < −2τ in Y−.

The second key result is a regularity result. Because the conductivity γ is piecewise
constant (and therefore piecewise smooth), and because the set Q has C∞ smooth
boundaries (and therefore C1,α smooth boundaries), the regularity results given in [20]
and [19] show that Un is also piecewise C1,β for some β > 0, up to the boundary of
the set Q in Ω′. In fact, this provides uniform W 1,∞ estimates for Un, independently
of n, see [19]. This result has been successfully expanded to provide error estimates
for DUn see [8, 21].

Lemma 3 (See Theorem 3.4 in [19], Theorem 3.6 in [8] or Theorem 4.2 in [21])
There exists a constant C depending on Ω, Ω′, δ and Q only such that

‖DUn‖L∞(Ω′) 6 C‖φ‖H1/2(∂Ω,R3),

‖P (nx) ‖L∞(Ω′) 6 C,

‖DUn − P (nx)DU0‖L∞(Ω′) 6
C

n1/3
‖φ‖H1/2(∂Ω,R3).and

J.É.P. — M., 2015, tome 2
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Another variant of this result (also based on [20, 19]) is given in [4]. Combining
these two ingredients, we obtain our result.

Proof of Theorem 1. — In Ω′, we have

det (DUn) = det (P (nx)DU0) +Rn,

= det (P (nx)) det (DU0) +Rn

with

‖Rn‖L∞(Ω′) 6 C‖DUn − P (nx)DU0‖L∞(Ω′)

·max
(
‖DUn‖2L∞(Ω′), ‖P (nx)DU0‖2L∞(Ω′)

)
,

as for any two real d× d matrices,

|det(A)− det(B)| 6 C(d)‖A−B‖∞max
(
‖A‖d−1

∞ , ‖B‖d−1
∞

)
.

Thanks to Lemma 3,
Rn 6

C

n1/3
‖φ‖3H1/2(∂Ω,R3).

In the ball B(x0, ρ), let

B± =
{
x ∈ B (x0, ρ) : ∃ p ∈ Z3, nx− p ∈ Y±

}
.

For n large enough, |B±| > τ |B(x0, ρ)|.
In B±, we have thanks to Lemma 2, ±det (P (nx)) > 2τ , therefore

±det(DUn) > 2τ det(DU0)− C

n1/3
‖φ‖3H1/2(∂Ω,R3).

With φ ∈ A(φ, x0, ρ, λ), this implies

±det(DUn) >
(

2τλ− C

n1/3

)
‖φ‖3H1/2(∂Ω,R3) > τλ‖φ‖3H1/2(∂Ω,R3),

for n1/3τλ > C. �

Remark. — Any larger n would lead to the same conclusion, with the same bound.
Note that the above argument shows that for a given radius ρ, and λ sufficiently small,
one can choose n = Cλ−3, with a constant C depending Ω and Ω′ only.

The fact that the conductivity coefficient γ is not smooth is not required for Theo-
rem 1 to hold. This choice was made in [11] as it corresponds to realisable composites.
Consider as before the periodic function γ with

γ (y) = 1 + (δ − 1)χQ(y) for all y ∈ Y,

with δ chosen via Lemma 2. Introducing the standard mollifier η ∈ C∞(R) given by
η(x) = cη exp(−1/(1 − |x|2)) for |x| < 1 and η(x) = 0 otherwise, where cη is chosen
so that ‖η‖L1(R) = 1, write for some M > 0 to be chosen later ηM = η (M ·). The
function γ̃ = ηM ? γ is smooth, Y -periodic, and enjoys the same symmetries as γ
because η is radial. Note that the open subsets Y± given in Lemma 2 are located in
parts of the periodic cell where P is smooth, that is, away from δQ (see Theorem 3

J.É.P. — M., 2015, tome 2
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in [11]). Thus, as solutions of elliptic boundary value problems depend smoothly on
their coefficients, we can setM large enough so that Lemma 2 applies to γ̃ (for another
universal constant τ).

Write Ũn = (ũ1
n, ũ

2
n, ũ

3
n) where for i = 1, 2, 3, ũin ∈ H1(Ω;R3) is the solution of

div
(
γ̃ (nx)Dũin

)
= 0 in Ω,

ũin = φi on ∂Ω.
(2.4)

The proof of Theorem 1 is then easily adapted. Since γ̃ is smooth the error estimates
corresponding to Lemma 3 are classical and the rate of decay of the error is then n−1,
see [9]. We obtain the following corollary.

Corollary 4. — Given ρ > 0, x0 ∈ Ω′ such that Bρ(x0) ⊂ Ω′, and λ > 0, let
A(φ, x0, ρ, λ) be defined by (2.3). There exist n, depending on ρ, Ω, Ω′ and λ only, a
universal constant τ > 0 and two open subsets B+ and B− of Bρ(x0) such that

|B+| > τ |Bρ(x0)| and |B−| > τ |Bρ(x0)| ,

and for any φ ∈ A(φ, x0, ρ, λ),

det(DŨn)(x) < −τλ ‖φ‖3H1/2(∂Ω) on B−,

and
det(DŨn)(x) > τλ ‖φ‖3H1/2(∂Ω) on B+,

where Ũn is the γ̃ (n·)-harmonic extension of φ given by (2.4).

3. Positive Jacobian bounds using more than d boundary data
in dimension d > 3

Given a sufficiently smooth conductivity γ defined in Rd, with d > 3 and satisfying,
for some s > 0, and β > 1,

(3.1) γ ∈ Cs
(
Rd
)

such that 1 6 γ(x) 6 β in Ω,

one can ask whether using N > d boundary conditions would provide N -tuples such
that the Jacobian matrix of the corresponding solutions has maximal rank.

A construction of boundary conditions FN =
(
φ1, . . . , φN

)
∈ H1/2(∂Ω) ensuring

that the solutions U = (u1, . . . , uN ) of

(3.2) − div
(
γDui

)
= 0 in Ω, ui = φi on ∂Ω,

are such that everywhere on the domain at least one d-tuples of such solutions satisfy
a positive Jacobian constraint is provided in [5, 22]. Their approach relies on Complex
Geometric Optics solutions [12, 23], adapted for hybrid inverse problems in [6].

Proposition 5 (See Lemma 3.3 in [5], Lemma 2.1 in [22]). — Given γ ∈ H d
2 +3+ε

(
R3
)

satisfying (3.1). Let N = 2
⌊
d+1

2

⌋
. There exists a non-empty open set FN ⊂

(H1/2(∂Ω))N of N-tuples of illuminations such that for any
(
φ1, . . . , φN

)
∈ FN there

exists a constant c0 > 0 so that
(
u1, . . . , uN

)
given by (3.2) satisfy

If d is even, det
(
Du1, . . . , Dud

)
> c0 in Ω.
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If d is odd, on an open cover of Ω of the form {Ω2i−1,Ω2i}16i6M ,∣∣det
(
Du1, . . . , Dud−1, Dud+1

)∣∣ > c0 on Ω2i−1∣∣det
(
Du1, Dud−1, Dud

)∣∣ > c0 on Ω2i.and

When this note was submitted, one of the referee suggested an earlier result [15, 14].
It is shown in these articles that on any connected non compact Riemannian manifold
of dimension d, there exists 2d + 1 harmonic functions which taken together give a
proper embedding of the manifold in the Euclidean space R2d+1. Translated in the
language and context of this paper, it shows that given γ ∈ C∞

(
Rd
)
satisfying (3.1),

one can choose N = 2d + 1 to satisfy the positivity constraint. The main property
used to obtain this result is the unique continuation property of second order linear
elliptic PDE. As this property holds for Lipschitz conductivities [17], this result can
be extended from C∞ to C0,1, and is in that sense more general than Proposition 5,
at the cost of a slightly larger number of boundary conditions.

Both results apply to γ̃ (n·) for each n > 1. Corollary 4 shows that the Dirichlet
data must changes with n and that the lower bound on the determinant tends to
nought as n grows if the H1/2(∂Ω) norm of the Dirichlet data is bounded a priori.
The decay of the lower bound is exponential in n in the proof of Proposition 5.

In dimension 3, as the set of possible septuplet given in [15, 14] is very large, it is
possible that there exists a good choice of boundary conditions for all conductivities
satisfying a priori Lipschitz bounds. Considering Gβ,L given by

Gβ,L =

{
γ ∈ C0,1

(
R3
)

: 0 < 1 6 γ 6 β and |γ(x)− γ(y)|
|x− y|

< L in Ω

}
,

there could exist N ∈ N depending on β, L and (φ1, . . . , φN ) such that for any
γ ∈ Gβ,L,

rank
[
Du1, . . . , DuN

]
= 3 on Ω.

What Theorem 1 and Corollary 4 indicate is that an a priori constraint on the oscil-
lations of γ is unavoidable.
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