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ANTI-HOLOMORPHIC INVOLUTIONS OF

THE MODULI SPACES OF HIGGS BUNDLES

by Indranil Biswas & Oscar García-Prada

Abstract. — We study anti-holomorphic involutions of the moduli space of G-Higgs bundles
over a compact Riemann surface X, where G is a complex semisimple Lie group. These involu-
tions are defined by fixing anti-holomorphic involutions on both X and G. We analyze the fixed
point locus in the moduli space and their relation with representations of the orbifold fundamen-
tal group of X equipped with the anti-holomorphic involution. We also study the relation with
branes. This generalizes work by Biswas–García-Prada–Hurtubise and Baraglia–Schaposnik.

Résumé (Involutions anti-holomorphes des espaces de modules de fibrés de Higgs)
Nous étudions les involutions anti-holomorphes des espaces de modules de G-fibrés de Higgs

sur une surface de Riemann compacte X, où G est un groupe de Lie semi-simple complexe. Ces
involutions sont définies en fixant des involutions anti-holomorphes à la fois sur X et G. Nous en
analysons le lieu des points fixes dans l’espace de modules et leur relation avec les représentation
du groupe fondamental orbifold deX muni de l’involution anti-holomorphe. Nous étudions aussi
la relation avec les « branes ». Ceci généralise les travaux de Biswas–García-Prada–Hurtubise
et Baraglia–Schaposnik.
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36 I. Biswas & O. García-Prada

1. Introduction

Let G be a complex semisimple affine algebraic group with Lie algebra g. Let X
be a compact connected Riemann surface. A G–Higgs bundle over X is a pair (E,ϕ),
where E is a holomorphic principal G-bundle over X and ϕ is a holomorphic section
of E(g)⊗K with E(g) being the vector bundle associated to E for the adjoint action
of G on g and K being the canonical line bundle on X. We consider the moduli
space of polystable G-Higgs bundlesM(G). This has the structure of a hyper-Kähler
manifold outside the singular locus.

Let α : X → X and σ : G→ G be anti-holomorphic involutions. We define the two
involutions (see Section 4.1 for details)

(1.1)
ι(α, σ)± :M(G) −→M(G)

(E,ϕ) 7−→ (α∗σ(E),±α∗σ(ϕ)).

The goal of this paper is to describe the fixed points of these involutions. The
fixed points are given by the image of moduli spaces of G-Higgs bundles satisfying
a reality condition determined by α and σ, and an element c ∈ Zσ2 , where Z is the
center of G and Zσ2 is the group of elements of order two in Z fixed by σ. For the
involution ι(α, σ)+, these are the moduli space of pseudo-real Higgs bundles consid-
ered in [5], to which we refer here as (α, σ, c,+)-pseudo-real G-Higgs bundles. For
ι(α, σ)−, the reality condition on the bundle E is the same as that for ι(α, σ)+, but
the different sign on ϕ gives a different reality condition on the moduli space of Higgs
bundles, defining objects that we call (α, σ, c,−)-pseudo-real G-Higgs bundles. When
the element c ∈ Zσ2 is trivial we call these objects real G-Higgs bundles.

The involution ι(α, σ)− is studied by Baraglia-Schaposnik [3] when σ is the anti-
holomorphic involution τ corresponding to a compact real form of G (see also [19]).
In [4], they consider the involutions ι(α, σ)+ obtained as a result of composing ι(α, τ)−

with the holomorphic involution ι−(θ) ofM(G) defined by ι−(E,ϕ) = (θ(E),−θ(ϕ)),
where θ is the holomorphic involution of G given by θ = στ (here one takes a compact
conjugation τ commuting with σ). In fact, if we consider the involutions

(1.2)
ι(θ)± :M(G) −→M(G)

(E,ϕ) 7−→ (θ(E),±θ(ϕ)),

one has
ι(α, σ)± = ι∓(θ) ◦ ι−(α, τ).

The involutions (1.2) have been studied in [12, 13, 15].
In the language of branes [20], the fixed points of ι(α, σ)+ are (A,A,B)–branes,

while the fixed points of ι(α, σ)− are (A,B,A)–branes. What these mean is that the
fixed points of ι(α, σ)− are complex Lagrangian submanifolds with respect to the
complex structure J2 defined onM(G) by the complex structure of G, while the fixed
points of ι(α, σ)+ are complex Lagrangian submanifolds with respect to the complex
structure J3 = J1J2 obtained by combining J2 with the natural complex structure J1
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Anti-holomorphic involutions of the moduli of Higgs bundles 37

defined on the moduli space of Higgs bundles for the Riemann surface X. The study of
these branes is of great interest in connection with mirror symmetry and the Langlands
correspondence in the theory of Higgs bundles (see [20, 18, 3, 2]).

We then identify these involutions in the moduli space of representations of the
fundamental group of X in G, and describe the fixed points corresponding to the
(α, σ, c,±)-pseudo-real G-Higgs bundles in terms of representations of the orbifold
fundamental group of (X,α) in a group whose underlying set is G×Z/2Z. The group
structure on G×Z/2Z is constructed using the element c ∈ Zσ2 and an action of Z/2Z
on G which depends on the sign of the pseudo-reality condition; more precisely, this
action is given by the conjugation σ in the “+” case, and the action of θ = στ in the
“−” case, where τ is a compact conjugation commuting with σ. When c is trivial we
obtain the semi-direct products of G with Z/2Z for the action σ.

The results of this paper have a straightforward generalization to the case in
which G is reductive. In this situation the fundamental group of X is replaced by
its universal central extension.

Acknowledgements. — The main results of this paper were presented at the workshop
on Higgs bundles and pressure metrics held in Aarhus in August 2013. We wish to
thank Joergen Andersen and the Centre for Quantum Geometry of Moduli Spaces for
the invitation and hospitality. We want to thank Steve Bradlow and Laura Schaposnik
for useful discussions.

2. G-Higgs bundles and representations of the fundamental group

2.1. Moduli space of G-Higgs bundles. — Let G be a complex semisimple affine
algebraic group. Its Lie algebra will be denoted by g. Let X be an irreducible smooth
projective curve defined over C, equivalently, it is a compact connected Riemann
surface. Let g

X
be the genus of X; throughout we assume that g

X
> 2. The canonical

line bundle of X will be denoted by K. For a principal G-bundle E, let E(g) := E×Gg
be the adjoint vector bundle for E.

A G-Higgs bundle over X is a pair (E,ϕ), where E is a holomorphic principal
G-bundle E over X and ϕ is a holomorphic section of E(g)⊗K. Two G-Higgs bundles
(E,ϕ) and (F,ψ) are isomorphic if there is a holomorphic isomorphism of principal
G-bundles f : E → F such that the induced isomorphism

Ad(f)⊗ IdK : E(g)⊗K −→ F (g)⊗K

sends ϕ to ψ.
There are notions of (semi)stability and polystability for G-Higgs bundles (see

[8, 14, 7] for example). A G-Higgs bundle (E,ϕ) is said to be stable (respectively,
semistable) if for every parabolic subgroup P ⊂ G, every holomorphic reduction
σ : EP → E of E to P such that

ϕ ∈ H0(X,EP (p)⊗K) ⊂ H0(X,E(g)⊗K)
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38 I. Biswas & O. García-Prada

and every strictly antidominant character χ of P , we have that degEP (χ) > 0 (respec-
tively, degEP (χ) > 0). A Higgs bundle (E,ϕ) is polystable if it is semistable and for
every P , every reduction and every χ as above such that degEP (χ) = 0, there is a holo-
morphic reduction EL ⊂ E to a Levi subgroup L ⊂ P such that ϕ ∈ H0(X,EL(l)⊗K).

LetM(G) denote the moduli space of semistable G-Higgs bundles of fixed topolog-
ical type. This moduli space has the structure of a complex normal quasiprojective
variety of dimension dimG(g

X
− 1).

2.2. G-Higgs bundles and Hitchin equations. — As above, let G be a complex
semisimple affine algebraic group. Let H ⊂ G be a maximal compact subgroup. Let
(E,ϕ) be a G-Higgs bundle over a compact Riemann surface X. By a slight abuse of
notation, we shall denote the C∞-objects underlying E and ϕ by the same symbols. In
particular, the Higgs field can be viewed as a (1, 0)-form ϕ ∈ Ω1,0(E(g)) with values
in E(g). Let

τ : Ω1,0(E(g)) −→ Ω0,1(E(g))

be the isomorphism induced by the compact conjugation of g (with respect to H)
combined with the complex conjugation on complex 1-forms. Given a C∞ reduction
of structure group h of the principal G-bundle E to H, we denote by Fh the curvature
of the unique connection compatible with h and the holomorphic structure on E; see
[1, pp. 191–192, Prop. 5] for the connection.

Theorem 2.1. — There is a reduction h of structure group of E from G to H that
satisfies the Hitchin equation

Fh − [ϕ, τ(ϕ)] = 0

if and only if (E,ϕ) is polystable.

Theorem 2.1 was proved by Hitchin [17] for G = SL(2,C), and in [23, 24, 7] for the
general case.

Remark 2.2. — When G is reductive the equation in Theorem 2.1 is replaced by the
equation

Fh − [ϕ, τ(ϕ)] = c ω,

where ω is a Kähler form on X and c is an element in the center of the Lie algebra
of G, which is determined by the topology of E.

From the point of view of moduli spaces it is convenient to fix a C∞ principal
H–bundle EH and study the moduli space of solutions to Hitchin’s equations for a
pair (A,ϕ) consisting of a H–connection A on EH and a section ϕ ∈ Ω1,0(X,EH(g)):

(2.1) FA − [ϕ, τ(ϕ)] = 0

∂Aϕ = 0.

Here dA is the covariant derivative associated to A, and ∂A is the (0, 1) part of dA.
The (0, 1) part of dA defines a holomorphic structure on EH . The gauge group H
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Anti-holomorphic involutions of the moduli of Higgs bundles 39

of EH acts on the space of solutions and the moduli space of solutions is

Mgauge(G) := {(A,ϕ) satisfying (2.1)}/H .

Now, Theorem 2.1 can be reformulated as follows.

Theorem 2.3. — There is a homeomorphism

M(G) ∼=Mgauge(G).

To explain this correspondence we interpret the moduli space of G-Higgs bundles
in terms of pairs (∂E , ϕ) consisting of a ∂-operator (holomorphic structure) ∂E on
the C∞ principal G-bundle EG obtained from EH by the extension of structure
group H ↪→ G, and ϕ ∈ Ω1,0(X,EG(g)) satisfying ∂Eϕ = 0. Such pairs are in
one-to-one correspondence with G-Higgs bundles (E,ϕ), where E is the holomorphic
G-bundle defined by the operator ∂E on EG. The equation ∂Eϕ = 0 is equivalent to
the condition that ϕ ∈ H0(X,E(g) ⊗ K). The moduli space of polystable G-Higgs
bundlesMd(G) can now be identified with the orbit space

{(∂E , ϕ) | ∂Eϕ = 0 and the G-Higgs bundle is polystable}/G ,

where G is the gauge group of EG, which is in fact the complexification of H . Since
there is a one-to-one correspondence between H-connections on EH and ∂-operators
on EG, the correspondence given in Theorem 2.3 can be reformulated by saying
that in the G –orbit of a polystable G-Higgs bundle (∂E0 , ϕ0) we can find another
Higgs bundle (∂E , ϕ) whose corresponding pair (dA, ϕ) satisfies the Hitchin equation
FA− [ϕ, τ(ϕ)] = 0 with this pair (dA, ϕ) being unique up to H-gauge transformations.

2.3. Higgs bundles and representations. — Fix a base point x0 ∈ X. By a represen-
tation of π1(X,x0) in G we mean a homomorphism π1(X,x0)→ G. After fixing a pre-
sentation of π1(X,x0), the set of all such homomorphisms, Hom(π1(X,x0), G), can be
identified with the subset ofG2g

X consisting of 2g
X
-tuples (A1, B1, . . . , Ag

X
, Bg

X
) sat-

isfying the algebraic equation
∏g

X
i=1[Ai, Bi] = 1. This shows that Hom(π1(X,x0), G)

is a complex algebraic variety.
The group G acts on Hom(π1(X,x0), G) by conjugation:

(g · ρ)(γ) = gρ(γ)g−1,

where g ∈ G, ρ ∈ Hom(π1(X,x0), G) and γ ∈ π1(X,x0). If we restrict the action
to the subspace Hom+(π1(X,x0), G) consisting of reductive representations, the orbit
space is Hausdorff. We recall that a reductive representation is one whose composition
with the adjoint representation in g decomposes as a direct sum of irreducible repre-
sentations. This is equivalent to the condition that the Zariski closure of the image
of π1(X,x0) in G is a reductive group. Define the moduli space of representations of
π1(X,x0) in G to be the orbit space

R(G) = Hom+(π1(X,x0), G)/G.
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40 I. Biswas & O. García-Prada

For another point x′ ∈ X, the fundamental groups π1(X,x0) and π1(X,x′) are iden-
tified by an isomorphism unique up to an inner automorphism. Consequently, R(G)

is independent of the choice of the base point x0.
One has the following (see e.g. [16], [25]).

Theorem 2.4. — The moduli space R(G) has the structure of a normal complex va-
riety. Its smooth locus is equipped with a holomorphic symplectic form.

Given a representation ρ : π1(X,x0) → G, there is an associated flat principal
G-bundle on X, defined as

Eρ = X̃ ×ρ G,
where X̃ → X is the universal cover associated to x0 and π1(X,x0) acts on G via ρ.
This gives in fact an identification between the set of equivalence classes of representa-
tions Hom(π1(X), G)/G and the set of equivalence classes of flat principal G-bundles,
which in turn is parametrized by the (nonabelian) cohomology set H1(X,G).

We have the following:

Theorem 2.5. — There is a homeomorphism R(G) ∼=M(G).

The moduli spaces M(G) and R(G) are sometimes referred as the Dolbeault and
Betti moduli spaces, respectively.

The proof of Theorem 2.5 is the combination of two existence theorems for gauge-
theoretic equations. To explain this, let EG be, as above, a C∞ principal G-bundle
over X and EH a C∞ reduction of structure group of it to H. Every G–connection D
on EG decomposes uniquely as

D = dA + ψ,

where dA is an H-connection on EH and ψ ∈ Ω1(X,EH(
√
−1 h)). Let FA be the

curvature of dA. We consider the following set of equations for the pair (dA, ψ):

(2.2)
FA + 1

2 [ψ,ψ] = 0

dAψ = 0

d∗Aψ = 0.

These equations are invariant under the action of H , the gauge group of EH . A the-
orem of Corlette [10], and Donaldson [11] for G = SL(2,C), says the following.

Theorem 2.6. — There is a homeomorphism between

{Reductive G-connections D | FD = 0}/G

and
{(dA, ψ) satisfying (2.2)}/H .

The first two equations in (2.2) are equivalent to the flatness of D = dA + ψ,
and Theorem 2.6 simply says that in the G -orbit of a reductive flat G-connection D0

we can find a flat G-connection D = g̃(D0) such that if we write D = dA + ψ, the
additional condition d∗Aψ = 0 is satisfied. This can be interpreted more geometrically
in terms of the reduction h = g̃(h0) of EG to a principal H-bundle obtained by the
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Anti-holomorphic involutions of the moduli of Higgs bundles 41

action of g̃ ∈ G on h0. The equation d∗Aψ = 0 is equivalent to the harmonicity of the
π1(X)-equivariant map X̃ → G/H corresponding to the new reduction of structure
group h.

To complete the argument, leading to Theorem 2.5, we just need Theorem 2.1 and
the following simple result.

Proposition 2.7. — The correspondence (dA, ϕ) 7→ (dA, ψ := ϕ − τ(ϕ)) defines a
homeomorphism

{(dA, ϕ) satisfying (2.1)}/H ∼= {(dA, ψ) satisfying (2.2)}/H .

2.4. The moduli space as a hyper-Kähler quotient. — We will see now that the
moduli spaceM(G) has a hyper-Kähler structure. For this, recall first that a hyper-
Kähler manifold is a differentiable manifold M equipped with a Riemannian metric g
and complex structures Ji, i = 1, 2, 3 satisfying the quaternion relations J2

i = −I,
J3 = J1J2 = −J2J1, J2 = −J1J3 = J3J1 and J1 = J2J3 = −J3J2 such that if we
define ωi(· , ·) = g(Ji· , ·), then (g, Ji, ωi) is a Kähler structure onM . Let Ωi denote the
holomorphic symplectic structure onM(G) with respect to the complex structure Ji.
In fact, Ω1 = ω2 +

√
−1ω3, Ω2 = ω3 +

√
−1ω1 and Ω3 = ω1 +

√
−1ω2.

One way to understand the non-abelian Hodge theory correspondence mentioned
above is through the analysis of the hyper-Kähler structure of the moduli spaces
involved. We explain how these can be obtained as hyper-Kähler quotients. For
this, let EG be a smooth principal G-bundle over X, and let EH be a fixed re-
duction of EG to the maximal compact subgroup H. The set A of H-connections
on EH is an affine space modelled on Ω1(X,E(h)). Via the Chern correspondence, A

is in one-to-one correspondence with the set C of holomorphic structures on EG

[1, pp. 191–192, Prop. 5], which is an affine space modelled on Ω0,1(X,EG(g)). Let us
denote Ω = Ω1,0(X,EG(g)). We consider X = A ×Ω. Via the identification A ∼= C ,
we have for α ∈ Ω0,1(X,EG(g)) and ψ ∈ Ω1,0(X,EG(g)) the following three complex
structures on X :

J1(α,ψ) = (
√
−1α,

√
−1ψ)

J2(α,ψ) = (−
√
−1τ(ψ),

√
−1τ(α))

J3(α,ψ) = (τ(ψ),−τ(α)),

where τ is the conjugation on g defining its compact form h (determined fiber-wise by
the reduction to EH), combined with the complex conjugation on complex 1-forms.

One has also a Riemannian metric g defined on X : for α ∈ Ω0,1(X,EG(g)) and
ψ ∈ Ω1,0(X,EG(g)),

g((α,ψ), (α,ψ)) = −2
√
−1

∫
X

B(τ(α), α) +B(ψ, τ(ψ)),

where B is the Killing form.
Clearly, Ji, i = 1, 2, 3, satisfy the quaternion relations, and define a hyper-Kähler

structure on X , with Kähler forms ωi(· , ·) = g(Ji· , ·), i = 1, 2, 3. As shown in [17],
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42 I. Biswas & O. García-Prada

the action of the gauge group H on X preserves the hyper-Kähler structure and
there are moment maps given by

µ1(A,ϕ) = FA − [ϕ, τ(ϕ)], µ2(A,ϕ) = Re(∂Eϕ), µ3(A,ϕ) = Im(∂Eϕ).

We have that µ−1(0)/H , where µ = (µ1, µ2, µ3) is the moduli space of solutions
to the Hitchin equations (2.1). In particular, if we consider the irreducible solutions
(equivalently, smooth) µ−1∗ (0) we have that

µ−1∗ (0)/H

is a hyper-Kähler manifold which, by Theorem 2.3, is homeomorphic to the subvariety
of smooth points in moduli spaceM(G) of stableG-Higgs bundles with the topological
class of EG.

Let us now see how the moduli of harmonic flat connections on EH can be realized
as a hyper-Kähler quotient. Let D be the set of G-connections on EG. This is an
affine space modelled on Ω1(X,EG(g)) = Ω0(X,T ∗X ⊗R EG(g)). The space D has
a complex structure I1 = 1 ⊗

√
−1, which comes from the complex structure of

the bundle. Using the complex structure of X we have also the complex structure
I2 =

√
−1⊗ τ . We can finally consider the complex structure I3 = I1I2.

The reduction to H of the G-bundle EG together with a Riemannian metric in the
conformal class of X defines a flat Riemannian metric gD on D which is Kähler for
the above three complex structures. Hence (D , gD , I1, I2, I3) is also a hyper-Kähler
manifold. As in the previous case, the action of the gauge group H on D preserves
the hyper-Kähler structure and there are moment maps

µ1(D) = d∗Aψ, µ2(D) = Im(FD), µ3(D) = Re(FD),

where D = dA + ψ is the decomposition of D defined by

EG(g) = EH(h)⊕EH(
√
−1h).

Hence the moduli space of solutions to the harmonicity equations (2.2) is the hyper-
Kähler quotient defined by

µ−1(0)/H ,

where µ = (µ1, µ2, µ3). The homeomorphism between the moduli spaces of solutions
to the Hitchin and the harmonicity equations is induced from the affine map

A × Ω −→ D

(dA, ϕ) 7−→ dA + ϕ− τ(ϕ).

One can see easily, for example, that this map sends A ×Ω with complex structure J2
to D with complex structure I1 (see [17]).

Now, Theorems 2.3 and 2.6 can be regarded as existence theorems, establishing the
non-emptiness of the hyper-Kähler quotient, obtained by focusing on different complex
structures. For Theorem 2.3 one gives a special status to the complex structure J1.
Combining the symplectic forms determined by J2 and J3 one has the J1-holomorphic
symplectic form ωc = ω2 +

√
−1ω3 on A × Ω. The gauge group G = H C acts on

A × Ω preserving ωc. The symplectic quotient construction can also be extended
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Anti-holomorphic involutions of the moduli of Higgs bundles 43

to the holomorphic situation (see e.g. [21]) to obtain the holomorphic symplectic
quotient {(∂E , ϕ) | ∂Eϕ = 0}/G . What Theorem 2.3 says is that for a class [(∂E , ϕ)]

in this quotient to have a representative (unique up to H-gauge) satisfying µ1 = 0

it is necessary and sufficient that the pair (∂E , ϕ) be polystable. This identifies the
hyper-Kähler quotient to the set of equivalence classes of polystable G-Higgs bundles
on EG. If one now takes J2 on A × Ω or equivalently D with I1 and argues in a
similar way, one gets Theorem 2.6 identifying the hyper-Kähler quotient to the set of
equivalence classes of reductive flat connections on EG.

3. Real G-Higgs bundles

3.1. Involutions and conjugations of complex Lie groups. — Let G be a Lie group.
We define

Int(G) := {f ∈ Aut(G) | f(h) = ghg−1, for every h ∈ G}.

We have that Int(G) = Ad(G).
We define the group of outer automorphisms of G as

Out(G) := Aut(G)/ Int(G).

We have a sequence

(3.1) 1 −→ Int(G) −→ Aut(G) −→ Out(G) −→ 1.

It is well-known that ifG is a connected complex reductive group then the extension
(3.1) splits (see [22]).

Let G be a complex Lie group and let GR be the underlying real Lie group. We
will say that a real Lie subgroup G0 ⊂ GR is a real form of G if it is the fixed point
set of a conjugation (anti-holomorphic involution) σ of G.

Now, let G be simple. A compact real form always exists. This follows from the
fact that for a simple group there is a maximal compact subgroup U ⊂ G, such that
UC = G. From this we can define a conjugation τ : G → G such that Gτ = U . Let
Conj(G) be the set of conjugations (i.e., anti-holomorphic involutions) of G. We can
define the following equivalence relations in Conj(G):

σ ∼ σ′ if there is α ∈ Int(G) such that σ′ = ασα−1,

We can define a similar relation ∼ in the set Aut2(G) of automorphisms of G of
order 2.

Remark 3.1. — The equivalence relation ∼ for elements in Aut2(G) should not be
confused with the inner equivalence, meaning the equivalence relation where two
elements are equivalent if they map to the same element in Out(G). It is easy to
show that if θ ∼ θ′ then they are inner equivalent.

Cartan [9] shows that there is a bijection

Conj(G)/ ∼ ←→ Aut2(G)/ ∼ .
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More concretely, one has that given the compact conjugation τ , in each class
Conj(G)/ ∼ one can find a representative σ commuting with τ so that θ := στ is an
element of Aut2(G), and similarly if we start with a class in Aut2(G)/ ∼ .

3.2. Pseudo-real principal G-bundles. — We use the notation of Section 3.1. Let G
be a semisimple complex affine algebraic group. Let τ ∈ Conj(G) be a compact con-
jugation of G, and let σ ∈ Conj(G) commuting with τ , and θ = στ ∈ Aut2(G).

Let Zσ ⊂ Z be the fixed point locus in the center Z ⊂ G. The subgroup of Zσ
generated by its elements of order two will be denoted by Zσ2 .

Let X be a compact connected Riemann surface, of genus g > 2, equipped with an
anti-holomorphic involution α : X → X.

Definition 3.2. — Let E be a holomorphic principal G-bundle over X. Take any
c ∈ Zσ2 . We say that E is (α, σ, c)-pseudo-real if E is equipped with an anti-
holomorphic map α̃ : E → E covering α such that

• α̃(eg) = α̃(e)σ(g), for e ∈ E and g ∈ G.
• α̃2(e) = ec.
If c = 1, we say that E is (α, σ)-real.

Remark 3.3. — An alternative definition of pseudo-real bundle allows for c to be any
element of Z. However we can modify α̃ by the action of an element a ∈ Z defining
a covering map α̃′ := α̃.a. By this, the element c gets modified by c′ = aσ(a)c. In
particular we can take a lying in Zσ and the composition is modified by a2. Therefore
if c lies in (Zσ)2, or more generally is of the form σ(a)a we can normalize our pseudo-
real structure to a real one. But since the natural homomorphism Zσ2 → Zσ/(Zσ)2 is
surjective we can always assume that c is of order 2, as we have done in our definition.

Remark 3.4. — Sometimes to emphasize the pseudo-real structure we will write
(E,ϕ, α̃) for a G-Higgs bundle (E,ϕ) equipped with a pseudo-real structure α̃.

Define the quotient
Gc := G/〈c〉.

Note that 〈c〉 = Z/2Z if c 6= 1. Since c is fixed by σ, the involution σ induced an
anti-holomorphic involution of Gc. This anti-holomorphic involution of Gc will be
denoted by σ′. Let (EG, α̃) be a (α, σ, c)-pseudo-real principal G-bundle on X. Define
EGc

:= EG/〈c〉. Note that EGc
is the principal Gc-bundle obtained by extending

the structure group of EG using the quotient homomorphism G → Gc. The above
self-map α̃ of EG descends to a self-map

α̃′ : EGc −→ EGc .

Since α̃2 = c, we have α̃′ ◦ α̃′ = IdEGc
. Therefore, (EGc , α̃

′) is a (α, σ′)-real principal
Gc-bundle.

The pair (X,α) defines a geometrically irreducible smooth projective curve defined
over R. This curve defined over R will be denoted by X ′. Assume that c 6= 1. Let G′
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(respectively, G′c) be the algebraic group, defined over R, given by the pair (G, σ)

(respectively, (Gc, σ
′)). Consider the short exact sequence of sheaves

1 −→ 〈c〉 = Z/2Z −→ G′ −→ G′c −→ 1

on X ′. Let
H1

ét(X
′, G′) −→ H1

ét(X
′, G′c)

β−−→ H2
ét(X

′,Z/2Z)

be the long exact sequence of étale cohomologies corresponding to the above short
exact sequence of sheaves on the curve X ′ defined over R. As noted above, a (α, σ, c)-
pseudo-real principal G-bundle on X gives a (α, σ′)-real principal Gc-bundle. Note
that the isomorphism classes of principal G′c-bundles on X ′ are parametrized by the
elements of the cohomology H1

ét(X
′, G′c). Indeed, this follows immediately from the

fact that any principal G′c-bundle on X ′ can be locally trivialized with respect to the
étale topology. Therefore, a (α, σ, c)-pseudo-real principal G-bundle on X gives an
element of H1

ét(X
′, G′c).

We will give a necessary and sufficient condition for a given (α, σ′)-real principal
Gc-bundle on X to come from a (α, σ, c)-pseudo-real principal G-bundle.

Let (EGc , α̃
′) be a (α, σ′)-real principal Gc-bundle on X. As explained above,

(EGc , α̃
′) is equivalently a principal G′c-bundle onX ′. This principal G′c-bundles onX ′

will be denoted by FGc
. Consider the adjoint action of G on itself. Since c lies in the

center of G, this action of G factors through the quotient group Gc. Let

EGc(G) := EGc ×Gc G −→ X

be the fiber bundle associated to the principal Gc-bundle EGc
for this action of Gc

on G. Since the action of Gc on G preserves the group structure on G, each fiber of
EGc(G) is a group isomorphic to G. The action of Gc on G descends to an action
of Gc on the quotient G/〈c〉 = Gc, and this descended action coincides with the
adjoint action of Gc on itself. Therefore, the short exact sequence of groups

1 −→ Z/2Z −→ G −→ Gc −→ 1

produces a short exact sequence of fiber bundles with group structures

(3.2) 1 −→ X × (Z/2Z) −→ EGc
(G) −→ Ad(EGc

) −→ 1,

where Ad(EGc) = EGc ×Gc Gc is the adjoint bundle for EGc .
The involution α̃′ of EGc and the involution σ of G together produce an anti-

holomorphic involution of EGc
(G) covering α. Similarly, α̃′ and σ′ together produce

an anti-holomorphic involution of Ad(EGc
) covering α. Therefore, (3.2) produces a

short exact sequence

(3.3) 1 −→ X ′ × (Z/2Z) −→ EGc
(G)′ −→ Ad(EGc

)′ −→ 1

over the curve X ′ defined over R. We note that Ad(EGc)′ is the adjoint bundle for
the principal G′c-bundle FGc over X ′ defined by the pair (EGc , α̃

′).
The space of all isomorphism classes of principalG′c-bundles onX ′ are parametrized

by H1
ét(X

′,Ad(EGc
)′). This identification is constructed as follows. First recall that

Ad(EGc)′ is the adjoint bundle for the principal G′c-bundle FGc over X ′. Given a
principal G′c-bundle on X ′, by choosing étale local isomorphisms of it with FGc we
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get an element of H1
ét(X

′,Ad(EGc
)′). Conversely, given a 1–cocycle on X ′ with values

in Ad(EGc)′, by gluing back, using the cocycle, the restrictions of FGc to the open
subsets for the cocycle, we get a principal G′c-bundle on X ′. Note that if FGc is the
trivial principal G′c-bundle, then H1

ét(X
′,Ad(EGc

)′) = H1
ét(X

′, G′c).
The set H1

ét(X
′,Ad(EGc

)′) has a distinguished base point t0. This point t0 corre-
sponds to the isomorphism class of the principal G′c-bundle FGc

.
Consider the short exact sequence of étale cohomologies

(3.4) H1
ét(X

′, EGc(G)′)
γ′−−−→ H1

ét(X
′,Ad(EGc)′)

β′−−−→ H2
ét(X

′,Z/2Z) = Z/2Z

associated to (3.3). It can be shown that (EGc
, α̃′) is given by a (α, σ, c)-pseudo-real

principal G-bundle if and only if the base point t0 ∈ H1
ét(X

′,Ad(EGc
)′) lies in the

image of the map γ′ in (3.4). Indeed, if (EG, α̃) is a (α, σ, c)-pseudo-real principal
G-bundle on X that gives (EGc

, α̃′), then the adjoint bundle Ad(EG) equipped with
the involution constructed using α̃ and σ produces an element t′ ∈ H1

ét(X
′, EGc

(G)′)

such that γ′(t′) = t0. Conversely, any t′ ∈ H1
ét(X

′, EGc
(G)′) produces a (α, σ, c)-

pseudo-real principal G-bundle. If γ′(t′) = t0, then this (α, σ, c)-pseudo-real principal
G-bundle gives the pair (EGc , α̃

′).
Therefore, we have the following.

Proposition 3.5. — A (α, σ′)-real principal Gc-bundle (EGc
, α̃′) on X comes from a

(α, σ, c)-pseudo-real principal G-bundle if and only if β′(t0) = 0, where β′ is the map
in (3.4) and t0 ∈ H1

ét(X
′,Ad(EGc)′) is the base point.

The following proposition shows the relation between the reality conditions defined
by conjugations of G that are inner equivalent. One has the following.

Proposition 3.6. — Let σ, σ′ ∈ Conj(G) such that σ′ = Int(g0)σ for some g0 ∈ G,
i.e., σ′(g) = g0σ(g)g−10 . Let E be a G-bundle over X. Then E is (α, σ, c)-pseudo-real
if and only if it is (α, σ′, c′)-pseudo-real, where c and c′ are related by g0 and σ. In
fact c′ = c, if σ(g0) = g−1o .

Proof. — Let (E, α̃) be a (α, σ, c)-pseudo-real principal G-bundle on X. Define

α̃′ : E −→ E, e 7−→ α̃(e)g−10 .

Since α̃ is anti-holomorphic and covers α, the map α̃′ is also anti-holomorphic and
covers α. For any e ∈ E and g ∈ G, we have

α̃′(eg) = α̃(eg)g−10 = α̃(e)σ(g)g−10 = α̃(e)g−10 g0σ(g)g−10 = α̃′(e)σ′(g).

Also,

α̃′(α̃′(e)) = α̃′(α̃(e)g−10 ) = α̃(α̃(e)g−10 )g−10 = α̃(α̃(e))σ(g−10 )g−10 = ecσ(g−10 )g−10 .

Now, σ′2 = Id implies that σ(g−10 )g−10 ∈ Z, and we can appeal to Remark 3.3 to
claim that by modifying α̃′ by an element of the center cσ(g−10 )g−10 is replaced by an
element c′ ∈ Zσ2 , and hence E has the structure of a (α, α′, c′)-pseudo-real principal
G-bundle on X. The last claim in the proposition is clear. �
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3.3. Pseudo-realG-Higgs bundles. — Let (E, α̃) be a (α, σ, c)-pseudo-real principal
G-bundle on X as defined above. Let

ad(E) := E ×G g =: E(g)

be the adjoint vector bundle for E. The self-map α̃ of E produces an anti-holomorphic
self-map

(3.5) α̃0 : E(g) −→ E(g)

such that q ◦ α̃0 = α ◦ q, where q is the projection of E(g) to X. Since c ∈ Z, the
adjoint action of c on g is trivial. This immediately implies that α̃0 is an involution.
In other words, (E(g), α̃0) is a real vector bundle (see [5]).

The real structure of the canonical line bundle K of X given by α and the above
real structure α̃0 of E(g) combine to define a real structure on the vector bundle
E(g) ⊗ K. For notational convenience, this real structure on E(g) ⊗ K will also be
denoted by α̃. So

α̃ : E(g)⊗K −→ E(g)⊗K

is an anti-holomorphic involution over α.

Definition 3.7. — Let (E,ϕ) be a G-Higgs bundle. We say that (E,ϕ) is (α, σ, c,+)-
pseudo-real (respectively, (α, σ, c,−)-pseudo-real) if E is (α, σ, c)-pseudo-real, and ϕ
satisfies

α̃(ϕ) = ϕ (respectively, α̃(ϕ) = −ϕ).

The concept of (α, σ, c,+)-pseudo-real Higgs bundle was introduced in [5], where
notions of (semi)stability and polystability for these objects were defined. These
notions are identical for the (α, σ, c,−)-pseudo-real case. For the benefit of the reader
we recall the basic definitions and facts (see [5] for details).

Let Ad(E) := E×GG be the group-scheme over X associated to E for the adjoint
action of G on it self. The bundle Ad(E) is equipped with an anti-holomorphic invo-
lution

(3.6) α̃ : Ad(E) −→ Ad(E)

(abusing notation again) covering α. Note that α̃2 = IdAd(E) since the adjoint action
of Zσ on G is trivial.

A parabolic subgroup scheme of Ad(E) is a Zariski closed analytically locally trivial
subgroup scheme P ⊂ Ad(E) such that Ad(E)/P is compact. For such a parabolic
subgroup scheme P let p ⊂ ad(E) be the corresponding bundle of Lie algebras.

A (α, σ, c,±)-pseudo-real G-Higgs bundle (E,ϕ, α̃) is semistable (respectively
stable) if for every proper parabolic subgroup scheme P ⊂ Ad(E) such that
α̃(P ) ⊂ P , where α̃ is given by (3.6), and ϕ ∈ H0(X, p⊗K),

deg(p) 6 0 (respectively, deg(p) < 0),

where p is the vector bundle associated to P defined above.
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One has the following (see [5]).

Proposition 3.8. — Let (E,ϕ, α̃) be a (α, σ, c,±)-pseudo-real G-Higgs bundle.

(1) If (E,ϕ) is semistable (respectively stable), in the sense of Section 2.1, then
(E,ϕ, α̃) is semistable (respectively stable).

(2) If (E,ϕ, α̃) is semistable then (E,ϕ) is semistable.
(3) If (E,ϕ, α̃) is stable then (E,ϕ) is polystable (in the sense given in Section 2.1.

To define polystability for a pseudo-real G-Higgs bundle let p ⊂ ad(E) be a par-
abolic subalgebra bundle such that α̃0(p) = p, where α̃0 is the involution defined
in (3.5).

Let Ru(p) ⊂ p be the holomorphic subbundle over X whose fiber over a point
x ∈ X is the nilpotent radical of the parabolic subalgebra px. Therefore, the quotient
p/Ru(p) is a bundle of reductive Lie algebras. Note that α̃0(Ru(p)) = Ru(p). A Levi
subalgebra bundle of p is a holomorphic subbundle

`(p) ⊂ p

such that for each x ∈ X, the fiber `(p)x is a Lie subalgebra of p
x
, and the composition

`(p) ↪−→ p −→ p/Ru(p)

is an isomorphism, where p→ p/Ru(p) is the quotient map.
A semistable (α, σ, c,±)-pseudo-real G-Higgs bundle (E,ϕ, α̃) is polystable if either

is stable, or there is a proper parabolic subalgebra bundle p ( ad(E), and a Levi
subalgebra bundle `(p) ⊂ p, such that

α̃0(p) = p, α̃0(`(p)) = `(p), ϕ ∈ H0(X, `(p)⊗K),

and for every parabolic subalgebra bundle q ⊂ `(p) with α̃0(q) = q we have

deg(q) < 0.

We have the following (see [5]).

Proposition 3.9. — A (α, σ, c,±)-pseudo-real G-Higgs bundle (E,ϕ, α̃) is polystable
if and only if (E,ϕ) is polystable.

We can thus define the moduli space M(G,α, σ, c,±) of isomorphism classes of
polystable (α, σ, c,±)-pseudo-real G-Higgs bundles, and, as a consequence of Propo-
sition 3.9, define maps

(3.7) M(G,α, σ, c,±) −→M(G)

that forget the pseudo-real structure.
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4. Involutions of moduli spaces

4.1. Involutions of Higgs bundle moduli spaces. — As before, let α : X → X and
σ : G→ G be anti-holomorphic involutions. For a holomorphic principal G-bundle E
on X, let σ(E) be the C∞ principal G-bundle on X obtained by extending the struc-
ture group of E using the homomorphism σ. So the total space of σ(E) is identified
with that of E, but the action of g ∈ G on e ∈ E coincides with the action of σ(g) on
e ∈ σ(E). Consequently, the pullback α∗σ(E) has a holomorphic structure given by
the holomorphic structure of E. Let

σ̃ : E(g) −→ E(g)

be the conjugate linear isomorphism that sends the equivalence class of any
(e, v) ∈ E × g to the equivalence class of (e, dσ(v)), where dσ is the automor-
phism of g corresponding to σ. Let ϕ be a Higgs field on E. Let σ(ϕ) be the C∞
section of E(g) ⊗ K defined by σ̃ and the C∞ isomorphism K → K defined by
df 7→ df , where f is any locally defined holomorphic function on X.

We have involutions

(4.1)
ι(α, σ)± :M(G) −→M(G)

(E,ϕ) 7−→ (α∗σ(E),±α∗σ(ϕ)).

Proposition 4.1. — The image of the map

M(G,α, σ, c,+) −→M(G)

in (3.7) is contained in the fixed point locus of the involution ι(α, σ)+. Moreover, the
fixed point locus of ι(α, σ)+ in the smooth locus M(G)sm ⊂ M(G) is the intersec-
tion of M(G)sm with the union of the images of M(G,α, σ, c,+) as c runs over Zσ2 ,
where Zσ2 as before is the subgroup of Zσ generated by the order two points.

Similarly, the fixed point locus of ι(α, σ)− inM(G)sm is the intersection ofM(G)sm

with the union of the images ofM(G,α, σ, c,−) as c runs over Zσ2 .

Proof. — From the definition of ι(α, σ)+ (respectively, ι(α, σ)−) it follows immedi-
ately that M(G,α, σ, c,+) (respectively, M(G,α, σ, c,−)) is contained in the fixed
point locus of ι(α, σ)+ (respectively, ι(α, σ)−).

A G-Higgs bundle (E,ϕ) lies inM(G)sm if (E,ϕ) is stable and the automorphism
group of (E,ϕ) coincides with the center Z of G, i.e., if the Higgs bundle is simple as
defined in [14, 13, 6] (we recall that such bundles are called regularly stable). Suppose
that (E,ϕ) ∈ M(G)sm is fixed under the involution ι(α, σ)+ (respectively ι(α, σ)−).
This means that there exists an isomorphism

f : E −→ α∗σ(E)

such that α∗σ(f)◦f ∈ Aut(E,ϕ), but since Aut(E,ϕ) = Z, we have that α∗σ(f)◦f =

c ∈ Z. We can interpret f as a map f ′ : E → σ(E) such that σ(f ′) ◦ f ′ = c ∈ Z.
Identifying σ(E) with E with multiplication on the right defined by e · g = eσ(g),
where g ∈ G and e ∈ E, we are indeed defining a (α, σ, c,+) (respectively (α, σ, c,−))
pseudo-real structure on (E,ϕ), since we can always assume that c ∈ Zσ2 , as explained
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in Remark 3.3. In other words, (E,ϕ) lies in the image ofM(G,α, σ, c,+) (respectively
M(G,α, σ, c,−)). �

Remark 4.2. — In Definition 3.2 we could have defined a pseudo-real structure
replacing α̃ by an anti-holomorphic map α̃′ : E → σ(E) of G–bundles covering α.
Although σ(E) is no longer a holomorphic bundle, its total space is a complex manifold
because it is identified with the total space of E, and hence the anti-holomorphicity
condition makes sense. The condition α̃(eg) = α̃(e)σ(g) in Definition 3.2 is now
automatic since α̃′ is a G–bundle map.

Proposition 4.3. — Let σ and σ′ be inner equivalent elements in Conj(G), i.e., they
define the same element in Out2(G). Then

ι(α, σ)+ = ι(α, σ′)+ (respectively, ι(α, σ)− = ι(α, σ′)−).

Proof. — If we replace σ by σ′ := g0σg
−1
0 , where g0 ∈ G, then the corresponding anti-

holomorphic involution of the moduli space is replaced by its composition with the
holomorphic automorphism of the moduli space corresponding to the automorphism
of G defined by g 7→ g0gg

−1
0 . But this automorphism of G produces the identity map

of the moduli space. Therefore, the anti-holomorphic involution of the moduli space
is unchanged if σ is replaced by σ′. �

Remark 4.4. — Consider the identification between the (α, σ, c)-pseudo-real prin-
cipal G-bundles and the (α, σ′, c′)-pseudo-real principal G-bundles on X given by
Proposition 3.6 when σ and σ′ are inner equivalent. Note that a Higgs field on a
(α, σ′, c′)-pseudo-real principal G-bundle produces a Higgs field on the correspond-
ing (α, σ, c)-pseudo-real principal G-bundle, and vice versa. We thus have that by
Proposition 3.6 M(G,α, σ, c,+) is isomorphic to M(G,α, σ′, c′,+) (respectively
M(G,α, σ, c,−) is isomorphic toM(G,α, σ′, c′,−)) giving the same image under the
corresponding maps toM(G).

4.2. Correspondence with representations for ι(α, σ)+. — We have the orbifold
fundamental group of (X,α) that we will denote Γ(X,α) (see [5] for example). This
fits into an exact sequence

(4.2) 1 −→ π1(X,x0) −→ Γ(X,x0) −→ Z/2Z −→ 1.

Let Map′(Γ(X,x0), G× (Z/2Z)) be the space of all maps

δ : Γ(X,x0) −→ G× (Z/2Z)

such that the following diagram is commutative:

(4.3)
1 // π1(X,x0) //

��

Γ(X,x0)
η

//

δ
��

Z/2Z // 1

1 // G // G× (Z/2Z) // Z/2Z // 1.
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Take an element c ∈ Zσ2 in the subgroup generated by the elements of Zσ order two.
Using it, we will define another group structure on G× (Z/2Z). The group operation
is given by

(g1, e1) · (g2, e2) = (g1(σ)e1(g2)ce1e2 , e1 + e2).

Note that when c = 1 we obtain a semidirect product.
Let Homc(Γ(X,x0), G× (Z/2Z) be the space of all maps

δ ∈ Map′(Γ(X,x0), G× (Z/2Z))

such that δ is a homomorphism with respect to this group structure.
Two elements δ, δ′ ∈ Homc(Γ(X,x0), G × (Z/2Z)) are called equivalent if there is

an element g ∈ G such that δ′(z) = g−1δ(z)g for all z ∈ π1(X,α).

Theorem 4.5. — The moduli space M(G,α, σ, c,+) is identified with the space of
equivalence classes of reductive elements of Homc(Γ(X,x0), G× (Z/2Z)).

Proof. — This follows from Proposition 5.6 of [5]. �

Theorem 4.6. — Consider the involution ι(α, σ)+ of M(G). It is anti-holomorphic
with respect to the almost complex structures J1 and J2, and it is holomorphic with
respect to J3.

Proof. — The almost complex structure J1 is the almost complex structure of the
Dolbeault moduli space (the moduli space of Higgs bundles). Therefore, ι(α, σ)+ is
anti-holomorphic with respect to J1.

The almost complex structure J2 is the almost complex structure of the Betti
moduli space (the representation spaceR(G)). Note that the almost complex structure
of the Betti moduli space coincides with that of the de Rham moduli space.

As before, fix a base point x0 ∈ X. The involution α of X produces an isomorphism

α′ : π1(X,x0) −→ π1(X,α(x0)).

This in turn gives a biholomorphism

α′′ : Hom+(π1(X,x0), G)/G −→ Hom+(π1(X,α(x0)), G)/G.

As noted before, R(G) = Hom+(π1(X,x0), G)/G is independent of the choice of the
base point. So α′′ is a biholomorphism

(4.4) α′′ : R(G) −→ R(G).

Since α is an involution, it follows that α′′ is also an involution.
Let

b : R(G) = Hom+(π1(X,x0), G)/G −→ R(G)

be the anti-holomorphic involution defined by ρ 7→ σ ◦ ρ. In other words, b sends a
homomorphism ρ : π1(X)→ G to the composition

π1(X,x0)
ρ−−→ G

σ−−→ G.

Clearly b commutes with the above involution α′′ in (4.4). Therefore, b ◦α′′ is also an
involution. Note that b ◦ α′′ is anti-holomorphic because α′′ is holomorphic and b is
anti-holomorphic.
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The above involution b◦α′′ of R(G) coincides with the involution ι(α, σ)+ ofM(G)

under the correspondence M(G) ∼= R(G). Therefore, ι(α, σ)+ is anti-holomorphism
with respect to J2.

We recall that J3 = J1J2. Since ι(α, σ)+ is anti-holomorphic with respect to both J1
and J2, from the above identity it follows immediately that ι(α, σ)+ is holomorphic
with respect to J3. �

Since R(G) is hyper-Kähler, the holomorphic symplectic form Ω2 on it is flat with
respect to the Kähler structure ω2 corresponding to J2. Similarly, the holomorphic
symplectic form Ω1 with respect to J1 is flat with respect to the Kähler structure ω1

corresponding to J1. In particular, R(G) and (M(G), J1, ω1,Ω1) are Calabi-Yau.

Theorem 4.7. — The moduli space M(G,α, σ, c,+) is a special Lagrangian subspace
of R(G). Similarly, it is special Lagrangian with respect to (M(G), J1, ω1,Ω1). Also,
it is complex Lagrangian with respect to (J3,Ω3).

Proof. — Since the involution ι(α, σ)+ is holomorphic with respect to J3, it fol-
lows thatM(G,α, σ, c,+) is a holomorphic subspace with respect to J3. Recall that
Ω3 = ω1 +

√
−1ω2. The involution ι(α, σ)+ is anti-holomorphic with respect to J1

and J2 and it is an isometry. Hence ι(α, σ)+ takes ω1 and ω2 to −ω1 and −ω2 respec-
tively. Hence ι(α, σ)+ takes Ω3 to −Ω3. This immediately implies thatM(G,α, σ, c,+)

is Lagrangian with respect to Ω3.
Since M(G,α, σ, c,+) is the fixed point locus of an isometric anti-holomorphic

involution of the Calabi-Yau space R(G), it follows that M(G,α, σ, c,+) is a spe-
cial Lagrangian subspace of R(G). For a similar reason,M(G,α, σ, c,+) is a special
Lagrangian subspace of (M(G), J1, ω1). �

4.3. Correspondence with representations for ι(α, σ)−. — Next we consider the
involution ι(α, σ)−.

Consider the holomorphic involution θ = στ of G as defined earlier in Section 3.1.
Using c ∈ Zσ2 , we will define yet another group structure on G× (Z/2Z). The group
operation is given by

(g1, e1) · (g2, e2) = (g1(θ)e1(g2)ce1e2 , e1 + e2).

Let Hom−c (π1(X,α), G× (Z/2Z)) be the space of all maps

δ ∈ Map′(π1(X,α), G× (Z/2Z))

such that δ is a homomorphism with respect to this new group structure.
Two elements δ′, δ′ ∈ Hom−c (π1(X,α), G× (Z/2Z)) are called equivalent if there is

an element g ∈ G such that δ′(z) = g−1δ(z)g for all z ∈ π1(X,α).

Theorem 4.8. — The moduli space M(G,α, σ, c,−) is identified with the space of
equivalence classes of reductive elements of Hom−c (π1(X,α), G× (Z/2Z)).

Proof. — This follows from Proposition 5.6 of [5]. �
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Theorem 4.9. — Consider the involution ι(α, σ)− of M(G). It is anti-holomorphic
with respect to the almost complex structures J1 and J3, and it is holomorphic with
respect to J2.

Proof. — The involution ι(α, σ)− is clearly anti-holomorphic with respect to J1 be-
cause J1 coincides with the complex structure of the Dolbeault moduli space.

Let
b̃ : R(G) = Hom+(π1(X,x0), G)/G −→ R(G)

be the holomorphic involution defined by ρ 7→ θ ◦ ρ. In other words, b̃ sends a homo-
morphism ρ : π1(X)→ G to the composition

π1(X)
ρ−−→ G

θ−−→ G.

Clearly b̃ commutes with the above involution α′′ in (4.4). Therefore, b̃ ◦ α′′ is also
an involution. The composition b̃ ◦ α′′ is holomorphic because both α′′ and b̃ are
holomorphic.

The above involution b̃◦α′′ of R(G) coincides with ι(α, σ)−, and the complex struc-
ture of the Betti moduli space R(G) is given by J2. Therefore, ι(α, σ)− is holomorphic
with respect to J2.

Since J3 = J1J2, and ι(α, σ)− is anti-holomorphic with respect to J1 and holomor-
phic with respect to J2, we conclude that ι(α, σ)− is anti-holomorphic with respect
to J3. �

Consider the complex structure J3 and the corresponding holomorphic symplectic
form Ω3. Since R(G) is hyper-Kähler, Ω3 is flat with respect to the Kähler structure
for J3. Now we have following analog of Theorem 4.7.

Theorem 4.10. — The moduli space M(G,α, σ, c,−) is a special Lagrangian sub-
space of (M(G), J1, ω1,Ω1). Similarly, it is special Lagrangian with respect to
(M(G), J3, ω3,Ω3). Also, it is a complex Lagrangian subspace with respect to
(R(G), J2,Ω2).

Corollary 4.11. — The fixed point locus of the involution ι(α, σ)− is a complex
subspace ofM(G) with the complex structure induced by J2, i.e., the natural complex
structure of the moduli space of representations R(G).

Remark 4.12. — Corollary 4.11 is obtained by Baraglia–Schaposnik [3] in the case
when σ is the compact conjugation τ .
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