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BGG RESOLUTIONS VIA CONFIGURATION SPACES

by Michael Falk, Vadim Schechtman & Alexander Varchenko

To the memory of I.M. Gelfand, on the occasion of his centenary (1913–2013)

Abstract. — We study the blow-ups of configuration spaces. These spaces have a structure of
what we call an Orlik–Solomon manifold; it allows us to compute the intersection cohomology
of certain flat connections with logarithmic singularities using some Aomoto type complexes of
logarithmic forms. Using this construction we realize geometrically the sl2 Bernstein–Gelfand–
Gelfand resolution as an Aomoto complex.

Résumé (Résolutions BGG via les espaces de configurations). — Nous étudions les éclate-
ments d’espaces de configuration. Ces espaces ont une structure de variété que nous appelons
d’Orlik-Solomon ; elle permet de calculer la cohomologie d’intersection de certaines connexions
plates avec singularités logarithmiques à l’aide de complexes de formes logarithmiques du type
d’Aomoto. En utilisant cette construction, nous donnons une réalisation géométrique de la
résolution de Bernstein–Gelfand–Gelfand pour sl2 comme un complexe d’Aomoto.
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226 M. Falk, V. Schechtman & A. Varchenko

1. Introduction

Let us discuss briefly some general perspective and motivation.

Localization of g-modules: two patterns

(a) Localization on the flag space. — Let g be a complex semisimple Lie algebra, h ⊂ g

a Cartan subalgebra whence the root system R ⊂ h∗; fix a base of simple roots ∆ ⊂ R
whence a decomposition g = n− ⊕ h ⊕ n+. The classical Bernstein–Gelfand–Gelfand
resolution is the left resolution of a simple finite dimensional g-module Lχ of highest
weight χ− ρ (where ρ is the half-sum of the positive roots) of the form

(1.1) 0 −→ Cn −→ . . . −→ C0 −→ Lχ −→ 0,

where
Ci =

⊕
w∈Wi

Mwχ,

cf. [BGG75]. Here Mλ denotes the Verma module of the highest weight λ − ρ, and
Wi ⊂W is the set of elements of the Weyl group of length i.

We can pass to contragredient duals and use the isomorphism Lχ = L∗χ given by
the Shapovalov form to get a right resolution

(1.2) 0 −→ Lχ −→ C∗0 −→ . . . −→ C∗n −→ 0,

where
C∗i =

⊕
w∈Wi

M∗wχ.

A geometric explanation of the last complex was given by Kempf, [Kem78], who
interpreted (1.2) as a Cousin complex connected with the filtration of the flag space
G/B by unions of Schubert cells (G being a semisimple group with Lie algebra g

and B ⊂ G the Borel subgroup with Lie(B) = b := h ⊕ n+). Here the i-th term
is interpreted as a relative cohomology space with support in the union of Schubert
cells of codimension i. This geometric picture is a part of Beilinson–Bernstein theory
which says that some reasonable category of g-modules is equivalent to a category of
(twisted) D-modules over G/B, [BB81].

(b) Localization on configuration spaces. — In a different direction, contragredient
Verma modules and irreducible representations have been realized in [SV91] in cer-
tain spaces of logarithmic differential forms on configuration spaces. This may be
upgraded to an equivalence between some category of g-modules and some category
of D-modules over configuration spaces, cf. [KS97, BFS98, KV06].

Blow-ups and their “Schubert” stratifications. — In this note we propose a con-
struction which provides a geometric interpretation of the resolutions similar to the
BGG resolution in (1.2). The main new idea is to use the blow-ups of hyperplane ar-
rangements (in our case – the configuration arrangements) studied in [ESV92, STV95,
BG92, Var95, DCP95]. We define some natural stratifications on such blow-ups which
play the role of the Schubert stratification on G/B. On each stratum we consider the
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BGG resolutions via configuration spaces 227

Aomoto complex of logarithmic Orlik-Solomon forms; they are subcomplexes of the
de Rham complexes of standard local systems from [SV91]. (In fact the stratification
itself depends on a local system).

This way we get double complexes with one differential induced by the de Rham
differential and the other one being the residue. The residue differential gives rise to
BGG-like complexes. For the trivial local system we get the complexes considered in
[BG92]; in our case the combinatorics of the “Schubert stratification” depends on the
Cartan matrix and a finite number of dominant weights.

We illustrate this construction for g = sl2. In this case we obtain the BGG resolu-
tions of tensor products of finite dimensional g-modules, and the complex associated
with our double complex calculates the intersection cohomology of the corresponding
local system.

We expect to develop a similar picture for Kac-Moody algebras with nontrivial
Serre’s relations. In this program, one considers discriminantal arrangements associ-
ated with a Kac-Moody algebra g, see [SV91]. One resolves the singularities of such
an arrangement and considers the associated double complex of Orlik-Solomon forms
as in this paper. Serre’s relations of g correspond to certain strata of the resolution.
By using these strata, one expects to define a double subcomplex of the double com-
plex. The spaces of the double subcomplex will correspond to the subspaces of the
associated BGG resolution.

In Section 2, we consider a complex analytic manifold X, a divisor D ⊂ X with
normal crossings and a holomorphic flat connection on X. We construct a complex
which calculates the cohomology of X with coefficients in the local system associated
with the flat connection.

In Section 3, we define an Orlik-Solomon manifold, a flat connection with logarith-
mic singularities on an Orlik-Solomon manifold, and the associated finite-dimensional
Aomoto complex. Theorem 3.2 says that the Aomoto complex calculates the coho-
mology of the Orlik-Solomon manifold with coefficients in the local system associated
with the connection. Theorem 3.2 is our first main result.

In Section 4, we discuss the minimal resolution of singularities of an arrangement.
In Section 5, we introduce weighted Orlik-Solomon manifolds associated with weighted
arrangement of hyperplanes. In Section 6, we review the definition of the BGG res-
olution for the Lie algebra sl2. In Section 7, we realize geometrically the sl2 BGG
resolution as the skew-symmetric part of the Aomoto complex of a suitable weighted
Orlik-Solomon manifold. Theorem 7.7 is our second main result. In Section 7.8, we
discuss the relations between the BGG resolution and the complex of flag forms. In
Section 7.9, we discuss the relations between the BGG resolution and intersection
cohomology.

Acknowledgements. — We thank A.Beilinson, V.Ginzburg, H.Terao for useful dis-
cussions and the Max Planck Institute for Mathematics for hospitality.
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228 M. Falk, V. Schechtman & A. Varchenko

2. Residue complex of a filtered manifold

2.1. Local system of a flat connection. — Let X be a smooth connected complex
analytic manifold. Given a natural number r, let ∇ be a holomorphic flat connection
on the trivial bundle X × Cr → X. The sheaf L on X of flat sections of ∇ is a
locally constant sheaf. If s is a differential form with values in Cr, we denote dL s :=

∇s = ds+ ω ∧ s where ω is the connection form, a differential 1-form with values in
End(Cr). We have d2

L = 0.
Let (Ω•X ⊗ Cr, dL ) be the de Rham complex of sheaves of Cr-valued holomorphic

differential forms on X with differential dL . The cohomology H•(X; L ) of X with
coefficients in L is canonically isomorphic to the hypercohomology H•(X,Ω•X ⊗Cr).

2.2. Residue complex of sheaves. — Let D ⊂ X be a divisor with normal crossings.
Namely, we assume that X is covered by charts such that in each chart D is the union
of several coordinate hyperplanes or the empty set. Such charts are called linearizing.
We define

Z = {X = Z0 ⊃ D = Z1 ⊃ Z2 ⊃ · · · }
the associated filtration of X by closed subsets as follows. A point x ∈ X belongs to Zi
if in a linearizing chart x belongs to the intersection of i distinct coordinate hyper-
planes of D. Thus codimX Zi = i if Zi is nonempty. We denote by Ci,j , j = 1, 2, . . . ,
the connected components of Zi r Zi+1. Each Ci,j is a smooth connected complex
analytic submanifold of X of codimension i. We set C0,1 = X rD.

Let Ω`Ci,j be the sheaf of holomorphic differential `-forms on Ci,j . Let f : Ci,j ↪→ X

be the natural embedding and f∗Ω`Ci,j the direct image sheaf. We denote

Ω`X,Z =
⊕
i,j

f∗Ω
`−2i
Ci,j

.

Let dL : f∗Ω
`
Ci,j
⊗Cr → f∗Ω

`+1
Ci,j
⊗Cr be the differential of the connection ∇|Ci,j and

res : f∗Ω
`
Ci,j ⊗ Cr −→ f∗Ω

`−1
Ci+1,j′

⊗ Cr

the residue map, if Ci+1,j′ lies in the closure Ci,j , and the zero map otherwise. The
map d̃ = dL + res defines the complex of sheaves on X,

0 −→ Ω0
X,Z ⊗ Cr d̃−−→ Ω1

X,Z ⊗ Cr d̃−−→ Ω2
X,Z ⊗ Cr d̃−−→ · · ·

The natural embeddings Ω`X ⊗Cr ↪→ Ω`C0,1
⊗Cr ↪→ Ω`X,Z ⊗Cr define an injective

homomorphism of complexes

(2.1) (Ω
•
X ⊗ Cr, dL ) ↪−→ (Ω

•
X,Z ⊗ Cr, d̃).

Theorem 2.1. — The homomorphism (2.1) is a quasi-isomorphism.

Proof. — It is enough to check this statement locally on X. In that case we may
assume that X = {z = (z1, . . . , zk) ∈ Ck | |z| < 1} and D is the union of several
coordinate hyperplanes in X. For that example, the statement is checked by direct
calculation. �
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2.3. Residue complex of global sections. — Let Γ(Ci,j ,Ω
`
Ci,j

) be the space of global
sections of Ω`Ci,j . Denote

Γ`(X,Z ;Cr) =
⊕
i,j

Γ(Ci,j ,Ω
`−2i
Ci,j

)⊗ Cr.

The map d̃ = dL + res defines the complex of vector spaces

0 −→ Γ0(X,Z ;Cr) d̃−−→ Γ1(X,Z ;Cr) d̃−−→ Γ2(X,Z ;Cr) d̃−−→ · · ·

Theorem 2.2. — In addition to assumptions of Sections 2.1 and 2.2, we assume that
for any i, j, the manifold Ci,j is a Stein manifold. Then there is the natural isomor-
phism H•(X; L ) ' H•(Γ•(X,Z ;Cr), d̃).

Proof. — For the Stein manifold Ci,j the complex (Γ(Ci,j ,Ω
•
Ci,j

)⊗Cr, dL ) calculates
H•(Ci,j ; L ). This fact and Theorem 2.1 imply Theorem 2.2. �

3. Logarithmic residue complex of Orlik-Solomon forms

3.1. Affine arrangements. — Let A = {Hi}i∈I be an affine arrangement of hyper-
planes, i.e., {Hi}i∈I is a finite nonempty collection of distinct hyperplanes in the
affine complex space Ck. Denote U = Ck r

⋃
i∈I Hi. We denote by Ω`U the sheaf of

holomorphic `-forms on U .
For any i ∈ I, choose a degree one polynomial function fi on Ck whose zero locus

equals Hi. Define ωi = d log fi = dfi/fi ∈ Γ(U,Ω1
U ). Given a natural number r, we

choose matrices Pi ∈ End(Cr), i ∈ I. Denote

ω =
∑
i∈I

ωi ⊗ Pi ∈ Γ(U,Ω1
U )⊗ End(Cr).

The form ω defines the connection d + ω on the trivial bundle U × Cr → U . We
suppose that d+ω is flat. Let L be the sheaf on U of flat sections. Then (Ω•U⊗Cr, dL )

is the complex of sheaves of Cr-valued holomorphic differential forms on U with
differential dL = d+ ω.

Define finite dimensional Orlik-Solomon subspaces Ap(A ) ⊂ Γ(U,ΩpU ) as the
C-linear subspaces generated by all forms ωi1 ∧ · · · ∧ ωip . Then the exterior multipli-
cation by ω defines the complex

0 −→ A0 ⊗ Cr ω−−→ A1 ⊗ Cr ω−−→ A2 ⊗ Cr ω−−→ · · ·

as a subcomplex of (Γ(U,Ω•U ⊗ Cr), dL ). We call (A• ⊗ Cr, ω) the Aomoto complex
of (U, d+ ω).

Let Y be any smooth compactification of Ck such that H∞ is a divisor. Write
H = H∞∪ (

⋃
i∈I Hi). Then U = Y rH. (Typical examples for Y include the complex

projective space Pk, (P1)k and any toric compactification of Ck.) Note that ω can be
uniquely extended to be an End(Cr)-valued rational 1-form ω on Y .

Theorem 3.1 ([ESV92, STV95]). — Suppose π : X → Y is a blow-up of Y with
centers in H such that 1) X is nonsingular, 2) π−1H is a normal crossing divisor,
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230 M. Falk, V. Schechtman & A. Varchenko

3) none of the eigenvalues of the residue of π∗ω along any component of π−1H is a
positive integer. Then the inclusion (A• ⊗ Cr, ω) ↪→ (Γ(U,Ω•U ) ⊗ Cr, dL ) is a quasi-
isomorphism.

Remark. — Assume that the pair (X,ω) satisfies conditions 1) and 2) of Theorem
3.1 but not condition 3). Then for almost all κ ∈ C×, the pair (X,ω/κ) satisfies all
of the conditions 1)-3) of Theorem 3.1.

3.2. Orlik-Solomon manifolds. — Let X be a smooth connected complex analytic
manifold, dimX = k. Let D ⊂ X be a divisor with normal crossings and Z =

{X = Z0 ⊃ D = Z1 ⊃ Z2 ⊃ · · · } the associated filtration of X by closed subsets.
We denote by Ci,j , j = 1, 2, . . . , the connected components of Zi r Zi+1 and set
C0,1 = X rD.

Assume that for any Ci,j we have:
(i) An affine arrangement Ai,j = {Hm}m∈Ii,j in Ck−i with complement Ui,j =

Ck−i r
⋃
m∈Ii,j Hm and an analytic isomorphism ϕi,j : Ui,j → Ci,j .

Assume that these objects have the following property.
(ii) For any i, j, denote by A•(Ui,j) the Orlik-Solomon spaces of Ui,j . Let Ci+1,j′

lie in the closure Ci,j and

res : Γ(Ci,j ,Ω
`
Ci,j ) −→ Γ(Ci+1,j′ ,Ω

`−1
Ci+1,j′

)

the residue map. Then the image of A•(Ui,j) under the composition (ϕi+1,j′)
∗ ◦

res ◦((ϕi,j)−1)∗ lies in A•(Ui+1,j′)

We say that (X,D) is an Orlik-Solomon manifold if it has charts (i) with property (ii).
The images of Orlik-Solomon spaces A•(Ui,j) under the isomorphism ϕi,j give

finite-dimensional subspaces of Γ(Ci,j ,Ω
•
Ci,j

). We call these subspaces the Orlik-
Solomon spaces of Ci,j and denote by A•(Ci,j).

Remark. — Denote by K = {(0, 1), . . .} the set of all pairs (i, j) appearing as indices
of components Ci,j in the decomposition of the pair (X,D). LetK0 ⊂ K be any subset
which does not contain (0, 1). Denote CK0 ⊂ X the closure of

⋃
(i,j)∈K0

Ci,j . Denote
XK0

= XrCK0
, DK0

= DrCK0
. Then XK0

is a smooth connected complex analytic
manifold and DK0

⊂ XK0
is a divisor with normal crossings. If (X,D) is an Orlik-

Solomon manifold, then (XK0
, DK0

) has the induced structure of an Orlik-Solomon
manifold.

We describe examples of Orlik-Solomon manifolds in Section 4.2.

3.3. Aomoto complexes. — Assume that (X,D) is an Orlik-Solomon manifold and
∇ = dL = d+ ω is a holomorphic flat connection on X ×Cr → X. We say that ∇ is
a flat connection with logarithmic singularities on the Orlik-Solomon manifold if the
following property holds.
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BGG resolutions via configuration spaces 231

(iii) For any i, j, the induced flat connection ∇i,j := (ϕi,j)
∗∇ on Ui,j has the form

described in Section 3.1. Namely, ∇i,j = d+ ωi,j , where

ωi,j =
∑
m∈Ii,j

ωm ⊗ Pm

for suitable matrices Pm ∈ End(Cr).
If ∇ is a flat connection with logarithmic singularities on the Orlik-Solomon mani-

fold (X,D), then the exterior multiplication by ω defines a finite-dimensional complex
(A•(Ci,j)⊗ Cr, ω) as a subcomplex of (Γ(Ci,j ,Ω

•
Ci,j

)⊗ Cr, dL = d+ ω).
We denote

A`(X,Z ;Cr) =
⊕
i,j

A`−2i(Ci,j)⊗ Cr.

The map ω + res realizes the complex

0 −→ A0(X,Z ;Cr) ω+res−−−−−→ A1(X,Z ;Cr) ω+res−−−−−→ A2(X,Z ;Cr) ω+res−−−−−→ · · ·

as a subcomplex of (Γ•(X,Z ;Cr), d̃).

Theorem 3.2. — Assume that ∇ = d+ ω is a flat connection with logarithmic singu-
larities on the Orlik-Solomon manifold (X,D). Assume that for any i, j, the form ωi,j
on Ui,j satisfies the conditions of Theorem 3.1 for a suitable resolution of singu-
larities mentioned in Theorem 3.1. Then the embedding (A•(X,Z ;Cr), ω + res) ↪→
(Γ•(X,Z ;Cr), d̃) is a quasi-isomorphism.

Proof. — By Theorem 3.1, the embedding

(A
•
(Ci,j)⊗ Cr, ω) ↪−→ (Γ(Ci,j ,Ω

•
Ci,j )⊗ Cr, dL )

is a quasi-isomorphism. This implies Theorem 3.2. �

Corollary 3.3. — Assume that ∇ = d + ω is a flat connection with logarithmic
singularities on the Orlik-Solomon manifold (X,D). For κ ∈ C×, consider the flat
connection ∇κ = d+ω/κ and the associated embedding (A•(X,Z ;Cr), ω/κ+ res) ↪→
(Γ•(X,Z ;Cr), d + ω/κ + res). Then for generic κ this embedding is a quasi-
isomorphism.

4. Resolution of singularities of arrangements

4.1. Minimal resolution of a hyperplane-like divisor. — Let Y be a smooth con-
nected complex analytic manifold and H a divisor. The divisor H is hyperplane-like
if Y can be covered by coordinate charts such that in each chart H is the union of
hyperplanes. Such charts are called linearizing.

Let H be a hyperplane-like divisor, V a linearizing chart. A local edge of H in V is
any nonempty irreducible intersection in V of hyperplanes of H in V . A local edge is
dense if the subarrangement of all hyperplanes in V containing the edge is irreducible:
the hyperplanes cannot be partitioned into nonempty sets so that, after a change of co-
ordinates, hyperplanes in different sets are in different coordinates. In particular, each
hyperplane is a dense edge. An edge of H is the maximal analytic continuation in Y
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232 M. Falk, V. Schechtman & A. Varchenko

of a local edge. An edge is called dense if it is locally dense. Any edge is an immersed
submanifold in Y . The irreducible components of H are considered to be dense.

Let H ⊂ Y be a hyperplane-like divisor. Let π : Ỹ → Y be the minimal resolution
of singularities of H in Y . The minimal resolution is constructed by first blowing-up
dense vertices ofH, then by blowing-up the proper preimages of dense one-dimensional
edges of H and so on, see [DCP95, Var95, STV95].

We have two basic examples of pairs (Y,H).

4.1.1. Projective arrangement. — Let A = {H`}`∈I be a nonempty finite collection
of distinct hyperplanes in the complex projective space Pk. Denote H =

⋃
`∈I H`.

Then H ⊂ Pk is a hyperplane-like divisor. Denote U = Pk rH.
For any `,m ∈ I, we have H` r Hm = div(f`,m) for some rational function f`,m

on Pk. Define ω`,m = d log f`,m. For 1 6 p 6 k, we define the Orlik-Solomon space
Ap(U) as the C-linear span of ω`1,m1

∧ · · · ∧ ω`p,mp .
Given a natural number r, we choose matrices P` ∈ End(Cr), ` ∈ I, such that∑
` P` = 0. Fix m ∈ I and define

ω =
∑
`∈I

ω`,m ⊗ P`.

The form ω defines the connection d+ ω on U ×Cr → U . We call d+ ω a connection
with logarithmic singularities on the complement of the projective arrangement.

4.1.2. Discriminantal arrangement. — Let Y = (P1)k. For ` = 1, . . . , k, we fix an
affine coordinate t` on the `-th factor of Y . For 1 6 ` < m 6 k, the subset H`,m ⊂ Y
defined by the equation t` − tm = 0 is called a diagonal hyperplane. For `, 1 6 ` 6 k
and z ∈ C ∪ {∞}, the subset H`(z) ⊂ Y defined by the equation t` − z = 0 is called
a coordinate hyperplane. If z ∈ C (resp. z = ∞), we call the coordinate hyperplane
finite (resp. infinite).

A discriminantal arrangement in Y is a finite collection of diagonal and coordinate
hyperplanes, which includes all infinite coordinate hyperplanes H`(∞), ` = 1, . . . , k,
see [SV91]. Define by H the union of all of the hyperplanes of the arrangement. Then
H ⊂ Y is a hyperplane-like divisor. Denote U = Y rH.

To every diagonal hyperplane H`,m we assign the 1-form ωH`,m = d log(t`− tm). To
every finite coordinate hyperplane H`(z) we assign the 1-form ωH`(z) = d log(t` − z).
These are holomorphic forms on U . We define the Orlik-Solomon spaces A•(U) as
the graded components of the exterior C-algebra generated by the 1-forms associated
with the diagonal and finite coordinate hyperplanes.

Fix a natural number r. For any diagonal or finite coordinate hyperplane H of the
arrangement we choose a matrix PH ∈ End(Cr). Define

ω =
∑

ωH ⊗ PH ,

where the sum is over all diagonal and finite coordinate hyperplanes of the discrimi-
nantal arrangement. This form ω defines the connection d + ω on the trivial bundle
U × Cr → U . We call d + ω a connection with logarithmic singularities on the com-
plement of the discriminantal arrangement.
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4.2. Examples of Orlik-Solomon manifolds

4.2.1. Minimal resolution of singularities of a projective arrangement

Let A = {H`}`∈I be a projective arrangement of hyperplanes in Pk. Denote Y = Pk

and H =
⋃
`∈I H`. Let π : Ỹ → Y be the minimal resolution of singularities of H in Y

and H̃ = π−1H. Then H̃ ⊂ Ỹ is a divisor with normal crossings. For the pair (Ỹ , H̃),
we introduce components Ci,j ⊂ Ỹ as in Section 2. It is clear from the construction
of the minimal resolution that each Ci,j is naturally isomorphic to the complement of
an affine arrangement and these isomorphisms have property (ii) of Section 3.2. Thus
(Ỹ , H̃) has the natural structure of an Orlik-Solomon manifold.

4.2.2. Minimal resolution of singularities of a discriminantal arrangement

Let A = {H`}`∈I be a discriminantal arrangement of hyperplanes in (P1)k. Denote
Y = (P1)k andH =

⋃
`∈I H`. Let π : Ỹ → Y be the minimal resolution of singularities

of H in Y and H̃ = π−1H. Then H̃ ⊂ Ỹ is a divisor with normal crossings. For the
pair (Ỹ , H̃), we introduce components Ci,j ⊂ Ỹ as in Section 2. It is clear from the
construction of the minimal resolution that each Ci,j is naturally isomorphic to the
complement of an affine arrangement and these isomorphisms have property (ii) of
Section 3.2. Thus (Ỹ , H̃) has the natural structure of an Orlik-Solomon manifold.

5. Weighted arrangements

5.1. Weighted projective arrangement. — Let A = {H`}`∈I be a projective
arrangement of hyperplanes in Y = Pk. Denote H =

⋃
`∈I H`, U = Y rH.

The arrangement A is weighted if a map a : I → C, ` 7→ a`, is given such that∑
`∈I a` = 0. The number a` is called the weight of H`. Let Xα be an edge of A .

Denote Iα = {` ∈ I | H` ⊃ Xα}. The number aα =
∑
`∈Iα a` is called the weight

of Xα. The edge Xα is resonant if aα = 0.
Fix m ∈ I and define

ωa =
∑
`∈I

ω`,m ⊗ a`,

see Section 4.1.1. The form ωa defines the flat connection d+ ωa on U ×C→ U . We
call d+ ωa the connection associated with weights a.

Let π : Ỹ → Y be the minimal resolution of singularities of H. Denote H̃ =

π−1H. The irreducible components of H̃ are labeled by dense edges Xα of H. Such a
component will be denoted by H̃α. Consider (Ỹ , H̃) with its natural structure of an
Orlik-Solomon manifold, see Section 4.2.1.

Denote ω̃a = π∗ωa. The form ω̃a is regular on an irreducible component of H̃ if
and only if the corresponding dense edge of H is resonant.

Let J be the set of all nonresonant dense edges of H and J̃ any set of dense
edges such that J ⊆ J̃ . Denote H̃J̃ =

⋃
Xα∈J̃ H̃α, X = Ỹ r H̃J̃ , D = H̃ r H̃J̃ .

Then (X,D) is the Orlik-Solomon manifold with respect to the structure induced
from (Ỹ , H̃), see Section 3.2. The form ω̃a is regular onX and d+ω̃a is a flat connection
with logarithmic singularities on the Orlik-Solomon manifold (X,D). Thus we may
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construct the associated complex (A•(X,Z ), ω̃a + res) and apply Theorem 3.2 and
Corollary 3.3 to the triple (X,D, d + ω̃a). The complex (A•(X,Z ), ω̃a + res) will be
called the Aomoto complex of the weighted Orlik-Solomon manifold (X,D).

5.2. Weighted discriminantal arrangement. — Let A = {H`}`∈I be a discriminan-
tal arrangement of hyperplanes in Y = (P1)k. Denote H =

⋃
`∈I H`, U = Y rH.

According to the definition in Section 4.1.2, the discriminantal arrangement con-
tains the infinite coordinate hyperplanes Hp(∞), p = 1, . . . , k. Let Ifin ⊂ I be the set
of indices of the remaining hyperplanes of A .

The discriminantal arrangement A is weighted if a map a : Ifin → C, ` 7→ a`, is
given. The number a` is the weight of H`, ` ∈ Ifin. We also write a(H`) := a`.

We extend this map to the map a : I → C as follows. We set the weight of an
infinite coordinate hyperplane Hp(∞) to be the number −

∑
aq where the sum is

over all q ∈ Ifin such that Hq is of the form tp − ti = 0 for some i or of the form
tp − z = 0 for some z ∈ C.

Let Xα be an edge of A . Denote Iα = {` ∈ I | H` ⊃ Xα}. The number aα =∑
`∈Iα a` is the weight of Xα. The edge Xα is resonant if a(Xα) = 0.
We define

ωa =
∑
`∈Ifin

ωH` ⊗ a`,

see Section 4.1.2. The form ωa defines the flat connection d+ ωa on U ×C→ U . We
call d+ ωa the connection associated with weights a.

Let π : Ỹ → Y be the minimal resolution of singularities of H. Denote H̃ =

π−1H. The irreducible components of H̃ are labeled by dense edges Xα of H. Such a
component component will be denoted by H̃α. Consider (Ỹ , H̃) as the Orlik-Solomon
manifold, see Section 4.2.2.

Denote ω̃a = π∗ωa. The form ω̃a is regular on an irreducible component of H̃ if
and only if the corresponding dense edge of H is resonant.

Let J be the set of all nonresonant dense edges of H and J̃ any subset of dense
edges such that J ⊆ J̃ . Denote H̃J̃ =

⋃
Xα∈J̃ H̃α, X = Ỹ r H̃J̃ , D = H̃ r H̃J̃ .

Then (X,D) is the Orlik-Solomon manifold with respect to the structure induced
from (Ỹ , H̃), see Section 3.2. The form ω̃a is regular on X and d + ω̃a is a flat
connection with logarithmic singularities on the Orlik-Solomon manifold (X,D). Thus
we may construct the associated complex A•(X,Z , ω̃a + res) and apply Theorem 3.2
and Corollary 3.3 to the triple (X,D, d + ω̃a). The complex A•(X,Z , ω̃a + res) will
be called the Aomoto complex of the weighted Orlik-Solomon manifold (X,D).

6. Highest weight representations of sl2

6.1. Modules. — Consider the complex Lie algebra sl2 with standard basis e, f, h
such that [e, f ] = h, [h, e] = 2e, [h, f ] = −2f . We have sl2 = n− ⊕ h ⊕ n+, where
n− = Cf, h = Ch, n+ = Ce.

Let V be an sl2-module. For λ ∈ C, let V [λ] = {v ∈ V | hv = λv} be the
subspace of weight λ. Assume that V has weight decomposition V =

⊕
λ V [λ] with
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finite-dimensional spaces V [λ]. Then the restricted dual of V is V ∗ :=
⊕

λ V [λ]∗.
The restricted dual has the contragredient sl2-module structure: for ϕ ∈ V ∗, we have
〈eϕ, v〉 = 〈ϕ, fv〉, 〈fϕ, v〉 = 〈ϕ, ev〉, 〈hϕ, v〉 = 〈ϕ, hv〉. We have V [λ]∗ = V ∗[λ] for
any λ.

For the Lie algebra n− and a module V we denote C•(n−, V ) the standard complex
of n− with coefficients in V ,

0 −→ C0(n−, V ) −→ C1(n−, V ) −→ 0,

where C0(n−, V ) = n−⊗V , C1(n−, V ) = V , and the map is f ⊗ v 7→ fv. We have the
weight decomposition

C•(n−, V ) =
⊕
λ

C•(n−, V )[λ],

where C•(n−, V )[λ] is

(6.1) 0 −→ n− ⊗ V [λ+ 2] −→ V [λ] −→ 0.

6.2. Verma modules. — For m ∈ C, the Verma module Mm is the infinite dimen-
sional sl2-module generated by a single vector vm such that hvm = mvm and evm = 0.
The vectors f jvm, j = 0, 1, . . . , form a basis of Mm. The action is given by the for-
mulas

f · f jvm = f j+1vm, h · f jvm = (m− 2j)f jvm, e · f jvm = j(m− j + 1)f j−1vm.

Consider the contragredient module M∗m with the basis ϕjm, j ∈ Z>0, dual to the
basis f jvm of Mm. We have

f · ϕjm = (j + 1)(m− j)ϕj+1
m , h · ϕjm = (m− 2j)ϕjm, e · ϕjm = ϕj−1

m .

The Shapovalov symmetric bilinear form on Mm is defined by the conditions

S(vm, vm) = 1, S(fx, y) = S(x, ey),

for all x, y ∈Mm. The Shapovalov form defines the morphism of modules

S : Mm −→M∗m, x 7−→ S(x, ·).

The image Lm := Im(S) ↪→M∗m is irreducible.
If m /∈ Z>0, then Mm is irreducible, otherwise the subspace with basis f jvm,

j > m + 1, is a submodule which is identified with the Verma module M−m−2 un-
der the map M−m−2 ↪→ Mm, f jv−m−2 7→ f j+m+1vm. The quotient Mm/M−m−2

is an irreducible module with basis induced by vm, fvm, . . . , fmvm. The submodule
M−m−2 ↪→ Mm is the kernel of the Shapovalov form. The induced Shapovalov form
on Mm/M−m−2 identifies Mm/M−m−2 and Lm ↪→M∗m.

We have the exact sequence of sl2-modules

0 −→ Lm −→M∗m −→M∗−m−2 −→ 0,

which is called the BGG resolution of the irreducible sl2-module Lm, see [BGG75].
We will keep two terms of this sequence

(6.2) M∗m
ι−−→M∗−m−2
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in which the epimorphism is denoted by ι. We consider this map as a complex with
terms in degree 0 and 1.

6.3. Tensor product of Verma modules. — For a vector m = (m1, . . . ,mn) ∈ Cn,
denote |m| = m1 + · · · + mn. Consider the tensor product

⊗n
a=1Mma of Verma

modules. For J = (j1, . . . , jn) ∈ Zn>0, let

fJvm := f j1vm1
⊗ · · · ⊗ f jnvmn .

The vectors fJvm form a basis of
⊗n

a=1Mma . We have

f · fJvm =

n∑
a=1

fJ+1avm, h · fJvm = (|m| − 2|J |)fJvm,

e · fJvm =

n∑
a=1

ja(ma − ja + 1)fJ−1avm,

where J ± 1a = (j1, . . . , ja ± 1, . . . , jn).
We have the weight decomposition

n⊗
a=1

Mma =
∞⊕
k=0

( n⊗
a=1

Mma

)
[|m| − 2k].

The basis in
(⊗n

a=1Mma

)
[|m| − 2k] is formed by the monomials fJvm with |J | = k.

Consider the restricted dual space
(⊗n

a=1Mma

)∗ with the weight decomposition( n⊗
a=1

Mma

)∗
=
∞⊕
k=0

( n⊗
a=1

Mma

)∗
[|m| − 2k].

The basis of
(⊗n

a=1Mma

)∗
[|m| − 2k] is formed by vectors

ϕJm := ϕj1m1
⊗ · · · ⊗ ϕjnmn

with |J | = k.
The sl2-action is given by the formulas

f ·ϕJm =

n∑
a=1

(j1+1)(m−ja)ϕJ+1a
m , h·ϕJm = (|m|−2|J |)ϕJ+1a

m , e·ϕJm =

n∑
a=1

ϕJ−1a
m .

6.4. Tensor product of complexes. — Let coordinates of m = (m1, . . . ,mn)

be positive integers. For a = 1, . . . , n, denote by A0
ma

ιa−→ A1
ma the complex

M∗ma
ιa−→M∗−ma−2. Consider the tensor product (A•m, ι) of these complexes, where

Aim =
⊕

i1+···+in=i

Ai1m1
⊗ · · · ⊗Ainmn , i = 0, . . . , n,

with differential

ι : x1 ⊗ · · · ⊗ xn 7−→
n∑
a=1

(−1)deg x1+···+deg xa−1x1 ⊗ · · · ⊗ ιaxa ⊗ · · · ⊗ xn.

The differential is a morphism of sl2-modules. We have
n⊗
a=1

La = ker(ι : A0
m −→ A1

m).
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At all other degrees the complex (A•m, ι) is acyclic. Thus (A•m, ι) gives the resolution
of
⊗n

a=1 La which we will call the BGG resolution of
⊗n

a=1 La.
Consider the complex C•(n−, A•m),

(6.3) n− ⊗A•m
f−−→ A

•
m.

The differential f of this complex commutes with the differential ι acting on A•m.
Consider the complex (B•m, d̃), where

Bim = (n− ⊗Aim)⊕Ai−1
m , i = 0, . . . , n+ 1,

and
d̃ : f ⊗ x+ y 7−→ fx− f ⊗ ιx+ ιy.

The embeddings

n− ⊗
n⊗
a=1

Lma ↪−→ n− ⊗
( n⊗
a=1

Mma

)∗
= B0

m,

n⊗
a=1

Lma ↪−→
( n⊗
a=1

Mma

)∗
↪−→ B1

m

(6.4)

define the morphism of complexes

(6.5) C•(n−,
n⊗
a=1

Lma) −→ (B
•
m, d̃).

Lemma 6.1. — This morphism is a quasi-isomorphism.

This quasi-isomorphism will be called the BGG resolution of C•(n−,
⊗n

a=1 Lma).
The complex (B•m, d̃) has weight decomposition. For any λ ∈ C we have

Bim[λ] = (n− ⊗Aim[λ+ 2])⊕Ai−1
m [λ].

In the next section we identify the complex (B•m[|m| − 2k], d̃) with the skew-
symmetric part of the Aomoto complex of a suitable weighted Orlik-Solomon manifold.

7. Discriminantal arrangements with sl2 weights

7.1. Weighted discriminantal arrangement in Ck. — Fix m = (m1, . . . ,mn) with
positive integer coordinates and a positive integer k. We assume that mj 6 k − 1 for
j = 1, . . . , n0 and mj > k−1 for j = n0 +1, . . . , n. Fix (z1, . . . , zn) ∈ Cn with distinct
coordinates. Fix a generic nonzero number κ.

Consider Ck with coordinates t1, . . . , tk and the weighted discriminantal arrange-
ment A consisting of the following hyperplanes:Hi,j defined by the equation ti−tj = 0

for 1 6 i < j 6 k, Hj
i defined by the equation ti−zj = 0 for i = 1, . . . , k, j = 1, . . . , n.

The weights are ai,j = 2/κ, aji = −mj/κ. We denote by H ⊂ Ck the union of all hy-
perplanes of A . Set U = Ck rH.

The symmetric group Sk acts on Ck by permutation of coordinates. The action
preserves the weighted arrangement A .

For j = 1, . . . , n0, let I ⊂ {1, . . . , n} be a subset with mj+1 elements. The edge Xj
I

of A defined by equations ti = zj for i ∈ I, is resonant.

J.É.P. — M., 2014, tome 1



238 M. Falk, V. Schechtman & A. Varchenko

Lemma 7.1. — The edges Xj
I , j = 1, . . . , n0, |I| = mj+1, are the only resonant dense

edges of A .

Proof. — The dense edges of A have the form ti1 = · · · = ti` or ti1 = · · · = ti` = zj
for 2 6 ` 6 k. One checks that the edges of the former type are not resonant, and
edges of the latter type are resonant if and only if ` = mj + 1 6 k. �

7.2. Skew-symmetric part of Aomoto complex of U . — The symmetric group Sk
naturally acts on the Orlik-Solomon spaces A•(U). The skew-symmetrization of a
form η ∈ A•(U) is the form Skew η :=

∑
σ∈Sk(−1)|σ|ση. The form Skew η is skew-

symmetric. More generally, if G ⊂ Sk is a subgroup, then the G-skew-symmetrization
of a form η ∈ A•(U) is the form SkewG η :=

∑
σ∈G(−1)|σ|ση.

The skew-symmetric part A•−(U) of the Orlik-Solomon spaces A•(U) is described in
[SV91]. We have Ap−(U) 6= 0 only if p = k− 1, k. Let J = (j1, . . . , jn) be a vector with
nonnegative integer coordinates and |J | = k. Define `0(J) = 0 and `i(J) = j1 + · · ·+ji
for i = 1, . . . , n, and

ηJ,i = d log(t`i−1(J)+1 − zi) ∧ · · · ∧ d log(t`i(J) − zi)

for i = 1, . . . , n. Let ωJ be the skew-symmetrization of the k-form αJ ηJ,1 ∧ · · · ∧ ηJ,n,
where αJ = (κ|J|j1! . . . jn!)−1.

Let J = (j1, . . . , jn) be a vector with nonnegative integer coordinates and |J | =

k − 1. Define the (k − 1)-form ηJ = αJ ηJ,1 ∧ · · · ∧ ηJ,n as above, and then ωJ as the
skew-symmetrization of (−1)kηJ .

Lemma 7.2 ([SV91]). — The forms {ωJ}|J|=k form a basis of Ak−(U). The forms
{ωJ}|J|=k−1 form a basis of Ak−1

− (U).

Define the form

(7.1) ωa =
∑
H∈A

aH d log fH ∈ A1(U).

The form ωa is symmetric with respect to the Sk-action.

Lemma 7.3 ([SV91]). — For any m ∈ Cn, the complex ∧ωa : Ak−1
− (U) → Ak−(U) is

isomorphic to the weight component of weight |m| − 2k of the complex

n− ⊗
( n⊗
a=1

Mma

)∗ −→ ( n⊗
a=1

Mma

)∗
.

The isomorphism sends ωJ to f ⊗ ϕJm if |J | = k − 1 and to ϕJm if |J | = k.

7.3. Skew-symmetric forms on Pm. — For a positive integer m, consider a subset
I = {1 6 i0 < · · · < im 6 k} and the space Cm+1 with coordinates ti, i ∈ I.
Consider the central arrangement in Cm+1 consisting of coordinate hyperplanes and
all diagonal hyperplanes. This arrangement is preserved by the action of the symmetric
group Sm+1 which permutes the coordinates.
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Consider the projectivization in Pm of the initial arrangement. The functions
ui` = ti`/ti0 , ` = 1, . . . ,m are coordinates on an affine chart on Pm. In these coordi-
nates the projectivization of the initial arrangement consists of hyperplanes ui` = 0,
ui` − 1 = 0, ui` − uiq = 0 and the hyperplane at infinity. Denote U ⊂ Pm the
complement to the arrangement. Let A•−(U) denote the skew-symmetric part of the
Orlik-Solomon space A•(U) with respect to the Sm+1-action.

Lemma 7.4. — Ap−(U) = 0 if p 6= m, and dimAm− (U) = 1. The form

µI = d log ui1 ∧ · · · ∧ d log uim

generates Am− (U).

Proof. — Let Ũ denote the complement of the original central arrangement in Cm+1.
The skew-symmetric part of A•(Ũ) is two-dimensional, dimAp−(Ũ) = 1 for p = k, k+1.
The skew-symmetrizations of

ηI,m = d log ti1 ∧ · · · ∧ d log tim and ηI = d log ti0 ∧ · · · ∧ d log tim

form a basis in A•−(Ũ).
Using the identity d log ui` = d log ti` − d log ti0 , one identifies A•(U) with a sub-

space of the Orlik-Solomon space A•(Ũ) of the initial central arrangement in Cm+1. By
[Dim92, §6.1], the contraction along the Euler vector field ε =

∑m
`=0 ti`∂/∂ti` defines

an epimorphism ∂ : A•(Ũ) → A•(U), which restricts to an epimorphism A•−(Ũ) →
A•−(U) of skew-symmetric forms. The map ∂ is the boundary map in the acyclic
complex studied in [OT92, §3.1], and also coincides with the residue map along the
exceptional divisor in the blow-up of Cm+1 at the origin.

Under this identification, the skew-symmetrization of the form ηI,m equals a
nonzero multiple of the form µI considered as an element of A•(Ũ). The form ηI is
skew-symmetric and its contraction along ε equals µI . The contraction of µI along ε
is trivial since ∂2 = 0. Then Ap−(U) = 0 for p 6= m and Am− (U) is spanned by µI . �

7.4. Weighted Orlik-Solomon manifold. — Consider the minimal resolution
π : Ỹ → Ck of singularities of H, see Section 7.1. Denote H̃ = π−1H. The irreducible
components of H̃ are labeled by dense edges of H. We denote by X the manifold
obtained from Ỹ by deleting the union of all irreducible components of H corre-
sponding to nonresonant dense edges. We set D = H̃ ∩X. Then D ⊂ X is a divisor
with normal crossings and (X,D) is a weighted Orlik-Solomon manifold, see Sections
5.1 and 5.2. The symmetric group Sk acts on the Orlik-Solomon manifold (X,D).
The action preserves the weights.

Let Z = {X = Z0 ⊃ D = Z1 ⊃ Z2 ⊃ · · · } be the associated filtration by closed
subsets, and U = Z0 r Z1 = X rD.

The irreducible components of D are labeled by resonant dense edges of H. For
j ∈ {1, . . . , n0} and I ⊂ {1, . . . , n}, |I| = mj + 1, we denote by H̃j

I the component
corresponding to the resonant dense edge Xj

I . We denoted by CjI the connected com-
ponent of Z1 r Z2 whose closure is H̃j

I . Then CjI is isomorphic to the complement
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of the product of weighted arrangements in Pmj × Ck−mj−1, with weights induced
by A . If I = {1 6 i0 < · · · < imj 6 k}, then ui` , ` = 1, . . . ,mj , are coordinates
on an affine chart on Pmj , see Section 7.3. The arrangement in Pmj has hyperplanes
ui` = 0, ui` −1 = 0, ui` −uiq = 0 and the hyperplane at infinity. The weights induced
by A are −mj/κ for ui` = 0 and 2/κ for ui` − 1 = 0 and ui` − uiq = 0. Coordinates
on Ck−mj−1 are ti, i ∈ {1, . . . , n} r I. The arrangement in Ck−mj−1 is the discrimi-
nantal arrangement with hyperplanes ti− tq = 0, i, q ∈ {1, . . . , k}r I and ti− z` = 0,
i ∈ {1, . . . , k} r I, ` ∈ {1, . . . , n}. The weights of this arrangement in Ck−mj−1 in-
duced from A are given by the pair (mj , κ), where mj = (m1, . . . ,−mj−2, . . . ,mn),
see Section 7.1.

The set {CjI}j,I is the set of connected components of Z1 rZ2. The group Sk acts
on {CjI}j,I . For fixed j, the subset {CjI}I forms a single orbit.

For p > 2, the connected components {Cj
I}j,I of Zp r Zp+1 are labeled by pairs

(j, I), where j is a p-element subset of {1, . . . , n0} and I = {Ij}j∈j is a set of pair-
wise disjoint subsets of {1, . . . , k} such that |Ij | = mj + 1. The connected compo-
nent Cj

I is isomorphic to the complement of the product of weighted arrangements in
(×j∈jPmj )× Ce(j), where e(j) = k − p−

∑
j∈j mj . For j ∈ j, if

Ij = {1 6 i0 < · · · < imj 6 k},

then ui` , ` = 1, . . . ,mj , are coordinates on an affine chart on Pmj , see Section 7.3.
The arrangement in Pmj has hyperplanes ui` = 0, ui` − 1 = 0, ui` − uiq = 0 and the
hyperplane at infinity. The weights induced by A are −mj/κ for ui` = 0 and 2/κ for
ui` − 1 = 0 and ui` − uiq = 0. The space Ce(j) has coordinates ti, i ∈ {1, . . . , k} r⋃
j∈J Ij . The weighted arrangement in Ce(j) is the discriminantal arrangement with

weights given by the pair (mj , κ), where mj
i = −mi − 2 if i ∈ j and mj

i = mi

otherwise, see Section 7.1.
The group Sk acts on the set {Cj

I}j,I . For fixed j, the subset {Cj
I}I forms a single

orbit.
Let Cj

I be a connected component of Zp r Zp+1 and C j̃

Ĩ
a connected component

of Zp+1 rZp+2. Then C j̃

Ĩ
lies in the closure of Cj

I if and only if j ⊂ j̃ and Ij = Ĩj for
every j ∈ j.

7.5. Skew-symmetric forms on weighted Orlik-Solomon manifold. — For p > 0,
fix a set j = {1 6 j1 < · · · < jp 6 n0}. Consider the Sk-orbit {Cj

I}I of connected
components of ZprZp+1. Recall that I = {Ij}j∈j is a set of pairwise disjoint subsets
of {1, . . . , k} such that |Ij | = mj + 1. Each component Cj

I is invariant with respect to
the action of the subgroup SI = Smj1+1 × · · · × Smjp+1 × Se(j) ⊂ Sk, where Smj+1 is
the group of permutations of elements of the subset Ij , e(j) = k− p−

∑p
`=1mj` and

Se(j) is the group of permutations of elements of the subset {1, . . . , k}r
⋃
j∈j Ij .

Our goal is to describe Sk-skew-symmetric Orlik-Solomon forms on
⋃

I C
j
I . Such

a form is uniquely determined by its restriction to one of the components in {Cj
I}I .
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That restriction is SI -skew-symmetric. According to Sections 7.2 and 7.3, the Sk-skew-
symmetric Orlik-Solomon forms on

⋃
I C

j
I are available only in degrees k − p and

k − p− 1.
Denote

dj =

p−1∑
i=1

i(mji + 1), sj = p+

p∑
i=1

mji .

Select in {Cj
I}I the component Cj

I0 , where I0 = {I0
j1
, . . . , I0

jp
} and

I0
ji

=
{

1 +
∑i−1
`=1(mj` + 1), . . . ,mji + 1 +

∑i−1
`=1(mj` + 1)

}
, i = 1, . . . , p.

Let K = (k1, . . . , kn) ∈ Zn>0, where |K| equals e(j) or e(j)−1. Denote `0(K) = 0 and
`i(K) = k1 + · · ·+ ki, i = 1, . . . , n. Denote

ηjK,i = d log(tsj+`i−1+1−zi)∧d log(tsj+`i−1+2−zi)∧· · ·∧d log(tsj+`i−zi), i = 1, . . . , n,

αj
K = (−1)dj ((mj1 + 1)! · · · (mjp + 1)! k1! . . . kn!)−1.

The form

αj
K µI0j1

∧ · · · ∧ µI0jp ∧ η
j
K,1 ∧ · · · ∧ η

j
K,n

is an Orlik-Solomon form on Cj
I0 . We extend it by zero to other components of

⋃
I C

j
I .

If |K| = e(j), we define the form ωj
K on

⋃
I C

j
I as the Sk-skew-symmetrization of the

form

κ−kαj
K µI0j1

∧ · · · ∧ µI0jp ∧ η
j
K,1 ∧ · · · ∧ η

j
K,n.

If |K| = e(j)− 1, we define the from ωj
K on

⋃
I C

j
I as the Sk-skew-symmetrization of

the form

(−1)k−pκk−1αj
K µI0j1

∧ · · · ∧ µI0jp ∧ η
j
K,1 ∧ · · · ∧ η

j
K,n.

Denote by A•−(
⋃

I C
j
I ) ⊂

⊕
I A

•(Cj
I ) the skew-symmetric part of the Orlik-

Solomon space
⊕

I A
•(Cj

I ) of
⋃

I C
j
I . Recall the 1-form ωa in (7.1). The form ωa lifts

to an element ω̃a = π∗ωa of
⊕

j,I A
1(Cj

I ) which is symmetric with respect to the Sk
action. The exterior multiplication by ω̃a defines the complex

(7.2) ∧ ω̃a : Ak−p−1
− (

⋃
I C

j
I ) −→ Ak−p− (

⋃
I C

j
I ).

Recall the vector mj = (mj
1, . . . ,m

j
n) from Section 7.4.

Lemma 7.5. — The complex in (7.2) is isomorphic to the weight component of weight
|m| − 2k of the complex n− ⊗ (

⊗n
i=1Mmj

i
)∗ → (

⊗n
i=1Mmj

i
)∗, see (6.1). The isomor-

phism sends ωj
K to (−1)pf ⊗ ϕKmj if |K| = e(j)− 1 and to ϕKmj if |K| = e(j).

Lemma 7.5 is a corollary of Lemma 7.3.
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7.6. Residues of skew-symmetric forms. — Consider an Sk-orbit {Cj
I}I of con-

nected components of Zp r Zp+1 and an Sk-orbit {C j̃

Ĩ
}Ĩ of connected components

of Zp+1 r Zp+2 such that the second orbit lies in the closure of the first orbit. This
statement holds if and only if j ⊂ j̃. More precisely, if j = {j1 < · · · < jp}, then
j̃ = {j1 < · · · < jq < j̃q+1 < jq+1 < · · · < jp} for some 0 6 q 6 p.

Consider ωj
K ∈ A•−(

⋃
I C

j
I ). Then the residue of ωj

K at
⋃

Ĩ C
j̃

Ĩ
is an element of

A•−(
⋃

Ĩ C
j̃

Ĩ
). We denote this residue by resj̃j ω

j
K .

Lemma 7.6. — Given K = (k1, . . . , kn), denote K̃ = (k1, . . . , kj̃q+1
−mj̃q+1

−1, . . . , kn).
• If kj̃q+1

< mj̃q+1
+ 1, then

resj̃j ω
j
K = 0.

• If kj̃q+1
> mj̃q+1

+ 1, then

resj̃j ω
j
K =

(−1)qωj

K̃
for |K| = e(j),

(−1)q+1ωj

K̃
for |K| = e(j)− 1.

Proof. — If kj̃q+1
< mj̃q+1

+1, then the form ωj
K is regular on

⋃
Ĩ C

j̃

Ĩ
and resj̃j ω

j
K = 0.

If kj̃q+1
> mj̃q+1

+ 1, then the statement is checked by direct calculation. �

7.7. Skew-symmetric part of Aomoto complex of weighted Orlik-Solomon mani-
fold. — Consider the weighted Orlik-Solomon manifold (X,D) introduced in Sec-
tion 7.4 and its Aomoto complex (A•(X,Z ), ω̃a + res) introduced in Section 5.2. By
Theorem 3.2, for generic nonzero κ the complex (A•(X,Z ), ω̃a + res) calculates the
cohomology H•(X,Lω̃a) of X with coefficients in the rank 1 local system Lω̃a on X
associated with the differential form ω̃a, see Corollary 3.3.

The group Sk acts on the complex. Denote (A•−(X,Z ), ω̃a+res) the skew-symmetric
part of the complex. For generic nonzero κ the complex (A•−(X,Z ), ω̃a+res) calcu-
lates the skew-symmetric part H•−(X,Lω̃a) of the cohomology H•(X,Lω̃a).

Recall the complex (B•m[|m| − 2k], d̃) in Section 6.4. Define the linear map

γ : A
•
−(X,Z ) −→ B

•
m[|m| − 2k],

ωj
K 7−→

{
f ⊗ ϕKmj if |K| = e(j)− 1,

ϕKmj if |K| = e(j).

(7.3)

Theorem 7.7. — The map γ defines an isomorphism between the complexes
(A•−(X,Z ), ω̃a+res) and (B•m[|m| − 2k], d̃).

Proof. — The theorem follows from Lemmas 7.5 and 7.6. �

The quasi-isomorphism C•(n−,
⊗n

a=1 Lma)[|m| − 2k]→ (B•m, d̃)[|m| − 2k] in (6.5)
allows us to identify the cohomology H•−(X,Lω̃a) and the cohomology of the complex
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C•(n−,
⊗n

a=1 Lma)[|m| − 2k]. Namely, let
n⊗
a=1

Lma =
⊕
p

(Lp ⊗Wp)

be the decomposition of the tensor product into irreducible sl2-modules, where Wp

are the multiplicity spaces.

Corollary 7.8. — If |m| − 2k > 0, then

dimHk
−(X,Lω̃a) = dimW|m|−2k and Hq

−(X,Lω̃a) = 0 for q 6= k.

If |m| − 2k = −1, then H•−(X,Lω̃a) = 0. If |m| − 2k < −1, then

dimHk−1
− (X,Lω̃a) = dimW2k−2−|m| and Hq

−(X,Lω̃a) = 0 for q 6= k − 1.

7.8. BGG resolution and flag forms. — Theorem 7.7 gives a geometric interpreta-
tion of the BGG resolution given in (6.5). Namely, the embeddings

n− ⊗
n⊗
a=1

Lma [|m| − 2k + 2] ↪−→ n− ⊗
( n⊗
a=1

Mma

)∗
[|m| − 2k + 2],

n⊗
a=1

Lma [|m| − 2k] ↪−→
( n⊗
a=1

Mma

)∗
[|m| − 2k]

in (6.4) have the form: the element f ⊗ fKvm is mapped to βKm f ⊗ϕKm if |K| = k− 1

and the element fKvm is mapped to βKmϕKm if |K| = k, where

βKm =

n∏
i=1

ki!

ki∏
`=1

(mi + 1− `).

Under the isomorphism of Theorem 7.7, we obtain embeddings

n− ⊗
n⊗
a=1

Lma [|m| − 2k + 2] ↪−→ Ak−1
− (U), f ⊗ fKvm 7−→ βKm ωK ,

n⊗
a=1

Lma [|m| − 2k] ↪−→ Ak−(U), fKvm 7−→ βKm ωK .

The images

F k−1
− = span〈βKmωK〉|K|=k−1 ⊂ Ak−1

− (U), F k
− = span〈βKmωK〉|K|=k ⊂ Ak−(U)

of these embeddings are called the subspaces of skew-symmetric flag forms, see [SV91,
Var95]. The exterior multiplication by ωa gives the complex of skew-symmetric flag
forms ∧ωa : F k−1

− → F k
−. Now the BGG resolution in (6.5) can be interpreted as the

statement that the natural embedding of the complex of skew-symmetric flag forms
to the complex (A•−(X,Z ), ω̃a + res) is a quasi-isomorphism.

The complex of skew-symmetric flag forms can be characterized as follows.

Lemma 7.9. — The vector space F •− is the kernel of the residue map

A•−(U) −→
n0⊕
j=1

A
•
−
( ⋃
|I|=mj+1

CjI
)
.

Proof. — The lemma follows from Lemma 7.6. �
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7.9. Cohomology H•(X,Lω̃a) and intersection cohomology. — Let j : U → Ck be
the canonical embedding. Let Lωa be the rank 1 local system on U associated with
the form ωa, see Section 5.2. Consider the intersection cohomology H•(Ck, j!∗Lωa).
By [AV12], for generic nonzero real κ, the intersection cohomology H•(Ck, j!∗Lωa) is
canonically isomorphic to the cohomology H•(X,Lω̃a) if the following condition A
from [AV12] is satisfied.

For 1 6 j 6 n0, consider Cmj with coordinates u1, . . . , umj . Consider the weighted
arrangement in Cmj consisting of the hyperplanes ui = 0, ui−1 = 0, ui−up = 0 with
weights −mj/κ for hyperplanes ui = 0 and weights 2/κ for hyperplanes ui−1 = 0 and
ui− up = 0, cf. Section 7.4. Denote by Uj ⊂ Cmj the complement to the union of hy-
perplanes of the arrangement. Let Lj be the rank 1 local system on Uj associated with
this weighted arrangement, see Section 5.2. The condition A is satisfied if for any 1 6
j 6 n0 we haveH`(Uj ,Lj) = 0 for ` > mj . Clearly in this situation condition A is sat-
isfied andH•(Ck, j!∗Lωa) is canonically isomorphic to the cohomologyH•(X,Lω̃a) by
[AV12]. In particular, this implies that for generic nonzero real κ, the skew-symmetric
part H•−(Ck, j!∗Lωa) of the intersection cohomology H•(Ck, j!∗Lωa) is isomorphic to
the cohomology of the complex (A•−(X,Z ), ω̃a+res) and, hence, to the cohomology of
the complex C•(n−,⊗Lmj )[|m| − 2k], see Section 7.7, cf. [KV06, §6 of Introduction]
and [KV06, Cor. 6.11].

7.10. Remark. — In the constructions of Section 7 we may assume that m =

(m1, . . . ,mn) is a vector with arbitrary complex coordinates instead of being a
vector with positive integer coordinates. Then all statements of Section 7 hold. In
particular, the same proofs show that in this more general situation the complex
C•(n−,

⊗n
a=1 Lma)[|m| − 2k] calculates the cohomology H•−(X,Lω̃a) as well as the

intersection cohomology H•−(Ck, j!∗Lωa).
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