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ON THE HALF-TRAJECTORIES OF HOROCYCLIC FLOW ON
GEOMETRICALLY INFINITE HYPERBOLIC SURFACES

ADAMOU SAIDOU

Abstract. We study the density of half-horocycles or half-orbits of the horocyclic flow on the
unit tangent bundle of geometrically infinite hyperbolic surfaces. In [10] Schapira proved that
under some assumptions, both half-horocycles (hsv)s>0 and (hsv)s60 are simultaneously
dense or not in the nonwandering set of the horocyclic flow. We construct a counterexample,
when the assumptions are not satisfied, on a surface of first kind, answering a question of
Schapira [10].

Introduction

The horocyclic flow on the unit tangent bundle of a hyperbolic surface has been
studied extensively since Hedlund, Hopf, in the thirties. In particular, the density
of horocyclic orbits is well understood, and dense orbits are exactly those orbits
(hsv)s∈R such that v is horospherical.

It is an interesting question from the dynamical point of view to ask whether
both half-horocycles (hsv)s>0 and (hsv)s60 have the same behavior when the full
horocycle (hsv)s∈R is dense. Positive answers have been obtained in some specific
cases. Hedlund answered positively on surface of first kind (see definition in section
2), in the specific case of radial vectors, that is vectors whose (backward) geodesic
orbit return infinitely often in a compact set.

In the case of geometrically finite hyperbolic surfaces, Schapira proved that the
answer is always positive except for some trivial geometric obstructions. Trivial
obstructions consist of those vectors with one half-horocycle which is dense in the
nonwanderig set E , and the other which leaves eventually the nonwandering set.

In the case of geometrically infinite hyperbolic surfaces, Schapira extended Hed-
lund’s result and obtained a more general result. Her result is:

Theorem 0.1 (Schapira [10]). — Let S be a nonelementary oriented hyperbolic
surface. Let v ∈ T 1S be a vector whose full horocycle (hsv)s∈R is dense in the
nonwandering set E of the horocyclic flow and such that there exist two constants
Λ > 0, 0 < α0 <

π
2 such that the geodesic ray (π(g−tv))t>0 intersects infinitely

many closed geodesics of length at most Λ with an angle of intersection at least α0.
Then both half-orbits (hsv)s>0 and (hsv)s60 are simultaneously dense.

In order to verify optimality of the result, Schapira constructed a counterexample
to a completely general result:

Theorem 0.2 (Schapira [10]). — There exist hyperbolic surfaces whose unit
tangent bundle contains a vector v for which no trivial obstruction holds and such
that (hsv)s>0 is dense in E (hsv)s60 is not dense in E .

A question arises after Schapira’s results.
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• Is Schapira’s counterexample a surface of the first kind?
The aim of this work is to give positive answers to this question. We correct some

mistakes in the proof of Theorem 0.2 and provide a counterexample of Schapira’s
type that lies on a surface of the first kind.

Theorem 0.3. — There exist hyperbolic surfaces of first kind whose unit tan-
gent bundle contains a vector v such that (hsv)s>0 is dense in E (hsv)s60 is not
dense in E .

This paper is organised as follows. In section 1 we give some tools in hyperbolic
geometry used in the next paragraphs. Section 2 is devoted to the proof of Theorem
0.3 were we construct a counterexample of the first kind.

1. Preliminaries

1.1. Hyperbolic geometry. A large part of this paragraph is mentionned in [9,
10].

Let D = D(0, 1) be the hyperbolic disk endowed with the hyperbolic metric
4dx2

(1−|x|2)2 , and o the origin of the disk. Denote by π : T 1D → D the canonical
projection, and by ∂D = S1 the boundary at infinity. By abuse of notation we
denote by d both the hyperbolic distance on D and the Sasaki distance on T 1D.

The geodesic flow (gt)t∈R acts on T 1D by moving a vector of a distance t along
the geodesic that it defines. The Busemann cocycle is the continuous map defined
on S1 × D2 by:

βξ(x, y) = lim
z→ξ

(d(x, z)− d(y, z)).

The map v ∈ T 1D 7→ (v−, v+, βv−(π(v), o)) ∈ ((S1 × S1) \ Diagonal) × R is a
homeomorphism, where v± are the endpoints of the geodesic (gtv)t∈R in S1 and
∆ is the diagonal of S1 × S1, The coordinates given by this homeomorphism are
called Hopf coordinates. We identify T 1D with the set of Hopf coordinates ((S1 ×
S1) \Diagonal)× R.

An isometry of PSL(2,R) is called hyperbolic if it has exactly two fixed points
on S1, parabolic if it fixes one point of S1, and elliptic otherwise.

The classical identification of D with H = R × R∗+ through the homography
z → i 1+z

1−z allows to identify the group of isometries preserving orientation of D
with PSL(2,R) acting by homographies on H. This extends to a simply transitive
action on T 1D (or T 1H).

If Γ ⊂ PSL(2,R) is a discrete subgroup without elliptic elements, then the
quotient S = Γ\D is a hyperbolic surface and its unit tangent bundle T 1S = Γ\T 1D
is identified through the Hopf coordinates with the quotient Γ\(((S1×S1)\∆)×R).

The limit set ΛΓ of the group is defined as ΛΓ = Γ.o \ Γ.o ⊂ S1. For all ξ ∈ ΛΓ,
the set Γ.ξ is dense in ΛΓ.

A horocycle of D is a level set of a Busemann function. A horoball is a set
{x ∈ H, βξ(x, y) 6 C}.

The group Γ is nonelementary if #ΛΓ = +∞. The surface S is said to be of the
first kind if ΛΓ = S1, and of the second kind otherwise.



HALF-TRAJECTORIES OF HOROCYCLIC FLOW ON HYPERBOLIC SURFACES 141

1.2. Horocyclic flow. A hyperbolic geodesic of D is a diameter or a half-circle or-
thogonal to S1. A vector v ∈ T 1D is tangent to a unique geodesic and orthogonal to
exactly two horocycles containing its basepoint tangent to S1 at v+ and v−. The set
of vectors in T 1D such that w− = v− and whose basepoint belongs to the horocycle
tangent to S1 at v− and containing π(v) is the strong unstable horocycle or strong
unstable manifold of v. We denote it by W su(v) = {hsv, s ∈ R}. The strong stable
horocycle is defined similarly. The unstable horocycle flow (hs)s∈R acts on T 1D
by moving a vector v of a distance |s| along its strong unstable horocycle. There
are two possible orientations for such a flow, and we choose the orientation which
corresponds to the right action on PSL(2,R) by multiplication by one-parameter
subgroup {

ns :=
(

1 0
s 1

)
, s ∈ R

}
on PSL(2,R). This flow makes the vectors turn around their strong unstable horo-
cycle so that the orbit {hsv, s ∈ R} is equal to the full strong unstable horocycle.

Moreover, for all s ∈ R and t ∈ R, these geodesic and horocyclic flows satisfy
the following fundamental relation

gt ◦ hs = hse
t

◦ gt.

Definition 1.1. — Let (φt)t∈R be a flow acting by homeomorphisms on a topo-
logical space X. The nonwandering set of this flow is the set of points x ∈ X such
that for all neighborhoods W of x there exists a sequence tn −→ +∞ such that
φtnW ∩W 6= ∅.

Proposition 1.2 (Eberlein[6], Schapira[9]). — (1) The nonwandering set
of the geodesic flow acting on T 1S is

Ω := Γ\
(

((ΛΓ × ΛΓ)\∆)× R
)
.

(2) The nonwandering set of the horocyclic flow acting on T 1S is

E := Γ\
(

((ΛΓ × S1)\∆)× R
)
.

2. Proof of Theorem 0.3

Schapira [10] constructed the counterexample of Theorem 0.2 and asked if it is
a counterexample of first kind. Her construction contains some mistakes and lets
some questions open. In the following we correct the mistakes and prove that the
counterexample we obtain is of the first kind.

Let us recall some definitions.
Let v ∈ T 1D be a vector and v± be its endpoints in ∂D. Let Hor(v) ⊂ D be

the horoball centered at v− and containing its basepoint π(v). The right horoball
Hor+(v) ⊂ Hor(v) is the set of basepoints of vectors of

⋃
t>0
⋃
s>0 h

sg−tv. Simi-
larly, we define the left horoball Hor−(v) ⊂ Hor(v) as the other side of Hor(v).

Definition 2.1. — If v ∈ T 1D and α > 0, the cone of width α around v is the
set C(v, α) of points x ∈ Hor(v) at (hyperbolic) distance at most α of the geodesic
ray (g−tv)t>0.
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Definition 2.2. — A vector v ∈ T 1S is right horocyclic if it admits a lift
ṽ ∈ T 1D, such that for all α > 0 and D > 0, the orbit Γ.o intersects the right part
of the horoball Hor+(g−Dṽ) minus the cone C(g−Dṽ, α).

A point ξ is right horocyclic if there exists a right horocyclic vector v ∈ T 1S
such that ξ = v−.

A vector v is horospherical if all horoball Hor+(g−Dv) contains infinitelly many
points of Γ.o.

2.1. Proof of Theorem 0.3. Let us explain the minor mistake in Schapira’s con-
struction. We start with the following construction which is a small modification
of the construction in [10] (see Figure 2.1). Let v be the vector in T 1H such that
v− =∞ and v+ = 0.
Denote by C+

n (respectively C−n ) the half-circle centered at (2n+1, 0) (resp. (−xn, 0))
of radius 1 (resp. Rn) with Rn = n3 and xn = Rn + 2

∑n−1
0 Rk = n3 + 2n

2(n−1)2

4 ∼
n4

2 . Denote by D+
n (respectively D−n ) the half-disk centered at (2n + 1, 0) (resp.

(−xn, 0)) of radius 1 (resp. Rn).
Let Γ be the Schottky free group generated by the family of isometries (γn) such

that for n > 3, γn(C+
n ) = C−n , γn(D+

n )c = D−n , the axis of γn is orthogonal to C±n
and for n = 1, 2, γ1(C+

1 ) = C−2 and γ2(C+
2 ) = C−1

Set S = Γ\H be the resultant hyperbolic surface.
In [10] Schapira claimed that the endpoints of the axis of γn are the centers

of the circles C±n which is not true. We correct this mistake by determining the
equation of these axes.

γ1 γ2

γ3

0

∞

o = i

Figure 2.1. Proof of Theorem 0.3

It suffices to prove the following proposition.

Proposition 2.3. — There exists a family of isometries (γn) such that
(1) for n > 3, we have γn(C+

n ) = C−n , γn(D+
n )c = D−n , and the axis of γn is

orthogonal to C±n ;
(2) γ1(C+

1 ) = C−2 and γ2(C+
2 ) = C−1 ; and

(3) the group generated by the γn is a discrete free Schottky group, with limit
set equal to S1.

Moreover, the limit point v+ = +∞ is right horospherical and not left horospherical.
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Proof. — We start by proving the following lemma. Recall that this lemma is a
classical fact well known in hyperbolic geometry.

Lemma 2.4. — Given two circles C+
n and C−n which are not tangent, there is

an orientation preserving isometry γn such that γn(C+
n ) = C−n and γn(D+

n )c = D−n .
This isometry is unique if we assume that its axis is the common perpendicular line
to C+

n and C−n .

Proof. —

C1
C2

Φ

a bc

Φ(C1) = C2

d 0

D

∞

Figure 2.2. Proof of Lemma 2.4

Let C1 and C2 be two circles which are not tangent and both sides of the vertical
line D = (0,∞). We denote by a, b the extremities of C1 and by c, d the extremities
of C2. Sending C2 on C1 amounts to sending C2 on D, applying a hyperbolic
transformation, and sending D on C1 (see Figure 2.2). The isometry Φ such that
Φ(C2) = C1 is represented by the matrix:

AΦ =
(
b a

b−a
1 1

b−a

)(
eα/2 0

0 e−α/2

)( 1
d−c

−c
d−c

−1 d

)
=
( b
d−ce

α/2 − a
b−ae

−α/2 −bc
d−ce

α/2 + ad
b−ae

−α/2

1
d−ce

α/2 − 1
b−ae

−α/2 −c
d−ce

α/2 + d
b−ae

−α/2

)
∈ SL(2,R),

for α ∈ R.
We get tr(AΦ) = b−c

d−ce
α/2 + d−c

b−ae
−α/2. We choose α such that |tr(AΦ)| > 2 to

get a hyperbolic isometry sending C1 to C2. �

Let now prove that the construction of the surface S provides a counterexample.
With the same argument as in [2], v− can not be left horocyclic. That means

the half-horocycle (hsv)s60 is not dense in the nonwandering set E .
In the following we shall prove that for the choices of Rn and xn we made, v−

is right horocyclic.
By construction the horizontal coordinate of γn.o goes to −∞ as n goes to +∞.

Let us prove that its vertical one goes to +∞ with n.
First we need to determine the axis Cn of γn. It is the half-circle centered at a

point, say On, of coordinates (αn, 0), and it is orthogonal to C+
n at a point, say An,

of coordinates (an1 , an2), and it is orthogonal to C−n at a point Bn of coordinates
(bn1 , bn2) (see Figure 2.3).

We have the following equations:
• The equation of C+

n is (x− (2n+ 1))2 + y2 = 1.
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0

∞

On(αn, 0)

An(an1 , an2)

Bn(bn1 , bn2)

Cn

C−
n

C+
n

(−xn, 0)
(2n+ 1, 0)

b

b

bb

b

Figure 2.3. Proof of Proposition 2.3

• The equation of C−n is (x+ xn)2 + y2 = R2
n.

• The equation of Cn is: (x−αn)2+y2 = (bn1−αn)2+b2n2
= (an1−αn)2+a2

n2
.

• Bn ∈ C−n ⇔ (bn1 + xn)2 + b2n2
= R2

n.
• An ∈ C+

n ⇔ (an1 − (2n+ 1))2 + a2
n2

= 1.
Using the orthogonality of the axis we get:

• Cn ⊥ C−n at Bn ⇔ (bn1 + xn)2 + 2b2n2
+ (bn1 − αn)2 = (αn + xn)2.

• Cn ⊥ C+
n at An ⇔ (an1− (2n+1))2 +2a2

n2
+(an1−αn)2 = (2n+1−αn)2.

• An ∈ Cn and Bn ∈ Cn ⇔ (bn1 − αn)2 + b2n2
= (an1 − αn)2 + a2

n2
.

We obtain the following system of five equations with five unknowns αn, bn1 , bn2 ,
an1 and an2 .

(bn1 + xn)2 + b2n2
= R2

n

(bn1 + xn)2 + 2b2n2
+ (bn1 − αn)2 = (αn + xn)2

(bn1 − αn)2 + b2n2
= (an1 − αn)2 + a2

n2

(an1 − (2n+ 1))2 + a2
n2

= 1
(an1 − (2n+ 1))2 + 2a2

n2
+ (an1 − αn)2 = (2n+ 1− αn)2

(2.1)

We need to obtain the values of αn and bn.

b2n2
= R2

n − (bn1 + xn)2

a2
n2

= 1− (an1 − (2n+ 1))2

2R2
n − (bn1 + xn)2 + (bn1 − αn)2 = (αn + xn)2

(bn1 − αn)2 +R2
n − (bn1 + xn)2 = (an1 − αn)2 + 1− (an1 − (2n+ 1))2

2− (an1 − (2n+ 1))2 + (an1 − αn)2 = (2n+ 1− αn)2

(2.2)



b2n2
= R2

n − (bn1 + xn)2

a2
n2

= 1− (an1 − (2n+ 1))2

−(bn1 + xn)2 + (bn1 − αn)2 = (αn + xn)2 − 2R2
n

−(an1 − (2n+ 1))2 + (an1 − αn)2 = (2n+ 1− αn)2 − 2
(αn + xn)2 −R2

n = (2n+ 1− αn)2 − 1

(2.3)
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The last equation yields

αn = (2n+ 1)2 +R2
n − (1 + x2

n)
2(xn + 2n+ 1) .

We get for n large:

bn2 = Rn

√
1− 1

(xn + αn) .

With Rn = n3 and xn ∼= n4

2 , we obtain:

αn ∼=
−n4

4 and bn2
∼= Rn = n3.

Consider the point Zn of coordinates (2n + 1, 1) in C+
n . When n goes to +∞,

Rn increases and Cn tends to a vertical line which passes through Zn, proving
that dist(An, Zn) goes to 0 when n goes to +∞. So for n large enough we have
dist(An, Zn) 6 1.

Let z = 2n + 1 + i and z′ = i be the affixes of Zn and o respectively. By
computation we obtain:

sinh(1
2(dist(o, Zn))) = |z − z′|

2(Im(z)Im(z′))1/2 = 2n+ 1
2 ,

which yields that

1
2(dist(o, Zn) = ln(2n+ 1

2 +
√

(2n+ 1
2 )2 + 1) ∼= ln(2n+ 1).

Then we get
dist(o, Zn) ∼= 2 ln 2n = 2 lnn+ 2 ln 2 ∼= 2 lnn.

So for n large enough we get

dist(0, An) 6 dist(0, Zn) + dist(Zn, An) 6 2 lnn+ 1.

Then from the invariance of distance by the isometry γn we have

dist(γn.o, Bn) 6 2 lnn+ 1.

Using the relation between Euclidian distance and hyperbolic distance on a vertical
line we have:

Im(γn.o) > e−2 lnn−1Im(Bn) > n3

n2 .

So limn→+∞ Im(γn.o) = +∞. But this means the sequence (Rn)n>0 is as required.

For the last statement we need to prove that the limit set ΛΓ is S1.
For all n > 1 denote by D(γn) and D(γ−1

n ) the domains bounded by the half-
circles C+

n and C−n respectively, such that γn(D(γ−1
n )) = H − D̊(γn). Denote by

(γn, γ−1
n )n>1 the coding of the group Γ. A product of n letters s1...sn in this coding

is said to be a reduced word of length n if n = 1 or n > 1 and si 6= s−1
i+1 for all

1 6 i 6 n− 1.
We associate to any reduced word s1...sn the set D(s1) if n = 1 or the set

D(s1, ..., sn) defined by D(s1, ..., sn) = s1...sn−1D(sn). Notice that if (si)i>1 is
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0

∞

o = i

ξ

α1(o)

α2(o)

b

b

b
b

b

Figure 2.4. Proof of Proposition 2.3

a sequence satisfying si+1 6= s−1
i , the sequence of euclidian diameters of the sets

D(s1, .., sn) converges to 0. We have as in [4]:

ΛΓ =
+∞⋂
n=1

⋃
reduced words of length n

D(s1, ..., sn).

Let ξ be a point in ∂H. Let prove that there exists a sequence of αn(o) such that
limn→∞ αn(o) = ξ. This implies that ξ is in ΛΓ.

We have to construct a nested family of circles such that the limit of their
diameters goes to zero when n goes to +∞. We shall use the following Lemma:

Lemma 2.5. — Given a point in H and a half-plane D(γin) in H, where γin
is an isometry of Γ, there is an isometry in Γ sending this point to the half-plane
D(γin).

Proof. — We need to prove that if g ∈ Γ is an isometry such that g = γi1 ·
γi2 · · · γik , where γij ∈ Γ for j = 1, ..., k, and ω is a point in H, then g(ω) ∈ D(γ−1

i1
).

Remark that
(D(γis) ∪D(γ−1

is
)) ∩ (D(γil) ∪D(γ−1

il
) = ∅ s, l = 1, ..., k.

Using this fact, we have γik (ω) ∈ D(γ−1
ik

) and γik−1γik (ω) ∈ D(γ−1
ik−1

) and so on.
At the end we get

γi1(γi2(...(γik−1(γik (ω)))...)) ∈ D(γ−1
i1

).

Now, given a point A in H and a half-plane D(γin), any isometry α = γ−1
in
·

γilγil−1 · · · γil+k
satisfiying the same conditions as g sends A to the half-plane

D(γin). �

Consider now the interval ]x, y[ of ∂H that contains ξ such that x and y are the
extremities of a circle Cεi1 , where ε = + or −. Let α0 be the identity, and αi1 the
isometry in Γ sending the point o to the interior of the half-circle Cεi1 (see figure
2.4). Let D(αi1) be the interior of the circle Cεi1 . At the second step ξ will be
in some D(αi1 , αi2) where αi2 is the isometry sending αi1(o) to D(αi1 , αi2). We
do the same as above at the step n and denote by αin the isometry in Γ sending
αi1 ....αin−1(o) to D(αi1 , ..., αin−1 , αin).
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This is possible since there is no gap between adjacents half-circles and because of
the fact that D(αi1 , αi2 , ....αin) ⊂ D(αi1 , αi2 , ..., αin−1) (see [3]) . The fact that the
radius of C−n tends to ∞ is not an obstacle to the construction of these isometries.
Set αi = αi1 , α2 = αi1αi2 and for n > 2 let αn = αi1αi2 ...αin−1αin . We construct a
sequence (αn(o))n>0 and a nested family D(αi1 , ..., αin−1 , αin) in H2. As above the
diameters ofD(αi1 , ..., αin−1 , αin) goes to 0 as n goes to +∞. Then limn→∞ αn(o) =
limn→∞ αi1 ...αin−1αin(o) = ξ, proving that ξ is in the limit set of Γ.

As ξ is any point of ∂H we proved that ΛΓ = ∂H. �
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