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A PRIORI AND A POSTERIORI ERROR ANALYSIS FOR A
HYBRID FORMULATION OF A PRESTRESSED SHELL MODEL

SERGE NICAISE, ISMAEL MERABET, AND RIHANA REZZAG BARA

Abstract. This work deals with the finite element approximation of a prestressed shell model
in the case of isometrically deformed shell. Using a new formulation where the unknowns (the
displacement and the rotation of fibers normal to the midsurface) are described in Cartesian
and local covariant basis respectively. Due to the constraint involved in the definition of
the functional space, a penalized version is then considered. We obtain a non robust a
priori error estimate of this penalized formulation, but a robust one is obtained for its mixed
formulation. Moreover, we present a reliable and efficient a posteriori error estimator of
the penalized formulation. Numerical tests are included that confirm the efficiency of our
residual a posteriori estimator.

1. Introduction

Shell models can be 3D or 2D models, i. e., systems of PDEs involving three or
two independent variables [9, 7]. To reduce the numerical costs, two dimensional
models are often preferred to the three-dimensional ones when they represent a
"good" approximation of them. For 2D models, the unknowns are given on the
mid-surface of the shell and they could be described in local (curvilinear) coordi-
nates system (see [9]) or global (Cartesian) coordinate system (see [4]). Another
possibility of describing shell models is to use a hybrid formulation, i.e., use global
and local coordinates system to describe some measurable physical quantities (dis-
placement, rotation, stress, ...), arising in response to given loads and boundary
conditions.

Prestressing of a structure is the intentional creation of permanent stresses in
the structure for the purpose of improving its performance under various service
conditions. In our days this concept is widely employed in the design of buildings,
towers, bridges, etc. Consequently the numerical analysis of such models is of great
importance.

In this work we are then performing some error analysis of a prestressed (two-
dimensional) shell model which was introduced for the first time in [17]. This model
is the same as the one of a parametrized shell up to the addition of a prestressed
energy term. This term (as well as the flexural one) is derived from the Kirchhoff
model of the bending of the nonlinear elastic plate (obtained as a limit of three-
dimensional nonlinear elasticity). The unknown of the problem is the couple (u, r),
where u is the displacement from the reference configuration and r is the infinites-
imal rotation of the cross section of the shell. In [17] both u and r are described
in Cartesian coordinates and they are sought in the Sobolev space H1 (each one
is a vector field with three components). However, the bilinear form describing
the model involves the first order derivative of the components ui, i = 1, 2, 3 and
rα, α = 1, 2, whereas, it does not use any derivative for the component r3. This
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causes a loss of coercivity of the bilinear form on the space H1. In order to solve
this issue, a larger Hilbert space was considered in [20], where the third component
r3 is sought in the L2 space.

A hybrid formulation is considered here, i.e., the unknowns (the displacement
and the rotation to the shell midsurface are described respectively in Cartesian and
local covariant basis). The use of a hybrid formulation in a similar spirit of the
present paper was used in Blouza [3] for Naghdi’s shell model. The aim of using
hybrid formulation in [3] was to reduce the number of the unknowns (from six to five
because s · a3 = 0) and to get rid of the tangency constraint for the rotation which
was presented by Blouza and al [4]. Hybrid formulation allows to use conforming
finite element methods on unconstrained functional space with a smaller number of
degrees of freedom. Another hybrid formulation of general shell element involving
three incremental displacements corresponding to the stationary global coordinate
directions and two rotations described in a local coordinates system was used in
[1].

The purpose of this work is to provide a non robust a priori error analysis and a
robust a posteriori error estimator of the penalized version of the hybrid formulation
(but a robust a priori error is obtained for its mixed formulation). These a posteriori
estimators yield global upper and local lower bounds for the error (the distance
between exact solution and its approximated solution in the energy norm). When
the error estimator provides an upper bound for the error, this means, that our
estimator is "reliable" and it is called (locally) efficient if it provides a (local) lower
bound for the (local) error apart from (local) data resolution. Different types of a
posteriori estimators are available in the literature. Here we perform an a posteriori
analysis of residual type of the penalized version and prove upper and lower bounds
for the error, with an explicit dependancy of the involved constants with respect
to the penalization parameter. Based on those estimators, adapted meshes can be
constructed allowing to compute an approximated solution with a given accuracy
using a smaller number of degrees of freedom than uniform meshes.

The a posteriori indicators are computable, since they depend on known quan-
tities such as the size of the mesh cells, the problem data, and the approximate
solution. Efficient a posteriori estimators are successfully used for adaptive algo-
rithms that involve local mesh refinements. A lot of works concerning a rigorous
mathematical justification of the convergence of adaptive finite element methods
can be found. The basic idea is to prove a contraction property of the errors be-
tween two consecutive adaptive meshes, but most of these works are concerned
with simple model problems. We do not give a rigorous mathematical justification
of such result for our model. However, the error indicators that we propose show
good convergence results. Finally different numerical tests are presented in order
to show that the use of adaptive meshes speeds up the convergence and to compare
the penalized formulation and the mixed one.

For plates and shell models, there already exist several a posteriori error esti-
mation approaches. We refer to [5, 6, 15, 14] for the pioneering works concerning
plate models. Up to our knowledge, the first a posteriori estimate concerning shell
models formulated in global coordinate system was done in [2] for Naghdi’s shell
model.

An outline of the paper is as follows.
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• In section 2 we recall some geometrical preliminaries of surfaces and the
prestressed model presented in [20].

• In section 3 we present a hybrid formulation of a prestressed shell model
where the unknowns (the displacement and the rotation of fibers normal
to the midsurface) are described in Cartesian and local covariant basis
respectively, we study the existence and uniqueness of the solution. We
then present a penalized version for the new variational formulation and
prove its well-posedness.

• Section 4 is devoted to the finite element approximation for the penalized
problem and we prove the existence and uniqueness of the discrete solution,
we derive a priori error estimates.

• The strong formulation of the penalized problem is detailed in section 5.
• In section 6 we derive a posteriori estimates and prove the reliability and

efficiency of our a posteriori error estimator.
• Numerical experiments are presented in section 7.

Let us finish this introduction with some notation used in the paper. The usual
norm and semi-norm of W s,p(Ω,Rℓ) (with s ⩾ 0, p ∈ [1,∞] and ℓ ∈ N) are denoted
by ∥ · ∥s,p,Ω and | · |s,p,Ω, respectively (the scalar or vector-valued character of the
involved functions is not specified because there is no possible ambiguity). For s = 0
(resp. p = 2), we drop the index s (resp. p). The notation A ≲ B is used for the
estimate A ⩽ C B, where C is a generic constant that does not depend on A and B,
in particular this constant does not depend on the penalization parameter ϵ and the
mesh size h, but it may depend on the thickness of the shell t which is supposed to
be a strictly positive constant. Further for two vectors v and w of Rn (with n = 2
or 3, written in column), we denote by v · w = v⊤w their euclidean inner product.
Similarly for two 2 × 2 matrices M = (mαβ)1⩽α,β⩽2 and N = (nαβ)1⩽α,β⩽2 with
real or vector valued coefficients, we set

M : N =
∑

α,β=1,2
mαβ · nαβ .

2. Presentation of the model.

2.1. Geometry of the shell midsurface. As standard in the present context,
Greek indices and exponents take their values in the set 1, 2 and Latin indices
and exponents take their values in the set 1, 2, 3. Unless otherwise specified, the
summation convention for repeated indices and exponents according to this set of
values is assumed.

For a given domain ω of R2 with a Lipschitz boundary, we consider a shell whose
middle surface S is given by

S = φ (ω̄) ,
where φ ∈ W 2,∞ (ω,R3) is supposed to be a one-to-one mapping and isometric,
i.e., φ ∈ Ad, where,

Ad = {ψ ∈ W 2,2(ω,R3); |∂1ψ| = |∂2ψ| = 1, ∂1ψ · ∂2ψ = 0}. (2.1)
Following [17] and [20] the assumption that the chart φ is isometric is crucial to
obtain the considered prestressed model. Indeed, if ψ is an isometric deformation
of ω obtained by applying some external forces, then the local basis of ψ is the
product of an orthogonal matrix (of determinant 1) times the local basis of φ.
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In other words, the new local basis is just a rotation of the old one. Linear or
nonlinear shell models are usually expressed in terms of the components of the
change of metric tensor and those of the change of curvature tensor between two
deformed surfaces (see Ciarlet [9] for instance). Using the fact that both deformed
surfaces are isometric simplifies significantly the expression of those components
(see [20, p. 3 ]). Of course, prestressed model can be derived without using the
isometric deformation assumption (see Chapelle and Bathe [7, p. 216] for instance),
but other a priori mechanical assumptions have to be added. Those assumptions
are very hard to justify mathematically. Moreover, its well-posedness may need
some additional assumptions.

Now, we define the local basis ai, i = 1, 2, 3 by

aα = ∂αφ, α = 1, 2 and a3 = a1 × a2. (2.2)

Using the fact that φ is isometric we have

ai · aj = δj
i , (2.3)

δj
i being the Kronecker symbol. The contravariant basis {ai}i=1,2,3 is then equal

to the covariant basis {ai}i=1,2,3 . Consequently, the covariant and contravariant
components of the metric (or the first fundamental form) are equal to the identity
matrix

(aαβ) = (aα · aβ) =
(

1 0
0 1

)
and (aαβ) = (aαβ), a(x) = det(aαβ) = 1. (2.4)

The second fundamental forms of the surface is given in covariant components by

bαβ = bβα = a3 · ∂βaα = −aα · ∂βa3.

The Christoffel symbols of the surface Γρ
αβ take the form

Γρ
αβ = Γρ

βα = aρ · ∂βaα = aρ · ∂αaβ .

The linearized strain tensor is given by

γ(u) = (γαβ(u))1⩽α,β⩽2,

where the components γαβ (u) are defined by

γαβ (u) = 1
2 (∂αu · aβ + ∂βu · aα) , (2.5)

and the symmetrized linearized second fundamental form is defined by

Π(s) =
(

∂1s · a2
1
2 (∂2s · a2 − ∂1s · a1)

1
2(∂2s · a2 − ∂1s · a1) −∂2s · a1

)
. (2.6)

2.2. The variational formulation in cartesian coordinates. The unknown of
the problem is the couple (u, r) where u is the displacement from the reference
configuration ω and r is the infinitesimal rotation of the cross-section of the shell.
We assume that the shell is fixed on a part Γ0 of positive measure of the boundary
of ω. According to [17, 20], the model takes the following variational form{

Find U = (u, r) ∈ V such that
a(U, V ) + ap(U, V ) = L(V ), ∀V = (v, s) ∈ V,

(2.7)
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where

V = {(v, s) ∈ H1(ω,R3) × L2(ω,R3) : s · aα ∈ H1(ω), and

s · a3 = γ̃12(v) = 1
2(∂1v · ∂2φ− ∂2v · ∂1φ), v|Γ0 = (s · aα)|Γ0 = 0}, (2.8)

and

a(U, V ) = tam(u, v) + tas((u, r), (v, s)) + t3

12af (r, s),

t being the thickness of the shell assumed to be constant and positive. The bilin-
ear forms am(·, ·), af (·, ·) and as(·, ·) respectively corresponding to the membrane,
flexural, and the transverse shear energies are given by

am(u, v) = 4λµ
λ+ 2µ

∫
ω

trγ(u)trγ(v) dx+ 4µ
∫

ω

γ(u) : γ(v) dx, (2.9)

af (r, s) = 2λµ
λ+ 2µ

∫
ω

trΠ(r)trΠ(s) dx + 2µ
∫

ω

Π(r) : Π(s) dx, (2.10)

as((u, r), (v, s)) = µ

∫
ω

a⊤
3 (∇u− r × ∇φ)

[
a⊤

3 (∇v − s× ∇φ)
]⊤

dx, (2.11)

where µ and λ are the Lamé moduli of the homogeneous and isotropic material
that constitutes the shell. As usual ∇v is the jacobian matrix of v, namely

∇v = (∂1v, ∂2v) =

 ∂1v1 ∂2v1
∂1v2 ∂2v2
∂1v3 ∂2u3

 .

Furthermore as in [17], we have s× ∇φ = (s× a1, s× a2).
The contribution of the prestressed term is represented by

ap(r, s) = t3

12

(
2µ
∫

ω

tr
(
(II0 + IIt

0)τ(r, s)
)
dx+ 4λµ

2µ+ λ

∫
ω

trII0trτ(r, s) dx
)
,

(2.12)
where

τ(r, s) = θ(r)(s · a3) + θ(s)(r · a3) (2.13)
with

θ(s) = 1
2

(
−γ11(s) γ̃12(s)
γ̃12(s) γ22(s)

)
, (2.14)

and

II0 = (∇φ)⊤ · ∇a3 =
(
∂1φ · ∂1a3 ∂1φ · ∂2a3
∂2φ · ∂1a3 ∂2φ · ∂2a3

)
.

Note that II0 is symmetric and therefore in (2.12) the factor II0 + IIt
0 may be

replaced by 2II0. Note further that the prestressed term ap(r, r) is not necessarily
positive for an arbitrary element (v, r) ∈ V.

In our previous paper [20] we have stressed on the importance and the effect of
the prestressed term ap. We recall that the nonpositive character of the prestressed
term may break the coercivity of the bilinear form on the space of admissible test
functions space V even if the bilinear form without prestressed term is V-elliptic. On
the other hand, by mean of the considered model formulated in global coordinates
system, we have observed that the solution with prestress term is more stiff than
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the corresponding model without prestressing which confirms a naturel phenomenon
that can be observed in several applications.

The linear form L is given by

L(v, s) =
∫

ω

f · v dx,

with f ∈ L2(ω,R3) that represents a given resultant force density.

3. A hybrid formulation

Let us introduce the space W such that the displacement and the rotation are
described in Cartesian and local covariant or contravariant basis respectively.

W = {(v, s =
3∑

i=1
siai) ∈ H1 (ω,R3)× (L2(ω))3 | sα ∈ H1(ω), and

s3 = γ̃12(v) = 1
2(∂1v · ∂2φ− ∂2v · ∂1φ), a.e. in ω, v|Γ0 = sα|Γ0 = 0}, (3.1)

equipped with the norm

∥(v, s)∥X =
(

∥v∥2
H1(ω,R3) +

∑
α=1,2

∥sα∥2
H1(ω) + ∥s3∥2

L2(ω)

) 1
2
. (3.2)

The difference between the definition of W and V is that the regularity of the
rotation variable r and the constraint is expressed in curvilinear variables instead
of cartesian ones. Let us now show that the definitions are equivalent. Indeed if
r = (rca

1 , r
ca
2 , r

ca
3 ) is the expression of the rotation in cartesian coordinates, then it

can also be written as

r =
3∑

i=1
riai,

where ri, i = 1, 2, 3 are its curvilinear coordinates. Then by the properties (2.3),
we get

ri = r · ai.

This simply means that W coincides with V, and therefore the bilinear forms a and
ap are well defined (and continuous with respect to the norm (3.2)) on W.

Before going, we want to emphasize that from now on for (u, r) ∈ W, ri always
mean the curvilinear coordinates of r.

Lemma 3.1. — The space W equipped with the norm (3.2) is a Hilbert space.

Proof. — We remark that W is a closed subspace of

X = {(v, s =
3∑

i=1
siai) ∈ H1 (ω,R3)× (L2(ω))3 | sα ∈ H1(ω), v|Γ0 = sα|Γ0 = 0},

(3.3)
equipped with the norm (3.2) because W is simply the kernel of the linear and
continuous operator Q defined by

Q : X −→ L2(ω) : (v, s) 7−→ s3 − γ̃12(v). □
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Then, the new variational formulation reads{
Find U = (u, r) ∈ W such that

a(U, V ) + ap(U, V ) = L(V ), ∀V = (v, s) ∈ W.
(3.4)

Since the bilinear form a + ap and the form L are clearly continuous on W, the
well-posedness of problem (3.4) will be guaranteed if a + ap is coercive on W. For
that purpose, we need the following lemmata.

Lemma 3.2. — Suppose that φ ∈ H2(ω,R3) and that φ(Γ0) is not included into
a straight line. Let V = (v, s) ∈ W. Then a(V, V ) = 0 if and only if V = 0.

Lemma 3.3. — Under the assumptions of Lemma 3.2, the bilinear form a(·, ·)
is coercive on W.

The proofs are fully similar to those given in Lemmata 2 and 3 from [20] and
are then omitted.

Theorem 3.4. — If ∥∇a3∥L∞(ω) is small enough problem (3.4) admits a unique
solution. Moreover, this solution satisfies

∥U∥X ≲ ∥L∥. (3.5)

Proof. — If ∥∇a3∥L∞(ω) is small enough, the bilinear form a(·, ·) + ap(·, ·) re-
mains coercive on W. Hence, the well-posedness of (3.4) follows from the Lax-
Milgram lemma. □

3.1. A penalized version of problem (3.4). In this subsection, we present a
penalized version for the prestressed model (3.4). The approach used here consists
in adding a penalized term in (3.4) used to reformulate the original constrained
problem as an unconstrained one, set on the variational space X defined by (3.3)
and equipped with the norm (3.2).

For a real number ϵ ∈ (0, 1), we consider the following variational problem:{
Find Uϵ = (uϵ, rϵ) ∈ X such that

a(Uϵ, V ) + ap(rϵ, s) + ϵ−1b(Uϵ, V ) = L(V ),∀V = (v, s) ∈ X.
(3.6)

For W = (w, t), V = (v, s) ∈ X, the bilinear form b(·, ·) reads

b(W,V ) =
∫

ω

Q(W )Q(V )dx (3.7)

where,
Q(V ) = s · a3 − γ̃12(v), for any V = (v, s) ∈ X.

Lemma 3.5. — Under the assumption of Lemma 3.2, we have

a(V, V ) + 1
ϵ
b(V, V ) ≳ ∥V ∥2

X, ∀V = (v, s) ∈ X (3.8)

Proof. — Since b(U,U) ⩾ 0 for any U ∈ X, the coercivity of a + 1

ϵ
b on X (with

a coercivity constant independent of ϵ) follows from Lemma 3.3. □

Theorem 3.6. — Under the assumptions of Lemma 3.2 and Theorem 3.4, the
variational problem (3.6) has a unique solution Uϵ in X that satisfies

∥Uϵ∥X ≲ ∥f∥ω. (3.9)
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Proof. — The existence and uniqueness of Uϵ directly follows from the Lax-
Milgram Lemma. Concerning the bound (3.9), we simply take V = Uϵ = (uϵ, rϵ)
in (3.6) to get

a(Uϵ, Uϵ) + ap(rϵ, rϵ) + ϵ−1b(Uϵ, Uϵ) = L(Uϵ).

By the coerciveness property mentioned before and Cauchy-Schwarz’s inequality
we have

∥Uϵ∥2
X ≲ ∥f∥ω∥uϵ∥ω.

By Poincaré’s type inequality we have

∥uϵ∥ω ≲ ∥uϵ∥H1(ω,R3),

which leads to (3.9). □

Proposition 3.7. — Let U := (u, r) be the solution of the problem (3.4) and
Uϵ := (uϵ, rϵ) be the solution of problem (3.6) and let us assume that the assump-
tions of Theorem 3.6 are satisfied. Then

∥rϵ · a3 − γ̃12(uϵ)∥L2(ω) ≲
√
ϵ (3.10)

lim
ϵ→0

∥Uϵ − U∥X = 0. (3.11)

Proof. — See [20, Theorem 8] . □

Remark 3.8. — Note that the results of Proposition 3.7 can be improved. First
we recall that

b(U, V ) = (Q(U),Q(V )) (3.12)
with Q (defined above) is a bounded operator from X into L2(ω). But this operator
Q has a closed range R(Q), because Q is surjective, namely R(Q) = L2(ω).

Indeed, let f ∈ L2(ω) then there exists g := (g1, g2) ∈ H1
0 (ω) ×H1

0 (ω) such that
div g = f − f̄ , with f̄ = 1

|ω|
∫

ω
f dx. Then we set v = 1

2 (g2a1 − g1a2) and s =(
f̄ + 1

2 (g2a1 − g1a2) · (∂2a1 − ∂1a2)
)
a3. We now readily check that V = (v, s3a3)

belongs to X and satisfies Q(V ) = f . Then following [18, Corollary 2.4] (see also
[19, Corollary 3.5]), the next estimates

∥rϵ · a3 − γ̃12(uϵ)∥L2(ω) ≲ ϵ and ∥Uϵ − U∥X ≲ ϵ (3.13)

hold.

4. Finite element approximation of the penalized problem.

As we have mentioned, the constrained problem (3.4) cannot be approximated
by robust conforming methods for a general shell, hence we here propose an ap-
proximation of its penalized version (3.6). Let (Th)h>0 be a regular affine family
of triangulations which covers the domain ω. We introduce the finite dimensional
space

Xh = {Vh = (vh, sh =
3∑

i=1
sihai) ∈ X | vh|T ∈ Pk(T )3, sih ∈ Pk(T ), ∀T ∈ Th, k ⩾ 1},

(4.1)
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and consider the following discrete problem:{
Find Uh = (uh, rh) ∈ Xh such that

a(Uh, Vh) + ap(Uh, Vh) + ϵ−1b(Uh, Vh) = L(Vh),∀Vh = (vh, sh) ∈ Xh.
(4.2)

4.1. A priori error analysis of the penalized problem. In this subsection we
derive a non robust a priori error analysis of the penalized problem (3.6).

Proposition 4.1. — Under the assumptions of Theorem 3.6, problem (4.2) has
a unique solution Uh ∈ Xh that satisfies

∥Uh∥X ≲ ∥f∥ω, (4.3)

Furthermore if we assume that the solution Uϵ of the problem (3.6) belongs to
[H2(ω;R3)] × [H2(ω)]2 × [H1(ω)], then the following a priori error estimate holds

∥Uϵ − Uh∥X ≲
h

ϵ

(
∥uϵ∥H2(ω;R3) +

∑
α=1,2

∥rϵ
α∥H2(ω) + ∥rϵ

3∥H1(ω)

)
. (4.4)

Proof. — Since Xh ⊂ X, the existence of Uh and the a priori bound (4.3) follow
from the that the bilinear form a+ap+ϵ−1b has an ellipticity constant that behaves
like 1, see the proof of Theorem 3.6. On the other hand as its continuity constant
behaves like 1

ϵ , Céa’s lemma and standard interpolation error estimates directly
yield (4.4). □

Remark 4.2. — It is clear that the estimate provided by Proposition 4.1, is not
robust as ϵ goes to zero unless h = o(ϵ).

Remark 4.3. — Note that under the same assumptions of proposition 4.1, the
estimate (4.4) can be improved to get a constant which behaves like h

ϵ1/2 instead of
h
ϵ , if one uses the following ϵ-dependent norm

∥V ∥2
ϵ := a(V, V ) + ap(s, s) + ε−1b(V, V ). (4.5)

With this norm the analogous of (4.3) remains true since we have
∥Uh∥ϵ ≲ ∥f∥ω.

Further with the new norm (4.5), the continuity constant behaves like 1 and there-
fore, by Céa’s lemma, we get

∥Uϵ − Uh∥ϵ ≲ inf
Vh∈Xh

∥Uϵ − Vh∥ϵ ≲ ∥Uϵ − ChUϵ∥ϵ,

where Ch is for instance a Clément type interpolant.
Now for ∥Uϵ − ChUϵ∥X, the properties of Clément interpolant (see below) yield

∥Uϵ − Uh∥X ≲ h
(

∥uϵ∥H2(ω;R3) +
∑

α=1,2
∥rϵ

α∥H2(ω) + ∥rϵ
3∥H1(ω)

)
,

while for ϵ− 1
2 b(Uϵ − ChUϵ, Uϵ − ChUϵ)

1
2 , we have,

ϵ−
1
2 ∥Q(Uϵ − ChUϵ)∥ω ≲ ϵ−

1
2h
(
∥uϵ∥H2(ω;R3) + ∥rϵ

3∥H1(ω)
)
.

Hence, (4.4) becomes

∥Uϵ − Uh∥ϵ ≲
h

ϵ
1
2

(
∥uϵ∥H2(ω;R3) +

∑
α=1,2

∥rϵ
α∥H2(ω) + ∥rϵ

3∥H1(ω)

)
. (4.6)
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4.2. A priori error analysis of the mixed formulation of the penalized
problem. In order to obtain a uniform a priori estimate, we use a mixed formu-
lation of the penalized problem (3.6) (as in [19, sec.4]). Let us first introduce the
following new unknown

ψϵ := Q(Uϵ)
ϵ

,

and the functional space M = L2(ω). Then we rewrite the continuous penalized
problem (3.6) as 

Find (Uϵ, ψϵ) ∈ X×M such that
ã(Uϵ, V ) + (ψϵ,Q(V )) = L(V ), ∀V ∈ X,

(Q(Uϵ), ϕ) − ϵ(ψϵ, ϕ) = 0, ∀ϕ ∈ M,

(4.7)

where ã(·, ·) = a(·, ·) + ap(·, ·) and consider its discrete version:
Find (Uh, ψh) ∈ Xh×Mh such that

ã(Uh, Vh) + (ψh,Q(Vh)) = L(Vh), ∀Vh ∈ Xh,

(Q(Uh), ϕh) − ϵ(ψh, ϕh) = 0, ∀ϕh ∈ Mh,

(4.8)

where
Mh ={ϕh ∈ M | ϕh|T ∈ Pk(T ),∀T ∈ Th, k ⩾ 0}. (4.9)

Theorem 4.4. — Let (Uϵ, ψϵ) be the solution of (4.7) and let (Uh, ψh) be the
solution of problem (4.8). Then we have the following error estimate

∥Uϵ − Uh∥X +
√
ϵ∥ψϵ − ψh∥M ≲

1
ϵ1/2 inf

Wh∈Xh

∥Uϵ −Wh∥h + inf
φh∈Mh

∥ψϵ − φh∥M.

(4.10)

Proof. — Let Ũ ∈ Xh, and ψ̃ ∈ Mh. Then
ã(Uh − Ũ , Vh) + (Q(Vh), ψh − ψ̃) = ã(Uϵ − Ũ , Vh) + (Q(Vh), ψϵ − ψ̃), ∀Vh ∈ Xh,

(4.11)
(Q(Uh − Ũ), ϕh) − ϵ(ψh − ψ̃, ϕh) = (Q(Uϵ − Ũ), ϕh) − ϵ(ψϵ − ψ̃, ϕh), ∀ϕh ∈ Mh.

(4.12)

By taking Vh = Uh − Ũ , and ϕh = ψh − ψ̃ and subtracting (4.12) from (4.11), we
get

∥Uh − Ũ∥2
X + ϵ∥ψh − ψ̃∥2

M ≲ ã(Uϵ − Ũ , Uh − Ũ) + (Q(Uh − Ũ), ψϵ − ψ̃)
− (Q(Uϵ − Ũ), ψh − ψ̃) + ϵ(ψϵ − ψ̃, ψh − ψ̃)
≲ ∥Uϵ − Ũ∥X∥Uh − Ũ∥X + ∥Uh − Ũ∥X∥ψϵ − ψ̃∥M
+ ∥Uϵ − Ũ∥X∥ψh − ψ̃∥M + ϵ∥ψϵ − ψ̃∥M∥ψh − ψ̃∥X.

(4.13)
According to Young’s inequality we deduce that

∥Uh − Ũ∥X +
√
ϵ∥ψh − ψ̃∥M ≲

1√
ϵ
∥Uϵ − Ũ∥X + ∥ψϵ − ψ̃∥M +

√
ϵ∥ψϵ − ψ̃∥M

≲
1√
ϵ
∥Uϵ − Ũ∥X + ∥ψϵ − ψ̃∥M. □
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Remark 4.5. — Again, the estimate provided by Theorem 4.4 is not uniform in ϵ.

In order to get a uniform estimate in ϵ we first need to the following uniform
discrete inf-sup condition.

Lemma 4.6. — For Xh defined in (4.1) and Mh given by (4.9), we have the
following inf-sup condition:

∀ϕh ∈ Mh, sup
Vh∈Xh

(Q(Vh), ϕh)
∥Vh∥X

≳ ∥ϕh∥M. (4.14)

Proof. — Let ϕh ∈ Mh, then by choosing Vh = (vh, sh =
∑

i shiai) with vh =
0, shα = 0, α = 1, 2 and sh3 = ϕh we get

(Q(Vh), ϕh)
∥Vh∥X

⩾ ∥ϕh∥M. □

Theorem 4.7. — Let (Uϵ, ψϵ) be the solution of (4.7) and let (Uh, ψh) be the
solution of problem (4.8). Then for ϵ small enough, we have the following error
estimate

∥Uϵ − Uh∥X + ∥ψϵ − ψh∥M ≲ inf
Wh∈Xh

∥Uϵ −Wh∥X + inf
φh∈Mh

∥ψϵ − φh∥M. (4.15)

Proof. — We use the same choice of test functions as in the proof of Theorem
4.4, but treating the term

(Q(Uϵ − Ũ), ψh − ψ̃)
differently. Indeed, form (4.11) and (4.14) we have

∥ψh − ψ̃∥M ≲ ∥Uh − Ũ∥X + ∥Uϵ − Ũ∥X + ∥ψϵ − ψ̃∥M.
Exploiting this estimate in (4.13), we get

∥Uh − Ũ∥2
X + ∥ψh − ψ̃∥2

M + ϵ∥ψh − ψ̃∥2
M

≲ ∥Uϵ − Ũ∥X∥Uh − Ũ∥X + ∥Uh − Ũ∥X∥ψϵ − ψ̃∥M
+ ∥Uϵ − Ũ∥X

(
∥Uh − Ũ∥X + ∥Uϵ − Ũ∥X + ∥ψϵ − ψ̃∥M

)
+ ϵ∥ψϵ − ψ̃∥M

(
∥Uh − Ũ∥X + ∥Uϵ − Ũ∥X + ∥ψϵ − ψ̃∥

)
+
(
∥Uh − Ũ∥X + ∥Uϵ − Ũ∥X + ∥ψϵ − ψ̃∥M

)2
.

Then using Young’s inequality we obtain the desired estimate. □

Corollary 4.8. — Let (Uϵ, ψϵ) be the solution of (4.7) and let (Uh, ψh) be
the solution of problem (4.8). Assume that Uϵ = (uϵ, rϵ) satisfies uϵ ∈ H2(ω,R3),
rϵ · aα ∈ H2(ω) and rϵ · a3 ∈ H1(ω). Then for ϵ small enough, it holds

∥Uϵ − Uh∥X + ∥ψϵ − ψh∥M ≲ h(∥uϵ∥2,ω +
∑

α=1,2
∥rϵ · aα∥2,ω + ∥rϵ · a3∥1,ω). (4.16)

Proof. — Using (4.7), we find
ã(Uϵ, V ) + (ψϵ,Q(V )) − (Q(Uϵ), ϕ) + ϵ(ψϵ, ϕ) = L(V ), ∀V ∈ X,∀ϕ ∈ M. (4.17)

Take ϕ = 0 and V = (v, s =
∑

i siai), with v = 0, sα = 0, α = 1, 2 and s3 ∈ L2(ω)
in (4.17) to get, for all s3 ∈ L2(ω),

(ψϵ, s3) = −tat((uϵ, rϵ), (0, 0, s3)) − t3

12af (rϵ, (0, 0, s3)) − t3

12ap(rϵ, (0, 0, s3)).
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Then the regularity of Uϵ and the form of the bilinear form ã(·, ·) amount to write

(ψϵ, s3) = (f̃ , s3), ∀s3 ∈ L2(ω),

with f̃ ∈ H1(ω) which implies that ψϵ = f̃ belongs to H1(ω) with the estimate

∥ψϵ∥H1(ω) ≲ ∥uϵ∥2,ω +
∑

α=1,2
∥rϵ · aα∥2,ω + ∥rϵ · a3∥1,ω.

Taking in (4.15), (Wh, φh) = Ch(Uϵ, ψϵ), where Ch is the Clément interpolation
operator and using a standard interpolation estimate (see below), the conclusion
follows by using the previous estimates in (4.15). □

5. The strong formulation (PDEs form) of the penalized problem.

Usually, a posteriori estimator is computed by element-wise integration by parts
starting from the classical formulation or the PDE form of the problem. Hence
in this section we give the strong formulation of problem (3.6). As before we use
the covariant representation of the unknowns, i.e, in the following s =

∑3
i=1 siai,

which makes it easier to obtain the PDEs form. We use also the following notation
ŝ = (s · a1, s · a2)T . We recall that the elasticity coefficients in local coordinates are
given by

aαβρσ = 2µ(aαρaβσ + aασaβρ) + 4λµ
λ+ 2µa

αβaρσ.

Let us then denote by A the elasticity tensor whose components are aαβρσ ∈ L∞(ω)
and define

T (u) := t Aγ(u),
that is a 2 × 2 matrix with coefficients in R3. Note that the property (2.4) implies
that

AM : N = 4µM : N + 4λµ
λ+ 2µ trMtrN, (5.1)

for all symmetric 2 × 2 matrices M and N . According to (2.9), using these defini-
tions, and this last property, we have

am(u, v) =
∫

ω

Aγ(u) : γ(v) dx, (5.2)

and hence

am(u, v) =
∫

ω

Tαβ(u) · γαβ(v)dx

=
∫

ω

Tαβ(u)∂αv · aβ dx.

Hence if u is smooth enough, by Green’s formula we have

tam(u, v) = −
∫

ω

∂α(Tαβ(u)aβ) · v dx+
∫

∂ω

Tαβ(u)nαaβ · v dσ(x)

= −
∫

ω

Div (T (u)A) · v dx+
∫

Γ1

nT (u)A · v dσ(x), (5.3)

where dσ is the surface measure on the boundary ∂ω of ω, n = (n1, n2) is the
unit outward normal vector (written in line) along ∂ω, A = (a1, a2)⊤ is 2 × 3
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matrix and here and below for a 2 × 3 matrix valued function M = (mαi)α,i,
DivM = (

∑
α ∂αmαi)i=1,2,3 (hence is a column vector valued function).

Let us now consider the contribution of the bilinear form at(·, ·). For that pur-
pose, recalling that ∇φ = (a1, a2), a1 × a3 = −a2 and a2 × a3 = a1, we remark
that

a⊤
3 (∇v − s× ∇φ) = a⊤

3 (∂1v, ∂2v) − (a⊤
3 · (s× a1), a⊤

3 · (s× a2))
= (a⊤

3 · ∂1v + s · (a1 × a3), a⊤
3 · ∂2v + s · (a2 × a3))

= (a⊤
3 · ∂1v + s2, a⊤

3 · ∂2v − s1).

Hence if we set

J =
(

0 1
−1 0

)
,

we have
a⊤

3 (∇v − s× ∇φ) = a⊤
3 ∇v + ŝ⊤J⊤.

This expression in (2.11) yields

as((u, r), (v, s)) = µ

∫
ω

(a⊤
3 ∇v + ŝ⊤J⊤)((∇u)⊤a3 + Jr̂) dx. (5.4)

We therefore introduce the 2 × 1 vector valued function

S(u, r) := t µ((∇u)⊤a3 + Jr̂).

Using this notation and (5.4), we get

tas((u, r), (v, s)) =
∫

ω

(a⊤
3 ∇v + ŝ⊤J⊤)S(u, r) dx

=
∫

ω

(
a3 · ∂αvS

α(u, r) + ŝ⊤J⊤S(u, r)
)
dx,

where Sα(u, r) are the two components of S(u, r). As before if Sα(u, r) is smooth
enough, by Green’s formula we will obtain

tas((u, r), (v, s)) =
∫

ω

(−∂α(Sα(u, r)a3) · vdx+
∫

Γ1

Sα(u, r)nαa3 · v dσ(x)

+
∫

ω

J⊤S(u, r) · ŝ dx

= −
∫

ω

Div (S(u, r)a3) · v dx+
∫

Γ1

nS(u, r)a3 · v dσ(x)

+
∫

ω

J⊤S(u, r) · ŝ dx. (5.5)

Next we consider the bilinear form af (r, s). Due to (2.6) and the definition of
the tensor A, we may write

af (r, s) = 1
2

∫
ω

AΠ(r) : Π(s) dx. (5.6)

Hence if we set

M(r) := t3

24AΠ(r) = t3

24(aαβρσΠρσ(r))α,β ,
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we obtain
t3

12af (r, s) =
∫

ω

M(r) : Π(s) dx. (5.7)

We now need to transform Π(s). For that purpose, recalling (2.6), by setting

s̄ =
(

s2
−s1

)
= J

(
s1
s2

)
,

using the property (see [10, Theorem 2.6-1])
∂αs · aβ = ∂αsβ − Γρ

αβsρ − bαβs3, (5.8)
we get

Π(s) = e(s̄) − ℓ̄(s), (5.9)
where e(·) is the usual deformation tensor of the two dimensional elasticity, i.e

e

(
w1
w2

)
=
(

∂1w1
1
2 (∂1w2 + ∂2w1)

1
2 (∂1w2 + ∂2w1) ∂2w2

)
,

and ℓ̄(·) is an operator of order zero which acts on any three dimensional vector
field s as follows

ℓ̄(s) = Γ̄ρsρ + B̄s3 =

 Γρ
12

1
2(Γρ

22 − Γρ
11)

1
2(Γρ

22 − Γρ
11) −Γρ

21

 sρ

+

 b12
1
2(b22 − b11)

1
2(b22 − b11) −b12

 s3.

The splitting (5.9) into (5.6) and (5.7) yields

af (r, s) = 1
2

∫
ω

A(e(r̄) − ℓ̄(r)) : (e(s̄) − ℓ̄(s)) dx, (5.10)

and
t3

12af (r, s) =
∫

ω

M(r) : (e(s̄) − ℓ̄(s)) dx,

and if M(r) is smooth enough by Green’s formula we obtain
t3

12af (r, s) = −
∫

ω

DivM(r) · s̄ dx+
∫

∂ω

nM(r)s̄ dσ(x) −
∫

ω

M(r) : ℓ̄(s) dx

= −
∫

ω

JT DivM(r) · ŝ dx+
∫

∂ω

JTM(r)n⊤ · ŝ dσ(x) −
∫

ω

M(r) : ℓ̄(s) dx.

Finally using the above expression of ℓ̄(s)
t3

12af (U, V ) = −
∫

ω

J⊤Div(M(r)) · ŝdx+
∫

Γ1

JTM(r)n⊤ · ŝ dσ(x)

−
∫

ω

((
M(r) : Γ̄1

M(r) : Γ̄2

)
· ŝ+

(
B̄ : M(r)

)
s3

)
dx. (5.11)

Now we give the contribution of the prestressed term ap(·, ·). First as II0 and
τ(r, s) are symmetric, we directly check that

1
2 tr((II0 + IIt

0)τ(r, s)) = tr(II0τ(r, s)) = II0 : τ(r, s),
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furthermore by (2.13), we have

trτ(r, s) = (s · a3)tr θ(r) + (r · a3)tr θ(s).

Hence we have

2µtr
(
(II0 + IIt

0)τ(r, s)
)

+ 4λµ
2µ+ λ

trII0trτ(r, s) =

(s · a3)
(

4µII0 : θ(r) + 4λµ
λ+ 2µ tr II0tr θ(r)

)
+ (r · a3)

(
4µII0 : θ(s) + 4λµ

λ+ 2µ tr II0tr θ(s)
)
.

= (s · a3)AII0 : θ(r) + (r · a3)AII0 : θ(s),

this last identity following from (5.1). Accordingly, ap(r, s) takes the equivalent
form

ap(r, s) = t3

12

∫
ω

(s3AII0 : θ(r) + r3AII0 : θ(s)) dx. (5.12)

Now setting

P (r) = t3

12AII0r3,

κ(r) = t3

12(II0 : Aθ(r)),

we deduce that

ap(r, s) =
∫

ω

P (r) : θ(s) dx+
∫

ω

κ(r)s3 dx. (5.13)

At this stage we need to transform the matrix θ(s). First using (5.8), we check that

−γ11(s) = −∂1s1 + Γρ
11sρ + b11s3,

γ̃12(s) = ∂1s2 − ∂2s1

2 ,

γ22(s) = ∂2s2 − Γρ
22sρ − b22s3.

Hence introducing s̃ = J̃ ŝ with

J̃ =
(

−1 0
0 1

)
and the operator of order zero ℓ̃ which acts on any three dimensional vector field s
as follows

ℓ̃(s) = Γ̃ρsρ + B̃s3 =
(

Γρ
11 0
0 −Γρ

22

)
sρ +

(
b11 0
0 −b22

)
s3,

we obtain

θ(s) = 1
2
(
e(s̃) + ℓ̃(s)

)
. (5.14)

This expression in (5.13) yields

ap(r, s) = 1
2

∫
ω

P (r) : (e(s̃) + ℓ̃(s)) dx+
∫

ω

κ(r)s3 dx.
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Again if r is smooth enough, we can apply Green’s formula and find

ap(r, s) = −
∫

ω

1
2 J̃ Div (P (r)) · ŝ dx+

∫
Γ1

1
2 J̃P (r)n⊤ · ŝ dσ(x)

+
∫

ω

(κ(r) + 1
2 B̃ : P (r)) s3 dx+

∫
ω

1
2

(
P (u) : Γ̃1

P (u) : Γ̃2

)
· ŝ dx. (5.15)

For the bilinear form b(·, ·), as γ̃12(v) = 1
2(∂1v·∂2φ−∂2v·∂1φ), if Q(U) is sufficiently

regular we find
1
ϵ
b(U, V ) = 1

ϵ

∫
ω

Q(U)(s3 − γ̃12(v)) dx = 1
2ϵ

∫
ω

Div (Q(U)JA) · v dx

− 1
2ϵ

∫
Γ1

Q(U)A⊤Jn⊤ · v dσ(x) + 1
ϵ

∫
ω

Q(U)s3 dx. (5.16)

Using the identities (5.3), (5.5), (5.11), (5.15), (5.16), we see that the solution
Uϵ = (uϵ, rϵ) ∈ X of problem (3.6) satisfies

−Div (T (uϵ)A) − Div (S(Uϵ)a3) + 1
2ϵ Div (Q(Uϵ)JA) = f in ω,

−J⊤DivM(rϵ) −
(
M(rϵ) : Γ̄1

M(rϵ) : Γ̄2

)
+ J⊤S(Uϵ)

−1
2 J̃Div (P (rϵ)) + 1

2

(
P (uϵ) : Γ̃1

P (uϵ) : Γ̃2

)
= 0 in ω,

−
(
B̄ : M(rϵ)

)
+ κ(rϵ) + 1

2 B̃ : P (rϵ) + 1
ϵ

Q(Uϵ) = 0 in ω,

uϵ = rϵ
α = 0 on Γ0,

nT (uϵ)A+ nS(Uϵ)a3 − 1
2ϵ Q(Uϵ)A⊤Jn⊤ = 0 on Γ1,

1
2 J̃P (rϵ)n⊤ + J⊤M(rϵ)n⊤ = 0 on Γ1.


(5.17)

Note that by taking test functions in D(ω)6 in (5.3), (5.5), (5.11), (5.15), (5.16),
we find that the three first identities are valid in the distributional sense. This
means that the left-hand side of this identities belongs to L2(ω)3, L2(ω)2, and L2(ω)
respectively. Using the following Green’s formula∫

ω

(J · ∇ϕ+ ϕdiv J) dx = ⟨J · n⊤, ϕ⟩
H− 1

2 (∂ω)−H
1
2 (∂ω)

,

valid for ϕ ∈ H1(Ω) and J ∈ H(div, ω) (see [13, (I.2.17)]), we deduce that the
boundary conditions in Γ1 holds in (H̃ 1

2 (Γ1)3)′ and (H̃ 1
2 (Γ1)2)′ respectively.

6. A posteriori error estimate of the penalized problem.

As we have mentioned in the introduction of this paper, we focus only on residual
a posteriori estimate. For the problem (3.6), the residual RUh

(·) is then defined as
follows

RUh
= a(U ϵ − Uh, V ) + ap(U ϵ − Uh, V ) + ϵ−1b(U ϵ − Uh, V )
= L(V − Vh) − a(Uh, V − Vh) − ap(Uh, V − Vh) − ϵ−1b(UhV − Vh),

(6.1)

for an arbitrary Vh ∈ Xh. From the fact that a(·, ·) + ap(·, ·) + ϵ−1b(·, ·) is coercive
with a coercivity constant equivalent to 1, we infer that

∥U ϵ − Uh∥X ≲ ∥RUh
∥X′ .
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We first observe that the bilinear forms a(·, ·),ap(·, ·) and b(·, ·) have variable
coefficients. In such a case, in order to construct error indicators we need to ap-
proximate the data and the coefficients by piecewise polynomials, see [2].

6.1. Approximation of the data and coefficients. We introduce the approxi-
mation spaces M̃(ℓ)

h , with ℓ ∈ N and Zh as follows

M̃(ℓ)
h =

{
χh ∈ L2(ω); ∀T ∈ Th, χh|T ∈ Pℓ(T )

}
,

Zh =
{
gh ∈ L2(ω)3; ∀T ∈ Th, gh|T ∈ P0(T )3} ,

and consider an approximation fh of f in Zh and an approximation bh
αβ of the coef-

ficient bαβ in M̃(1)
h (as b12 = b21, we assume that bh

12 = bh
21). Similarly, we consider

approximations ah
k of the vectors ak and dh

αβ of ∂αaβ in (M̃(2)
h )3 and (M̃(1)

h )3 re-
spectively. Obviously we assume that these approximated coefficients are uniformly
bounded (with respect to the L∞-norm) in h. We introduce the approximations
ah(·, ·),ah

p(·, ·) and bh(·, ·) of the bilinear forms a(·, ·),ap(·, ·) and b(·, ·) respectively
where ai, ∂αaβ , and bαβ are replaced by their approximations. More precisely, for
U = (u,

∑
i riai) ∈ X, we set (compare with (2.5), (5.14), and (5.9))

γh
αβ(u) = 1

2
(
∂αu · ah

β + ∂βu · ah
α

)
,

γ̃h
12(u) = 1

2
(
∂1u · ah

2 − ∂2u · ah
1
)
,

Πh(s) = e(s̄) − ℓ̄h(s),

θh(s) = 1
2
(
e(s̃) + ℓ̃h(s)

)
,

IIh
0 = −

(
bh

11 bh
12

bh
12 bh

22

)
,

Qh(U) = r3 − γ̃h
12(u),

where ℓ̄h(s) and ℓ̃h(s) are defined as ℓ̄(s) and ℓ̃(s), the coefficients bαβ and Γρ
αβ

being replaced by bh
αβ and ah

ρ · dh
αβ respectively. Then we set (compare with (5.2),

(5.10), (5.4) and (5.12))

ah
m(u, v) =

∫
ω

Aγh(u) : γh(v) dx,

ah
f (r, s) = 1

2

∫
ω

A(e(r̄) − ℓ̄h(r)) : (e(s̄) − ℓ̄h(s)) dx,

ah
s ((u, r), (v, s)) = µ

∫
ω

((ah
3 )⊤∇v + ŝ⊤J⊤)((∇u)⊤ah

3 + Jr̂) dx,

ah
p(r, s) = t3

12

∫
ω

(s3AIIh
0 : θh(r) + r3AIIh

0 : θh(s)) dx,

and finally

ah(U, V ) = tah
m(u, v) + tah

t ((u, r), (v, s)) + t3

12a
h
f (r, s),

bh(U, V ) =
∫

ω

Qh(U)Qh(V )dx.
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We also introduce the approximation Lh of the linear form L, namely,

Lh(V ) =
∫

ω

fhv dx.

Then for any Vh ∈ Xh, we may write the residual as

RUh
=L(V − Vh) − a(Uh, V − Vh) − ap(Uh, V − Vh) − 1

ϵ
b(Uh, V − Vh)

=(L − Lh)(V − Vh) − (a − ah)(Uh, V − Vh)

−(ap − ah
p)(Uh, V − Vh) − 1

ϵ
(b− bh)(Uh, V − Vh)

−ah(Uh, V − Vh) − ap(Uh, V − Vh) − 1
ϵ
bh(Uh, V − Vh) + Lh(V − Vh).

(6.2)

We again recall the properties of the Clément operator Ch [11], for 0 ⩽ m ⩽ l ⩽ 1

∀h,∀T ∈ Th,∀w ∈ H l(ω) ∥w − Chw∥m,T ≲ hl−m
T ∥w∥l,∆(T ), (6.3)

∀h,∀e ∈ Eh,∀w ∈ H l(ω) ∥w − Chw∥m,e ≲ h
l−m− 1

2
e ∥w∥l,∆(e), (6.4)

where ∆(T ) = ∪T ′∈Th:T ′∩T ̸=∅T
′ (resp. ∆(e) = ∪T ′∈Th:e⊂T ′T ′) is the patch asso-

ciated with the element T (resp. the edge e) and Eh is the set of edges of the
triangulation.

Lemma 6.1. — Let V = (v,
∑

i siai) and Vh = (vh, sh) = (Chv,
∑

i(Chsi)ai),
then we have the following estimate∣∣(L − Lh)(V − Vh)−(a − ah)(Uh, V − Vh) − (ap − ah

p)(Uh, V − Vh)
−ϵ−1(b− bh)(Uh, V − Vh)

∣∣ ≲ (εd
h + εc

h

)
∥V ∥X,

where

εc
h = (ε−1 max

k=1,2,3
∥ak − ah

k∥∞,ω + max
α,β=1,2

∥∂αaβ − dh
αβ∥∞,ω

+ max
ρ,σ=1,2

∥bρσ − bh
ρσ∥∞,ω) ∥f∥ω,

εd
T = hT ∥f − fh∥T ,

and
εd

h = (
∑

T

(εd
T )2) 1

2 .

Proof. — First one estimates the term (L − Lh)(V − Vh). As we have

(L − Lh)(V − Vh) =
∫

ω

f · (v − Chv)dx−
∫

ω

fh · (v − Chv)dx

=
∫

ω

(f − fh) · (v − Chv)dx

=
∑

T ∈Th

∫
T

(f − fh) · (v − Chv)dx,

Cauchy-Schwarz’s inequality and the property (6.3) of Ch yield

|(L − Lh)(V − Vh)| ⩽ εd
h∥V ∥X.
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Secondly we estimate
(a − ah)(Uh, V − Vh) + (ap − ah

p)(Uh, V − Vh) + ϵ−1(b− bh)(Uh, V − Vh).
We only give an abridged proof of this technical result. We first estimate

(a − ah)(Uh, V − Vh) = t(am − ah
m)(uh, v − vh) + t(at − ah

t )(Uh, V − Vh)

+ t3

12(af − ah
f )(rh, s− sh).

To estimate the term (am − ah
m)(Uh, V − Vh), we typically have to estimate a

term like

Ah(uh, v − vh) :=
∫

ω

(γ11(uh)γ11(v − vh) − γh
11(uh)γh

11(v − vh)) dx.

That we transform as
Ah(uh, v − vh)

=
∫

ω

(γ11(uh)(γ11(v − vh) − γh
11(v − vh)) + (γ11(uh) − γh

11(uh))γh
11(v − vh)) dx.

For the first term, we use the identity γ11(u) − γh
11(u) = ∂1u · (a1 − ah

1 ), and apply
Cauchy-Schwarz’s inequality and (4.3) to get∣∣∣∣∫

ω

γ11(uh)(γ11(v − vh) − γh
11(v − vh)) dx

∣∣∣∣ ≲ ∥f∥ω∥∂1(v − vh) · (a1 − ah
1 )∥ω.

As
∥∂1(v − vh) · (a1 − ah

1 )∥ω ⩽ ∥a1 − ah
1 ∥L∞(ω)∥∂1(v − vh)∥ω,

by the property (6.3), we deduce that∣∣∣∣∫
ω

γ11(uh)(γ11(v − vh) − γh
11(v − vh)) dx

∣∣∣∣ ≲ εc
h∥f∥ω∥V ∥X.

The second term is estimated in the same manner, which leads to
|Ah(uh, v − vh)| ≲ εc

h∥f∥ω∥V ∥X.
The same techniques on the remaining terms of a − ah and on all terms of ap − ah

p

yield
|(a − ah)(uh, v − vh)| ≲ εc

h∥f∥ω∥V ∥X,
|(ap − ah

p)(rh, s− sh)| ≲ εc
h∥f∥ω∥V ∥X.

The last term ε−1(b− bh) requires a more specific attention. First it is split up as
follows

ε−1(b− bh)(Uh, V − Vh) = ε−1
∫

ω

(
Q(Uh)Q(V − Vh) − Qh(Uh)Qh(V − Vh)

)
dx

= ε−1
∫

ω

Q(Uh)(Q(V − Vh) − Qh(V − Vh))dx

+ ε−1
∫

ω

Qh(V − Vh)(Q(Uh) − Qh(Uh))dx.

Hence using Cauchy-Schwarz’s inequality, and the property

Q(u, r) − Qh(u, r) = −1
2((a2 − ah

2 )∂1u− (a1 − ah
1 )∂2u),
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we find

ε−1|(b− bh)(Uh, V − Vh)| ≲ ε−1 sup
k=1,2,3

∥ai − ah
i ∥L∞(ω) ∥Uh∥X∥V − Vh∥X.

Using the bound (4.3) and the estimate (6.3), we find

ε−1|(b− bh)(Uh, V − Vh)| ≲ ε−1 sup
k=1,2,3

∥ai − ah
i ∥L∞(ω) ∥f∥ω∥V ∥X.

The previous estimates yield the conclusion. □

Now we need to estimate the term

Lh(V − Vh) − ah(Uh, V − Vh) − ah
p(Uh, V − Vh) − 1

ϵ
bh(Uh, V − Vh).

In order to define appropriately the indicators, we introduce

Th(u) = t Aγh(u),
Ah = (ah

1 , a
h
2 )⊤,

Sh(u, r) = t µ((∇u)⊤ah
3 + Jr̂),

Mh(r) = t3

24AΠh(r),

Ph(r) = t3

12AII
h
0 r3,

κh(r) = t3

12(IIh
0 : Aθh(r)).

Now for all T ∈ Th, we can define the following indicators (compare with problem
(5.17))

η
(1)
T = hT ∥fh + Div (Th(uh)Ah) + Div (Sh(Uh)ah

3 ) − 1
2ϵDiv (Qh(Uh)JAh)∥L2(T,R3)

+
∑

e∈Ei
h

∩∂T

1
2h

1
2
e ∥[nTh(uh)Ah + nSh(Uh)ah

3 − 1
2ϵQh(Uh)A⊤

h Jn
⊤]e∥L2(e,R3)

+
∑

e∈Eb
h

∩Γ̄1∩∂T

h
1
2
e ∥nTh(uh)Ah + nSh(Uh)ah

3 − 1
2ϵQh(Uh)A⊤

h Jn
⊤∥L2(e,R3),

η
(2)
T = hT ∥J⊤DivMh(rh) +

(
Mh(rh) : Γ̄1

h

Mh(rh) : Γ̄2
h

)
− J⊤Sh(Uh)

+ 1
2 J̃Div (Ph(rh)) − 1

2

(
Ph(uh) : Γ̃1

h

Ph(uh) : Γ̃2
h

)
∥L2(T )2

+
∑

e∈Ei
h

∩∂T

h
1
2
e ∥[ 12 J̃Ph(rh)n⊤ + J⊤Mh(rh)n⊤]e∥L2(e)2

+
∑

e∈Eb
h

∩Γ̄1∩∂T

h
1
2
e ∥1

2 J̃Ph(rh)n⊤ + J⊤Mh(rh)n⊤∥L2(e)2 ,

η
(3)
T = ∥B̄h : Mh(rh) − κh(rh) − 1

2 B̃h : Ph(rh) − 1
ϵ

Qh(Uh)∥L2(T ),
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where Eb
h is the set of edges of the triangulation included into the boundary of ω,

while E i
h = Eh \ Eb

h. We further introduce the local indicator

ηT = η
(1)
T + η

(2)
T + η

(3)
T ,

and the global one

ηh =
( ∑

T ∈Th

η2
T

) 1
2
. (6.5)

Proposition 6.2. — Let V = (v,
∑

i siai) ∈ X and let Vh = (Chv,
∑

i(Chsi)ai)
be the Clément interpolant of V , then
|ah(Uh, V −Vh)+ah

p(Uh, V −Vh)+ϵ−1bh(Uh, V −Vh)−Lh(V −Vh)| ≲ ηh∥V ∥X. (6.6)

Proof. — We split up the left-hand side of (6.6) in three terms as follows
Lh(V − Vh) − ah(Uh, V − Vh) − ah

p(Uh, V − Vh) − ϵ−1bh(Uh, V − Vh)
= A1(Uh, V − Vh) +A2(Uh, V − Vh) +A3(Uh, V − Vh),

where
A1(Uh, V − Vh) = Lh(v − Chv) − ah(Uh, (v − Chv, 0)) − ϵ−1bh(Uh, (v − Chv, 0)),

A2(Uh, V − Vh) = −ah(Uh, (0,
∑

α

(sα − Chsα)aα)) − ah
p(Uh, (0,

∑
α

(sα − Chsα)aα))

− ϵ−1bh(Uh, (0,
∑

α

(sα − Chsα)aα)),

A3(Uh, V − Vh) = −ah(Uh, (0, (s3 − Chs3)a3)) − ah
p(Uh, (0, (s3 − Chs3)a3))

− ϵ−1bh(Uh, (0, (s3 − Chs3)a3)).
For the first term, by elementwise Green’s formula we directly have

A1(Uh, V − Vh) =
∑

T ∈Th∫
T

(fh + Div (Th(uh)Ah) + Div (Sh(Uh)ah
3 ) − 1

2ϵ Div (Qh(Uh)JAh) · (v − Chv) dx

+
∑

T ∈Th

∑
e∈Γ̄1∩∂T

∫
e

( 1
2ϵ Qh(Uh)AT

hJn
⊤− nTh(uh)Ah − nSh(Uh)ah

3 ) · (v − Chv) dσ(x).

(6.7)
Cauchy-Schwarz’ inequality and the properties of the Clément interpolant Ch yield

|A1(Uh, V − Vh)| ≲
( ∑

T ∈Th

(
η

(1)
T

)2
) 1

2 ∥V ∥X.

In a fully similar manner, we have

|A2(Uh, V − Vh)| ≲
(∑

T

(
η

(2)
T

)2
) 1

2 ∥V ∥X.

Finally we directly check that

A3(Uh, V−Vh) =
∑

T

∫
T

(B̄h :Mh(rh)−κ(rh)− 1
2 B̃h :Ph(rh)− 1

ϵ Qh(Uh))(s3−Chs3)dx,

(6.8)
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hence using (6.3), we directly get

|A3(Uh, V − Vh)| ≲
(∑

T

(
η

(3)
T

)2
) 1

2 ∥V ∥X.

The estimates on |Ai(Uh, V − Vh)| directly yield the conclusion. □

6.2. Upper and lower error bounds. At this stage we are able to prove the
following robust upper bound.

Theorem 6.3. — The following a posteriori error estimate holds between the
solution Uϵ of problem (3.6) and the solution Uh of problem (4.2)

∥Uϵ − Uh∥X ≲ ηh + εd
h + εc

h. (6.9)
Proof. — The estimate (6.9) follows from the fact that a(·, ·)+ap(·, ·)+ϵ−1b(·, ·)

is coercive with a coercivity constant equivalent to 1, by using the identity (6.2),
Lemma 6.1 and Proposition 6.2. □

Let us go with the lower bound.
Theorem 6.4. — Let Uϵ be the solution of problem (3.6) and Uh the solution

of problem (4.2). Then we have the following bound

η
(i)
T ≲ ϵ−1∥Uϵ − Uh∥X(ωT ) + εd

ωT
+ εc

ωT
, i = 1, 2, 3, (6.10)

where the index ωT means that the quantity is taken only in ωT and the norm
X(ωT ) means the norm of X with integrals restricted to ωT .

Proof. — The proof is quite standard and is based on standard inverse inequaltiy,
see [22] for instance. We will only prove the inequality (6.10) for η(1)

T since it is
fully similar for η(2)

T and η(3)
T . For shortness, we write η(1)

T in the following compact
form

η
(1)
T = hT ∥Fh∥T +

∑
e∈Ei

h
∩∂T

h
1
2
e ∥[Gh]e∥e +

∑
e∈Eb

h
∩∂T

h
1
2
e ∥Gh∥e.

First of all, let us fix the standard bubble function ψT associated with T and set

v =
{
FhψT in T,

0 in ω \ T. (6.11)

By the definition of ψT , we may notice that v ∈ H1
0 (ω,R3) and hence (v, 0) belongs

to X. It follows from (6.7) with Vh = 0 that
Lh(v, 0) − ah(Uh, (v, 0)) − ϵ−1bh(Uh, (v, 0))

=
∫

T

(fh + Div (Th(uh)Ah) + Div (Sh(Uh)ah
3 ) − 1

2ϵDiv (Qh(Uh)JAh) · v dx

= ∥Fhψ
1
2
T ∥2

L2(T )3 .

Using the identity (6.2), we may write
a(U ϵ − Uh, (v, 0)) + ϵ−1b(U ϵ − Uh, (v, 0)) = (L − Lh)((v, 0)) − (a − ah)(Uh, (v, 0))

− 1
ϵ

(b− bh)(Uh, (v, 0)) − ah(Uh, (v, 0))

− 1
ϵ
bh(Uh, (v, 0)) + Lh((v, 0)).
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Hence
Lh(v, 0) − ah(Uh, (v, 0)) − ϵ−1bh(Uh, (v, 0)) =

a(U ϵ − Uh, (v, 0)) + ϵ−1b(U ϵ − Uh, (v, 0)) − (L − Lh)((v, 0))

+ (a − ah)(Uh, (v, 0)) − 1
ϵ

(b− bh)(Uh, (v, 0)).

By the previous identities, we get

∥Fhψ
1
2
T ∥2

L2(T )3 =a(U ϵ − Uh, (v, 0)) + ϵ−1b(U ϵ − Uh, (v, 0))
− (L − Lh)(v, 0) + (a − ah)(Uh, (v, 0))

− 1
ϵ

(b− bh)(Uh, (v, 0)).

So by Cauchy-Schwarz’s inequality and the arguments of Lemma 6.1, we find

∥Fhψ
1
2
T ∥2

L2(T,R3) ≲
(
ϵ−1∥Uϵ − Uh∥X(T ) + εd

T + εc
h

)
∥v∥H1(T,R3). (6.12)

Using the following inverse inequality
∥v∥H1(T,R3) ≲ h−1

T ∥v∥L2(T,R3), (6.13)
and using that the function ψT takes it values between 0 and 1, we deduce

∥v∥H1(T,R3) ≲ h−1
T ∥Fh∥L2(T )3 . (6.14)

In addition we have
∥Fh∥L2(T )3 ⩽ c∥Fhψ

1
2
T ∥L2(T )3 . (6.15)

Combining (6.12), (6.14) and (6.15) we get

hT ∥Fh∥L2(T )3 ≲ ϵ−1∥Uϵ − Uh∥X(T ) + εd
T + εc

T .

The second step is to bound the second term of η(1)
T , for all edges e of T shared

with the element T ′. In this case we choose the function v in (6.7) as follows

v =
{

Me,κ([Gh]e)ψe for κ ∈ {T, T ′} ,
0 in ω \ (T ∪ T ′),

(6.16)

where ψe is the standard edge bubble function associated with e and Me,κ(q) is
an extension operator that sends a polynomial q in the edge coordinate of e to a
polynomial in cartesian coordinates in κ. As before we see that

∥[Gh]eψe∥2
L2(e)2 = ah(Uh, (v, 0, 0, 0)) + ϵ−1bh(Uh, (v, 0, 0, 0)) − Lh(v, 0, 0, 0)

+
∫

∆(e)
(fh + Div (Th(uh)Ah) + Div (Sh(Uh)ah

3 ) − 1
2ϵDiv (Qh(Uh)JAh) · vdx.

Using the identity (6.2) and the arguments of Lemma 6.1, we then have

∥[Gh]eψe∥2
e ≲ ϵ−1∥Uϵ − Uh∥X(∆(e))∥v∥X(∆(e)) +

(
εd

∆(e) + εc
∆(e)

)
∥v∥X(∆(e))

+ ∥Fh∥∆(e)∥v∥∆(e).

By a standard inverse inequality, we conclude

h
1
2
e ∥[Gh]eψe∥2

e ≲ ϵ−1
∑

κ∈{T,T ′}

∥Uϵ − Uh∥X(∆(e)) + εd
∆(e) + εc

∆(e).



76 S. Nicaise, I. Merabet & R. Rezzag Bara

The third term is bounded in the same manner than the second one. The proof is
therefore complete. □

Remark 6.5. — As usual, if f is more regular than simply L2(ω,R3), namely if
f belongs to Hs(ω,R3) for some s > 0, and if fh is chosen to be the L2(ω,R3)
projection of f into Zh, then εd

h is a higher order term (h.o.t.) with respect to the
optimal order of convergence h expected for the error between Uϵ and Uh (since the
boundary of ω may be non smooth). Indeed by a standard interpolation estimate
we have

∥f − fh∥T ≲ hs|f |s,T ,

which yields
εd

T ≲ h1+s.

Since s is positive, we deduce that εd

h = o(1), in other words εd
h is a h.o.t.

Similarly if the coefficients aα are smoother, namely if aα ∈ W 3,p(ω,R3), for
some p > 2 (which is guaranteed by the regularity φ ∈ W 4,p(ω,R3)), if h ≲ ϵ, and
if ah

k (resp. dh
αβ and bh

αβ) is chosen to be the L2(ω) projection of ak into (M̃(2)
h )3

(resp. of ∂αaβ into (M̃(1)
h )3 and of bαβ into M̃(1)

h ), then εc
h is a h.o.t. Indeed under

the above assumptions, using [8, Theorem 3.1.4], we have

∥ak − ah
k∥L∞(T )3 ≲ h3− 2

p |ak|3,p,ω,

∥∂αaβ − dh
αβ∥L∞(T )3 ≲ h2− 2

p |∂αaβ |2,p,ω,

∥bαβ − bh
αβ∥L∞(T ) ≲ h2− 2

p |bαβ |2,p,ω.

With the assumption h ≲ ϵ, we deduce that

εc
h ≲ h2− 2

p max
α=1,2

∥aα∥3,p,ω.

We then deduce that εc
h

h = h1− 2
p which is o(1) as soon as p > 2.

7. Numerical experiments

We now describe how the error indicators exhibited in section 5 can be used
to adapt the mesh for the discrete problem (4.2). We use Dörfler [12] marking
strategy, which is a practical procedure to estimate and equidistribute the local
error. An efficient indicator identifies the parts of the domain that induces large
errors and use this information to locally refine and if necessary repeat the finite
element computation. We start with an initial coarse triangulation Th followed by
an iterative loops procedure of the form:

SOLVE → ESTIMATE → MARK → REFINE
The numerical experiments that we now present have been performed using the
finite element code FreeFem++ [16]. Note that Freefem++ contains an anisotropic
mesh generator (BAMG1), thus the mesh is refined automatically, hence the adapted
mesh is not necessarily quasi uniform. The obtained results will be used to test the
reliability of the anisotropic adaptive mesh procedure.

Numerical computations are made using the scheme (4.2) with P3-Lagrange el-
ements for the displacement and P2-Lagrange element for the rotation, as well as

1Bidimensional Anisotropic Mesh Generator
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the scheme (4.8) with P2 elements for displacement, P1 for the rotation and P1
for the Lagrange multiplier. It is well known that condition numbers of penal-
ized methods are larger than their non-penalized counterparts, especially for very
small values of the thickness t. In the context of the linear Koiter shell model,
the relationship between the thickness t, the mesh size h, the parameter ϵ and the
corresponding condition number can be found in [19, Sec.6 ]. Even for a fixed value
of the thickness, taking “very small” values of the parameter ϵ leads to systems
with very large condition number and therefore the solutions are unstable with re-
spect to small changes in data. However, the strategy (of choosing the parameter)
that we have made for this model is the same than the one we have used for other
classical shell models (Naghdi, Koiter ...) without the prestressed term. Indeed, we
have observed that when the penalization parameter ϵ−1 was 10 × E

2(1+ν) we obtain
excellent results for the constraint rϵ · a3 − γ̃12(uϵ) and also good results in terms
of the reference value. Note also that in our considered numerical experiments we
have observed that the range of values of ϵ that can be used is between 10−6 and
10−16 and that the results are robust with respect to ϵ since they are very close for
ϵ−1 = 109 and ϵ−1 = 7.6 × 1011. For shortness, we have only presented the results
for this last value.

7.1. First example. In the first example, we consider a cylindrical shell (see Fig-
ure 7.1). We take E = 200 GPa for the Young modulus and ν = 0.3 for the Poisson
ratio of the material. Note that this gives the values

4λµ
λ+ 2µ = 1.31868×1011, 4µ = 3.07692×1011 and ϵ−1 = 10× E

2(1 + ν) = 7.6×1011,

where,

λ = E ν

(1 + ν)(1 − 2ν) , µ = E
2(1 + ν)

The radius R = 3/2, the length L = 2R, and the angle α = 40◦, hence the width
of the rectangle is 2R0, with R0 = R sinα = 0.6427. In other words, the domain ω
is defined to be the rectangle

ω = {(x, y) ∈ R2; −R0 ⩽ x ⩽ R0 and 0 ⩽ y ⩽ 2L}.

The middle surface S can be parametrized by the chart φ, with
φ(x, y) = (R sin(x/R), y, R cos(x/R)).

Then the covariant basis is
a1 = (cos(x/R), 0,− sin(x/R))⊤, a2 = (0, 1, 0)⊤, a3 = (sin(x/R), 0, cos(x/R))⊤,

and

(bαβ)1⩽α,β⩽2 =
(

− 1
R 0

0 0

)
.

The asymptotic directions are curves of the form x = Cte. As loading we chose f
consistent with the flexural regime, namely,

f = t3 × q × cos(2y)a3, q = −5 × 107,

while the thickness t of the shell is fixed to be t = 0.01R. Note that the numerical
values of the constraint rϵ · a3 − γ̃12(uϵ) vary between ±4 × 10−8.
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o x

z

y

clamped edges

Figure 7.1. The shell geometry

Since the values of t are relatively small in our tests, we avoid the use of the
P2-P1 schemes because it is shown in [20, Table 1. p. 16 ] that this scheme suffers
from locking phenomena.

In Table 7.1 we present the convergence results for P3-P2 elements for uniformly
refined meshes. We have used seven uniformly refined meshes of the form 2N ×
N, N = 10, 15, 20, 25, 30, 35, 40, where N denotes the number of points of the
triangulation on the shorter side of the rectangular domain. Table 7.2 presents
the convergence results for P3-P2 elements using adaptive method based on our a
posteriori error estimator. Note that since we do not know the exact solution for
the considered test, the reference solution is obtained using P3-P2 elements on a
very fine mesh corresponding to N = 80 (which leads to a linear system with 502806
degrees of freedom) and we present the relative L2 error in term of the number of
degrees of freedom or the mesh size. This allows us to avoid the dependency with
respect to the coefficient E and the parameter ϵ−1 which are rather larger for our
numerical tests.

Using the residual a posteriori estimator with 73363 degrees of freedom we obtain
good results for the error with respect to the L2 norm, while 126606 degrees of
freedom are needed for the uniform adaptive method to get an error of the same
order. This means that the use of adaptive meshes speeds up the convergence. Note
that we may observe that the error slightly oscillates for the adaptive method, this
phenomena was also observed for other classical thin shell models.

Table 7.3 presents the values of maxT ∈Th
ηi

T for i = 1, 2, 3 against the number
of degrees of freedom from step 1 to step 6. We notice that their values decrease
and converge to zero, which confirm the effectiveness of our estimator. Note that
the values of the components max

T ∈Th

ηi
T using the P3-P2 elements reveal that for the
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N h Number of degrees of freedom ∥u−uref ∥
∥uref ∥

∥r−rref ∥
∥rref ∥

10 0.244 8256 0.002478 0.000179
15 0.162 18231 0.000418 4.9 × 10−5

20 0.122 32106 0.000151 1.32 × 10−5

25 0.097 49881 8.10 × 10−5 3.76 × 10−6

30 0.081 71556 5.07 × 10−5 1.29 × 10−6

35 0.069 79131 3.23 × 10−5 4.62 × 10−7

40 0.061 126606 2.36 × 10−5 3.25 × 10−7

Table 7.1. Convergence results using uniform refined meshes for
the penalized version

Iteration Number of degrees of freedom ∥u−uref ∥
∥uref ∥

∥r−rref ∥
∥rref ∥

1 3438 0.000872 0.006916
2 7293 0.000174 0.005271
3 15450 0.000819 0.001484
4 33615 0.000527 4.14 × 10−5

5 73362 1.44 × 10−5 6.31 × 10−5

Table 7.2. Convergence results using adaptive method for the
penalized version

Iteration Degrees of
freedom max

T ∈Th

η
(1)
T max

T ∈Th

η
(2)
T max

T ∈Th

η
(3)
T

ln
(

η(i)
η(i+1)

)
ln
(

N(i)
N(i+1)

) ln
(

η(i)
η(i+1)

)
ln
(

h(i)
h(i+1)

)
1 3438 58.51 0.44 1.36 1.6291 4.2327
2 7293 14.94 0.12 1.66 1.0280 3.6051
3 15450 7.49 0.10 ×10−5 0.75 1.0924 3.3954
4 33615 3.26 0.05×10−5 0.29 0.9484 3.0442
5 73362 1.95 0.008×10−5 0.31 1.1064 2.9388
6 145116 0.80 0.007×10−6 0.11

Table 7.3. Convergence results for the error indicators defined in
Section 5 for the penalized version

considered example the maximal value of the indicator η2
T is indeed much smaller

than η1
T and η3

T . This is due to the fact that the indicators η1
T and η3

T depend on the
parameter ϵ−1 while η2

T does not (see the proof of Proposition 6.2). In the sixth col-
umn of Table 7.3, we show the computed value of the ratio ln

(
η(i)

η(i+1)

)
/ ln

(
N(i)

N(i+1)

)
,

where η(i) is global indicator ηh (defined by (6.5)) in the step i = 1, . . . , 5 and N(i)
is the number of degrees of freedom for the same step. We observe that the value of
this ratio is close to 1 which suggests the relation ηh ≈ Cte N−1. The last column
of Table 7.3 shows the relationship between the global indicator and the mesh size
h, from those results, we may conjecture that ηh is proportional to hα, with α ≈ 3.
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We then conclude that the error indicators that we propose show good convergence
results for the considered example.

(a) Initial mesh (b) Adapted mesh after six iterations

Figure 7.2. Initial and adapted mesh

Figure 7.2 represents the initial coarse mesh and the refined mesh after six it-
erations, we notice that the number of triangles is dense only in the vicinity of
the clamped edge, and get decreased whenever we go for away from the clamped
boundary. This is due to the boundary layer effect (see [21]).

In order to compare the two discrete formulations, namely the penalized and the
mixed ones, we have computed the scaled energy

Esc = t−2am(u, u) + t−2asEs
((u, r), (u, r)) + 1

12af (r, r) + 1
12ap(r, r)

for different values of t, i. e., 0.01R, 0.001R and 0.0001R (for a fixed fine mesh).
We have observed that the bending energy is dominant even when we use the P2-
P1-P1 2 elements for t = 0.01R. But the scaled energy decreases when t decreases
and the bending energy is not dominant (see Table 7.5). Whereas when we use
P3-P2-P1 elements or P4-P3-P2 elements the scaled energy remains very close to
a constant value even when t decreases to zero (see Tables 7.6 and 7.7). Note that
the same phenomena was observed for the penalized formulation, see Tables 7.8
to 7.10. From our results, we may observe that the convergence results for the
mixed formulation are slightly better than that of the penalized formulation. But
in any case, we can conclude that both methods are locking free if polynomials of
sufficiently high order are used.

Table 7.4 represents the results for the first example when we use the mixed
formulation with P3-P2-P2 elements, uniform adapted meshes and t = 0.01R. Note
that using the same number of triangles as that for the penalized version leads to a
slightly larger number of degrees of freedom. We observe also that the convergence

2P2 elements for displacement, P1 for the rotation and P1 for the Lagrange multiplier
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results for the mixed formulation are slightly better than that of the penalized
formulation, compare with Table 7.1.

N h Number of degrees of freedom ∥u−uref ∥
∥uref ∥

∥r−rref ∥
∥rref ∥

10 0.244 9117 0.002112 0.000126
15 0.162 20122 0.000367 3.3 × 10−5

20 0.122 35427 0.000127 1.12 × 10−5

25 0.097 55032 7.02 × 10−5 2.34 × 10−6

30 0.0814 78937 4.79 × 10−5 1.03 × 10−6

35 0.069 107142 2.77 × 10−5 2.34 × 10−7

40 0.061 139647 1.54 × 10−5 1.23 × 10−7

Table 7.4. Convergence results using uniform refined meshes for
the mixed FE

k = 2, 1, 1 t
R = 0.01 t

R = 0.001 t
R = 0.0001

Em 5.778 6.827 0.140
Es 0.178 0.028 0.00061
Ef 30.622 3.032 0.00062
Ep -0.00013 −1.7 × 10−6 −8 × 10−10

Esc 36.578 9.88 0.142

Table 7.5. Energy values for the mixed method.

k = 3, 2, 1 t
R = 0.01 t

R = 0.001 t
R = 0.0001

Em 5.255 0.397 0.106
Es 0.168 0.004 0.154
Ef 33.520 33.52 31.577
Ep -0.00014 −3.437 × 10−7 −2.495 × 10−9

Esc 38.299 33.922 31.838

Table 7.6. Energy values for the mixed method.

k = 4, 3, 2 t
R = 0.01 t

R = 0.001 t
R = 0.0001

Em 5.089 0.0616 0.0042
Es 0.168 0.0018 2.4 × 10−5

Ef 34.28 34.288 34.5278
Ep -0.000157 −5 × 10−7 7 × 10−9

Esc 39.644 34.35 34.269

Table 7.7. Energy values for the mixed method.
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k = 2, 1 t
R = 0.01 t

R = 0.001 t
R = 0.0001

Em 5.75962 6.81387 0.140034
Es 0.176713 0.0257213 0.000509613
Ef 30.5737 3.00906 0.000619921
Ep −9.90932 × 10−5 −9.18144 × 10−8 −3.03847 × 10−12

Esc 36.5099 9.84865 0.141163

Table 7.8. Energy values for the penalized version.

k = 3, 2 t
R = 0.01 t

R = 0.001 t
R = 0.0001

Em 5.12205 0.410782 0.0914724
Es 0.169229 0.0034947 0.0002709
Ef 34.6118 33.7115 32.1919
Ep -0.000150652 −1.39831 × 10−7 −6.95845 × 10−11

Esc 39.9029 34.1258 32.2836

Table 7.9. Energy values for the penalized version.

k = 4, 3 t
R = 0.01 t

R = 0.001 t
R = 0.0001

Em 5.12074 0.0609105 0.00700619
Es 0.168618 0.00196899 4.09061 × 10−5

Ef 34.6458 34.5506 34.5278
Ep -0.000154659 −3.1463 × 10−7 −1.84628 × 10−8

Esc 39.935 34.6135 34.5349

Table 7.10. Energy values for the penalized version.

7.2. Second example. In the second example, we are concerned with another is-
sue, namely, the propagation of singularities along the characteristic curves, which
in the context of the linear Koiter shell model was rigorously justified and numer-
ically illustrated in [21]. Note that the results proved in [21] claim that although
the Koiter model for fixed thickness is an elliptic problem, the limit problem when
t → 0 has the same nature of that the considered surface and therefore the limit
problem may exhibits propagation of singularities along the asymptotic directions,
if the considered surface is parabolic or the characteristic curves if the surface is
hyperbolic. Those singularities are much more important then the boundary layers
due to the boundary conditions. We consider the same shell but we consider the
edge {y = 0} as the clamped edge. In our test we use the same loading f than in
the previous test but it applied only on a part of the shell ▲ defined as follows (see
Figure 7.3)

▲ = {(x, y) ∈ ω : 0 ⩽ y ⩽ min{ x

2R0
,− x

2R0
} + 1

2 , for −R0 ⩽ x ⩽ R0}.

So, the loading f is defined as follows:

f =
{
t3×q × cos(2y)a3, if (x, y) ∈ ▲ ,

0 elsewhere.
(7.1)
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▲

Figure 7.3. The region ▲

This kind of loading will generate singularities along the curves:

y = x

2R0
+ 1

2; 0 ⩽ y ⩽ 1/2 and y = − x

2R0
+ 1

2; 0 ⩽ y ⩽ 1/2,

which may imply the appearance of internal layers (in the interior of the domain)
for small values of the thickness. So, there are three regions of particular interest,
the clamped edge, the lines ∂▲ ∩ ω and the asymptotic directions. Note that the
asymptotic directions for the considered surface are curves of the form x = Cte.
In this test we consider the values of thickness t = 0.01 , t = 0.001, t = 0.0001
and t = 0.00001. Our objective is to compare the internal and the boundary layers
for the considered example when t → 0. Note that for the Koiter shell model it
is shown in [21] that internal layers are more important then boundary layers for
very small values of the thickness.

For the value of thickness t = 0.01, after nine iterations the obtained adapted
mesh is shown in Figure 7.4 (B). We observe that, for this value of t, the internal

(a) Initial mesh (b) Adapted mesh after nine iterations

Figure 7.4. t = 0.01

layers on ∂▲ ∩ ω are less than the boundary layers on the clamped edge and
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we do not observe any concentration of the energy on the asymptotic directions.
For t = 0.001 the internal layers (∂▲ ∩ ω and the asymptotic directions) and the
boundary layers are relatively more important then that on the clamped edge . The
energy is concentrated in the vicinity of ∂▲ ∩ ω (see Figure 7.5). Whereas, for the
value of thickness t = 0.0001, after nine iterations we observe in Figure 7.6 that the
internal layers on the asymptotic directions are clearly more important than the
boundary layers and also than the internal boundary layers on ∂▲ ∩ ω. This may
explain that the elliptic nature of the problem for a fixed t may be influenced by
the type of the surface, which is parabolic for the considered example, as t tends
to 0.

(a) Initial mesh (b) Adapted mesh after nine iterations

Figure 7.5. t = 0.001

(a) Initial mesh (b) Adapted mesh after nine iterations

Figure 7.6. t = 0.0001
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