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TOWARDS FORMAL BAER CRITERIA

DANIEL MISSELBECK-WESSEL AND DAVIDE RINALDI

Abstract. Baer’s criterion helps to identify the injective objects in a category of modules
by reducing the problem of map extension to a certain subclass of morphisms. Due to its
notorious reliance on Zorn’s lemma, it is inherently non-constructive. However, we put Baer’s
criterion on constructive grounds by couching it in point-free terms. Classical principles
which will be developed alongside readily allow to gain back the conventional version. Several
case studies further indicate a fair applicability.

1. Introduction

Categorical techniques have long had a certain reputation as promoting “abstract
nonsense” which perhaps reflects an initial resistance to their introduction. If on
the one hand this resistance is due to an increased level of abstraction, on the
other hand the effective content of basic categorical concepts seems barred. For
example, recall that an object C in a category C is said to be injective if, for any
monomorphism m : A ↪→ B and morphism f : A → C, we can find g : B → C
(namely an extension) such that f = g ◦ m. This notion involves quantification
over the morphisms of the given category C; more often than not, this is not a set,
let alone an effectively given one.

Concrete enough instances sometimes give way to elementary, yet equivalent
criteria for injectivity. E.g., in the category of abelian groups, the injective objects
are the divisible ones [36], and in the category of distributive lattices, Sikorski’s
theorem can be used to identify the injective objects precisely as the complete
Boolean algebras [37, 5, 6]. Such results have to accommodate real and ideal,
so their inherent non-constructivity is hardly surprising. Due to their notorious
reliance on Zorn’s lemma, presumably the most common incarnation of the axiom
of choice in abstract algebra, their computational import is rather difficult to pin
down; from a philosophical perspective, a strong ontological commitment is forced
upon the algebraist.

Transfinite methods and the ideal objects they bring into being are prevalent in
contemporary algebra, but viewpoints shaped by the partial realisation of Hilbert’s
programme gain momentum [12, 16]. In this paper we attempt to put Baer’s
criterion, which allows to detect injective objects in categories of modules, on con-
structive grounds by couching it in point-free terms. The strategy we adopt has
been informed by the localic version of the Hahn-Banach theorem, due to which the
latter be interpreted as a conservation result of formal theories [9, 10, 25, 11, 33].

Our take on Baer’s criterion carries over a related treatment of Sikorski’s theo-
rem [29] by way of Scott’s entailment relations [35], which considerably owes to [9].
However, we require a generalized concept of entailment relation, as will briefly
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be outlined below; alongside we require new choice principles which reconcile our
formal criterion with its customary counterpart.

Discussion proceeds as follows. In Section 2 we briefly review the common form
and proof of Baer’s criterion. Section 3 summarizes the key tools for our approach.
Section 4 contains the main result of this paper (Theorem 4.3), some instances of
which will be studied in Section 5.

On method and foundations. The main content of this paper is meant to be el-
ementary and intuitive, but can be formalised in a suitable fragment of Aczel’s
Constructive Set Theory CZF [2, 3] which is based on intuitionistic logic and does
not contain the axiom of power set, let alone the axiom of choice (AC). Accord-
ingly, sometimes certain assumptions have to be made explicit which otherwise
would be trivial in classical set theory. Recall that a set S is said to be discrete
if (∀a, b ∈ S)(a = b ∨ a 6= b). By a finite set we understand a set that can be
written as { a1, . . . , an } for some n > 0. The set of all finite subsets of a set S will
be denoted by Fin(S), and the class of all subsets of S by Pow(S). From formal
topology [32] we borrow the overlap symbol: U G V is to say that the sets U and
V have an element in common. In order to make precise the connection between
our results and their customary counterparts, we have to invoke AC in the guise of
Zorn’s lemma. We may then as well use classical logic, so we switch in these cases
to ZFC, signalling this appropriately.

2. Baer’s criterion

Let us, for sake of reference and comparison, review the well-known and time-
honored argument for Baer’s criterion, to be found in many a textbook on the
subject matter; we closely follow [36]. Throughout, let R be a (not necessarily
commutative) ring with 1, and let M,A,B be (left) R-modules, where A is a sub-
module of B. We say that M is injective with respect to ideals of R if, for every
R-homomorphism µ : I → M defined on an ideal I of R, there is ν : R → M such
that ν(r) = µ(r) for every r ∈ I.

Lemma 2.1. — Suppose that M is injective with respect to ideals of R. Let
f : A → M be an R-homomorphism. For every b ∈ B there is f ′ : A + Rb → M
extending f .

Proof. — Consider the ideal (A : b) = { r ∈ R | rb ∈ A } and define µ : (A :
b)→ M by mapping r to f(rb). This µ is an R-homomorphism. According to the
assumption, there is an extension ν : R→M of µ. Now put

f ′ : A+Rb→M, a+ rb 7→ f(a) + ν(r).

This f ′ is a well-defined R-homomorphism, extending f . �

The following is Baer’s criterion.

Theorem 2.2 (ZFC). — The following are equivalent.
(1) M is injective.
(2) M is injective with respect to ideals of R.

Proof. — Of course the second item is necessary for the first. To show that it
is sufficient, consider a maximal extension of the homomorphism in question, the
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existence of which is guaranteed by Zorn’s lemma. That a maximal extension is
indeed total is a direct consequence of Lemma 2.1. �

Recall that by Baer’s criterion every divisible abelian group is injective [36],
which in turn was shown ZFA-equivalent to AC by Blass [8, Theorem 2.1].1 The
main result of our paper, Theorem 4.3, will lead to a potential replacement of in-
jectivity with respect to ideals by an elementary, yet classically equivalent criterion
(Theorem 4.3) which does not involve R-homomorphisms.

3. Geometric entailment relations

3.1. Sequents. The strategy pursued in this paper has deeply been influenced by
Coquand and Cederquist’s treatment of ideal objects by means of Scott’s multi-
conclusion entailment relations [9], as well as by the methods and philosophy of
formal topology [32, 13]. Our approach requires a slight adaptation of [9, 14] which
in this section will briefly be outlined. While a first case study has already been
carried out in the context of Krull’s maximal ideal theorem [34], a thorough and
systematic treatment, in particular with regard to inductive generation, will be
given elsewhere [38].

Let S be a set. By a geometric entailment relation on S we understand a class
relation

` ⊆ Fin(S)× Pow(S)
between finite and arbitrary subsets of S. This relation is required to be reflexive,
monotone, and transitive in the following sense, respectively:2

U G V

U ` V (R) U ` V
U,U ′ ` V, V ′

(M) U ` V (∀b ∈ V )(U, b `W )
U `W (T)

If U ∈ Fin(S) is such that U ` , i.e., U ` ∅, then it is said to be inconsistent. An
arbitrary subset V of S is consistent if none of its finite subsets is inconsisent. The
consistent subsets of S form a directed-complete partially ordered class (a dcpo [1]),
which is due to the fact that we maintain the restriction on finite antecedents, and
which will be important for heuristics later on.

As regards our use of inference lines, following a certain tradition in formal
topology, we adopt the convention that the defining conditions “be understood as
requirements of validity: if the premises hold, also the conclusion must hold” [13].

The recommended reading of U ` V is the same as for conventional, finitary
entailment relations [35], i.e., as that of a Gentzen sequent, or rather as∧

a∈U
P (a)→

∨
b∈V

P (b)

where P is a distinguished predicate on S. However, the succedent V must now
be read as an infinitary disjunction, so what we intend to capture are geometric
sequents [23], and thus our choice of terminology. By “entailment relation” will
henceforth always be meant “geometric entailment relation”.

1ZFA denotes Zermelo-Fraenkel set theory with atoms.
2The usual shorthand notation is at work, i.e., we put a comma to abbreviate set union, and

suppress brackets where it should read a singleton set.
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An ideal element of an entailment relation ` on S is a subset α of S which is
closed under `, i.e., such that if U ` V and U ⊆ α, then α G V . The class of all
ideal elements of `, its spectrum, will be denoted

Spec(`).
It is a consequence of the prime ideal theorem for distributive lattices that fini-
tary entailment relations à la Scott [35] are completely determined by their ideal
elements, which is to say that

U ` V whenever (∀α ∈ Spec(`))(U ⊆ α =⇒ α G V ), (3.1)
which of course is an equivalence. In general, this (3.1) is not the case for entailment
relations as considered here, due to the well-known fact from point-free topology
that locales need not be spatial [22]. In particular, we cannot infer from ∅ 0 ∅ that
Spec(`) is inhabited.3 There is, however, a complete and constructive topological
semantics available, as will briefly be outlined in the following section.

3.2. Inductive generation and generic model. The entailment relations at
work in the present paper are generated by sets of initial entailments. We thus
spend a few words on inductive generation, to which we have been led by combining
the approach pioneered in formal topology [13] with related strategies developed in
sequent calculus [26, 27].

By an axiom set on S we understand a set E of pairs (A,B), where A ∈ Fin(S)
and B ∈ Pow(S). An entailment relation `E is inductively generated by E if it
is the smallest among reflexive class relations ` ⊆ Fin(S) × Pow(S) that satisfy
transitivity on axioms, viz.

(∀b ∈ B)U, b ` V
U,A ` V

where (A,B) ∈ E , and which in fact renders `E an entailment relation. A subset α
of S is an ideal element of `E already if it is closed under E , i.e., such that for all
(A,B) ∈ E , if A ⊆ α then α G B.

To every inductively generated entailment relation `E we can associate a set-
generated frame F [1] with generating subset G,4 together with a mapping f : S →
G such that, for all U ∈ Fin(S) and V ∈ Pow(S),

U `E V ⇐⇒
∧
a∈U

f(a) 6
∨
b∈V

f(b), (3.2)

and with the evident universal property analogous to the fundamental result [9] of
Cederquist and Coquand for Scott’s entailment relations: if F ′ is a set-generated
frame with generating subset G′ and f ′ : S → G′ is an interpretation, i.e., satisfies
the corresponding left-to-right implication of (3.2), then there is a uniquely deter-
mined frame morphism h : F → F ′ such that h ◦ f = f ′. Moreover, both the (set-
generated) completely prime filters [1] of F and the frame morphisms F → Pow(1)

3For instance, the locale of surjections N → R, which can be generated through a geometric
entailment relation, does not have any points, yet is non-trivial [23, C1.2.8].

4This is to say that there is a subset G of F such that, for every x ∈ F , Gx = { a ∈ G | a 6 x }
is a set and x =

∨
Gx. The requirement that F be set-generated takes account of size issues in

constructive set theory: no non-degenerate class-frame can be proved to have a set of elements in
CZF [18, 17, 19]. Moreover, to construct this frame, we adopt the Regular Extension Axiom REA
on top of Constructive Set Theory CZF.
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correspond bijectively with the ideal elements of `E . In order to obtain this frame,
we put an inductively generated formal topology on top of `E , following closely
the strategy employed in the finitary case [14]. The generated frame is a point-free
presentation of the space Spec(`E) of ideal elements equipped with the finite infor-
mation topology [20], which can be investigated through its syntactic underpinning,
i.e., by way of the entailment relation at hand.

3.3. Lying-over. This section contains important tools insofar as we are interested
in regaining the customary counterparts to our results later on. It will be crucial
to find direct, non-inductive descriptions at least for empty-conclusion instances,
i.e., for the finite inconsistent subsets. While in practice an educated guess often
suffices to describe a condition on finite sets which yields inconsistency, more often
than not a proof of necessity requires some effort, hinging on the following criteria.

Throughout, let S be a set with geometric entailment relation `. Given H ⊆
Fin(S) and W ⊆ S, we adopt predicate notation and write

H(W ) ≡ Fin(W ) G H.
We say that H is monotone if H(W ) and whenever H(V ) and V ⊆W .

Definition 3.1. — We say that a monotone H ⊆ Fin(S) is hereditary if, for
every U, V ∈ Fin(S) and W ∈ Pow(S),

U ` V (∀b ∈ V )H(W, b)
H(W,U)

(3.3)

For inductively generated entailment relations it suffices for (3.3) to check axioms
in place of U ` V in order for H to be hereditary at large.

Lemma 3.2 (ZFC). — The following are equivalent.
(1) Inc := { U ∈ Fin(S) | U ` ∅ } is hereditary.
(2) Every maximal consistent subset of S is an ideal element.
(3) Every consistent subset of S is contained in an ideal element.

Proof. — (1→ 2) Suppose that the finite inconsistent subsets form a hereditary
family Inc, and let α be maximal with respect to set inclusion among consistent
subsets of S. Suppose that U ` V and U ⊆ α, yet α ∩ V = ∅. Maximality
implies Inc(α, b) for every b ∈ V , and so Inc(α,U) which is to say that Inc(α), a
contradiction.

(2→ 3) Suppose that every maximal consistent subset of S is an ideal element.
Let W by a consistent subset of S. As the consistent subsets containing W form a
dcpo, ZL yields a maximal element which by assumption is an ideal element.

(3 → 1) Suppose that every consistent subset of S is contained in an ideal
element. Let U ` V and consider W such that Inc(W, b) for every b ∈ V . If
Fin(W,U) ∩ Inc = ∅, then W ∪ U is consistent, and so is contained in an ideal
element α. It follows that there is b ∈ α∩ V . But then there is a finite subset U of
W such that U, b ` which however contradicts α ∈ Spec(`). �

Definition 3.3. — Let S and S′ be sets equipped with entailment relations `
and `′, respectively. By an interpretation we understand a function ι : S → S′

such that, for all U ∈ Fin(S) and V ∈ Pow(S),
U ` V =⇒ ι(U) `′ ι(V ). (3.4)
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Every such ι induces a mapping of ideal elements
ι∗ : Spec(`′)→ Spec(`), α 7→ ι−1(α).

We say that ι is weakly conservative if, for all a1, . . . , ak ∈ S,
ι(a1), . . . , ι(ak) `′ =⇒ a1, . . . , ak ` (3.5)

the converse of which is simply the empty conclusion case of interpretation (3.4).

If f denotes a subset inclusion S ⊆ S′, then f∗ amounts to restriction, which is to
say that f∗(α) = α∩S. If moreover S = S′, then ` ⊆ `′ entails Spec(`′) ⊆ Spec(`).
In this manner, several extension theorems can be captured in terms of entailment
relations [9, 29]; in fact, we will find Baer’s criterion as another instance below. The
respective classical counterparts can be regained by means of the following versatile
“lying-over” principle.

Proposition 3.4 (ZFC). — Suppose that ι is weakly conservative. If
{ U ∈ Fin(T ) | U `′ ∅ }

is hereditary, then for every α ∈ Spec(`) there is β ∈ Spec(`′) such that α ⊆ ι∗(β).

Proof. — If α ∈ Spec(`), then by weak conservation the image ι(α) is consistent
with respect to `′. According to Lemma 3.2, there is an ideal element β ∈ Spec(`′)
such that ι(α) ⊆ β. �

Two remarks on Proposition 3.4 are in order before we proceed. Note first that
an interesting case arises if Spec(`) happens to be flat, i.e., such that

(∀α, β ∈ Spec(`))(α ⊆ β =⇒ α = β),
or, in other words, if every ideal element of ` is maximal with respect to set inclu-
sion. The lying-over principle then asserts that the induced mapping ι∗ is surjective!
Examples include the pull-back of maximal ideals along integral ring extensions [34],
as well as the results addressed in the present paper, where flatness is forced by
way of totality.

Note further that there is no way around AC proper towards Proposition 3.4. In
fact, Proposition 3.4 can be used to derive Krull’s maximal ideal theorem [34], and
so is in fact ZF-equivalent to AC by way of [21].

4. Formal Baer criterion

4.1. Spectra of morphisms. With the proper tools in place, we are now ready to
embark on the main part of this paper. Let R be a ring with 1. Until further notice,
R need not be commutative. Let A and M be (left-)modules over R. We take the
set S = A × M for our domain of discourse. On S we consider the entailment
relation `A→M which is generated by all instances of the following axioms:

(a,m), (a, n) `A→M (s [m 6= n])
(a,m), (b, n) `A→M (ra+ sb, rm+ sn) (h)

`A→M (0A, 0M ) (0)
`A→M { (a,m) | m ∈M } (t)

with side condition on the axiom of single values (s) as indicated in square brackets.
Every R-homomorphism, set-theoretically conceived, is an ideal element of this
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entailment relation; these are precisely the ideal elements if M is discrete (which
we do not assume at the outset), in which case

Spec(`A→M ) = HomR(A,M).

The intended reading of an entailment of the form

(a1,m1), . . . , (ak,mk) `A→M { (bj , nj) | j ∈ J }

is that for a generic, or yet to be determined R-homomorphism f : A→M ,
if f(a1) = m1 . . . and . . . f(ak) = mk, then there is j ∈ J such that f(bj) = nj .

Accordingly, we say that `A→M is the entailment relation of R-homomorphism
A → M . Subscripts indicate which modules we refer to. For instance, with the
ring R in place of A, we obtain the entailment relation `R→M of R-homomorphism
R→M . Working with `A→M amounts to putting focus on partial specifications of
module homomorphisms f : A → M . Partiality rarely occurs in classical algebra,
where instead it is preferred to ensure totality by restriction to substructures. While
classically the property of injectivity involves extendability from sub- to ambient
structures, our approach encourages a rephrasing: demand that partial maps have
total extensions. Concrete instances, especially within a set-theoretic framework,
give access only to a finite amount of data U about a certain morphism f , but
`A→M helps to extract further information. E.g., if (a,m), (b, n) ∈ U , then f should
contain (ra + sb, rm + sn) due to (h). However, totality’s (t) infinite disjunction
presents a severe obstruction.

Along the lines of the frequently encountered proof, we turn to the finitary prop-
erty of consistency, for which Zorn’s lemma brings into being a maximal witness—
alas, is the latter an ideal element, i.e., a total function? This crucially hinges
on the constructive “one-step” extension principle (Lemma 2.1), often put to use
towards a contradiction.5 Turning the classical argument on its head, we are led to
an algebraic description of inconsistency, as follows.

4.2. Multiple values. In order to provide an explicit, non-inductive description
for subsets of A ×M which are inconsistent with respect to `A→M , we consider,
for finite subsets U = { (a1,m1), . . . , (ak,mk) } of A×M , the following predicate:

mvA→M (U) ≡ (∃r1, . . . , rk ∈ R)
( k∑
i=1

riai = 0A ∧
k∑
i=1

rimi 6= 0M
)
. (4.1)

This predicate is meant to express that U “has multiple values”, i.e., the span of
U forces 0A to take a non-zero value in M , whence U cannot be considered to
approximate an R-homomorphism A→M .

Lemma 4.1. — If mvA→M (U), then U is inconsistent, i.e., U `A→M ∅.

Proof. — Disassemble (4.1) along axioms (s), (h), and (0). �

We identify mv with its extension in Fin(S), i.e.,

mvA→M = { U ∈ Fin(S) | mvA→M (U) }

5Examples abound in classical mathematics; for a related discussion cf. [7]. Note further that
not even bare sets need to be injective unless excluded middle is assumed [4].
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which is certainly monotone (Section 3.3). Furthermore, we extend this predicate
in the canonical manner to arbitrary subsets W of S by stipulating

mvA→M (W ) ≡ Fin(W ) G mvA→M .
Again we keep track about the modules we are working with through subscripts. For
instance, with R in place of A as above, we write mvR→M . This predicate stands
to reason in the present context: a subset U is inconsistent if its span assigns a
non-zero value to 0A. It is straightforward to show that mvA→M is hereditary for
the axiom of single-values (s), as well as for the structural axioms (h) and (0). As
regards totality (t), let us first do heuristics. We need to show that, for subsets W
of A×M and elements a of A,

(∀m ∈M) mvA→M (W, (a,m))
mvA→M (W )

(4.2)

Intuitively, ifW were considered to approximate an R-homomorphism A→M , but
cannot coherently be extended by assigning a value in M to a, then W itself must
bear witness to violating (s). Consider the classical contrapositive form of (4.2) for
a certain subset W of S,

¬mvA→M (W ) → (∃m ∈M)¬mvA→M (W, (a,m)). (4.3)
Freely employing excluded middle, it suffices to verify the latter in order to show
that mvA→M is hereditary for (t), to which end we could resort to the one-step
extension principle (Lemma 2.1) at work in the classical proof of Baer’s criterion:
in fact, every consistent subset of A ×M gives rise to a partial R-homomorphism
defined on a certain submodule of A; conversely, every partial homomorphism,
construed as a subset of A ×M is consistent with respect to `A→M . In ZFC we
can thus pin down the import of mvA→M as follows.

Proposition 4.2 (ZFC). — Let B and M be R-modules. then mvB→M is
hereditary if and only if any morphism A → M , where A is a submodule of B,
extends to a morphism B →M .

Proof. — On top of the preceding discussion, note that there is an interpretation
of entailment relations `A→M→`B→M along which R-homomorphisms A → M
extend according to Proposition 3.4. �

In particular, and still in ZFC, the moduleM is injective with respect to ideals—
and thus injective at large—if and only if mvR→M is hereditary. We are thus led
to the following elementary version of Baer’s criterion: heredity of mvR→M carries
over to mvA→M !

Theorem 4.3. — Let A and M be R-modules. If mvR→M is hereditary, then
so is mvA→M .

Proof. — We concentrate on showing that mvA→M is hereditary with respect
to totality (t) if so is mvR→M ; the remaining axioms are straightforward to check.
Accordingly, let W be an arbitrary subset of A ×M , let a ∈ A, and suppose that
mvA→M (W, (a,m)) for every m ∈ M . Let WR consist of all pairs (r,m) ∈ R ×M
such that there are r1, . . . , rk ∈ R and (a1,m1), . . . , (ak,mk) ∈W with

k∑
i=1

riai = ra and
k∑
i=1

rimi = m.



TOWARDS FORMAL BAER CRITERIA 57

We claim that mvR→M (WR, (1,m)) for every m ∈ M . For if m is an arbitrary
element ofM , then, because of mvA→M (W, (a,m)), there are r0, r1, . . . , rk ∈ R and
(a1,m1), . . . , (ak,mk) ∈W such that

r0a+
k∑
i=1

riai = 0 and r0m+
k∑
i=1

rimi 6= 0.

The former implies (−r0,
∑k
i=1 rimi) ∈ WR by definition of WR. It is immediate

that

mvR→M ((−r0,

k∑
i=1

rimi), (1,m)),

and thus mvR→M (WR, (1,m)) holds indeed. As mvR→M is hereditary, it fol-
lows that mvR→M (WR). Therefore, there are (r1,m1), . . . , (r`,m`) ∈ WR and
s1, . . . , s` ∈ R such that

∑̀
j=1

sjrj = 0 and
∑̀
j=1

sjmj 6= 0.

Moreover, for every (rj ,mj) there are rj1, . . . , r
j
kj
∈ R and (aj1,m

j
1), . . . , (ajkj

,mj
kj

) ∈
W such that

kj∑
i=1

rji a
j
i = rja and

kj∑
i=1

rjim
j
i = mj .

It remains to put this information together and compute, on the one hand,

∑̀
j=1

kj∑
i=1

sjr
j
i a
j
i =

∑̀
j=1

sj(
kj∑
i=1

rji a
j
i ) =

∑̀
j=1

sjrja = 0,

and on the other hand∑̀
j=1

kj∑
i=1

sjr
j
im

j
i =

∑̀
j=1

sj(
kj∑
i=1

rjim
j
i ) =

∑̀
j=1

sjmj 6= 0,

which together witness mvA→M (W ). �

As a consequence of Theorem 4.3, we can further give a direct, non-inductive
description of the canonical finitary subrelation of `A→M under the assumption
that mvR→M is hereditary.

Corollary 4.4. — Let A be an R-module and suppose that mvR→M is hered-
itary. The following are equivalent.

(1) (a1,m1), . . . , (ak,mk) `A→M (b1, n1), . . . , (b`, n`)
(2) For any choice of n′1 6= n1, . . . , n

′
` 6= n`, there are r1, . . . , rk, s1, . . . , s` ∈ R

such that
k∑
i=1

riai +
∑̀
j=1

sjbj = 0A and
k∑
i=1

rimi +
∑̀
j=1

sjn
′
j 6= 0M .
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Proof. — Notice that
U `A→M V, (b, n) if and only if (∀n′ 6= n)(U, (b, n′) `A→M V ). (4.4)

which is easy to see through (s), (t), and cut (T), cf. [29]. The description of finitary
entailments thus reduces to empty-conclusion instances, for which Lemma 4.1 and
Theorem 4.3 combine. �

It is in order to recap. Adopting heredity as syntactical substitute for injectivity
allows to phrase and prove a formal version of Baer’s criterion. Heredity has been
employed twice to this end: first to fix semantics, i.e., to deduce that, classically,
maximal consistent subsets are ideal elements (Lemma 3.2); second, to prove that
(t) is not relevant when characterizing inconsistent subsets (Theorem 4.3). Inci-
dentally, the latter can be encoded as a simultaneous collapse [15]: totality (t) is
in fact redundant when restricting attention to empty-conclusion sequents.

Proposition 4.5. — Let A be an R-module and suppose that `R→M is hered-
itary. Consider the entailment relation `′A→M which is obtained by discarding (t).
For every U ∈ Fin(A×M),

U `′A→M ∅︸ ︷︷ ︸
mvA→M (U)

⇐⇒ U `A→M ∅,

Proof. — On the one hand, `′A→M certainly interprets in `A→M , being a sub-
relation of the latter. Conversely, the proof of Theorem 4.3 shows how to resolve
dependency on (t). �

Remark 4.6 (ZFC). — Suppose that mvR→M is hereditary. In this case the
finitary instances of `A→M as considered in Corollary 4.4 are completely determined
by ideal elements (3.1). In view of (4.4), it suffices to check this for V = ∅, to which
end we may concentrate on the contrapositive: but if U 0 , then, with ZL and
Lemma 3.2, there is indeed α ∈ Spec(`A→M ) containing U .

5. Examples

5.1. Torsion-free modules. It is well-known that every injective module is di-
visible [36]; we shall now revisit one of the partial converses, following [36], but
replace injectivity with heredity. Let R be a commutative ring with 1. Recall that
R is integral if every element a of R is null or regular [24], the latter of which is
to say that { r ∈ R | ra = 0 } = 0. An R-module M is divisible if aM = M for
every regular element a of R. It is torsion-free if, for each regular a ∈ R and each
m ∈M , if am = 0, then m = 0.

The following is an elementary counterpart of [36, Proposition 2.7].

Proposition 5.1. — Let R be integral, and let M be a torsion-free divisible
R-module. Then mvR→M is hereditary.

Proof. — ConsiderW ⊆ R×M , let a ∈ R, and suppose that mvR→M (W, (a,m))
for every m ∈ M . Start with m = 0 which by assumption gives r0, r1, . . . , rk ∈ R
and (a1,m1), . . . , (ak,mk) ∈W such that

r0a+
k∑
i=1

riai = 0 and
k∑
i=1

rimi 6= 0.
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If r0 = 0, nothing need be done. If r0 is regular, consider

m = −
k∑
i=1

rimi.

Since M is divisible, there is n ∈M such that

m = r0n.

Since mvR→M (W, (a, n)) there are s0, s1, . . . , s` ∈ R and (b1, n1), . . . , (b`, n`) ∈ W
such that

s0a+
∑̀
j=1

sjbj = 0 and s0n+
k∑
j=1

sjnj 6= 0.

Putting together the available data, we obtain on the one hand

∑̀
j=1

r0sjbj −
k∑
i=1

s0riai = r0(
∑̀
j=1

sjbj + s0a ) = 0.

On the other hand, since r0 is regular and M is torsion-free,

∑̀
j=1

r0sjnj −
k∑
i=1

s0rimi =
∑̀
j=1

r0sjnj + s0m = r0(
∑̀
j=1

sjnj + s0n) 6= 0. �

5.2. Linear forms and quotient spaces. Through Corollary 4.4 and Proposi-
tion 5.1 we next aim at a constructive interpretation of the statement that every
vector space embeds in its double dual (Corollary 5.5 below). To this end, let K be
a discrete field, i.e., a ring such that every element is null or invertible. Let M be
a K-vector space. Consider the entailment relation `M→K of linear form. In other
words, this entailment relation captures the dual space of M ,

Spec(`M→K) = M∗.

In view of our previous results, we have a direct, non-inductive description as
follows.

Proposition 5.2. — The following are equivalent.
(1) (m1, a1), . . . , (mk, ak) `M→K (n1, b1), . . . , (n`, b`)
(2) For any choice of b′1 6= b1, . . . , b

′
` 6= b`, there are λ1, . . . , λk, µ1, . . . , µ` such

that
k∑
i=1

λimi +
∑̀
j=1

µjnj = 0 and
k∑
i=1

λiai +
∑̀
j=1

µjb
′
j = 1.

Proof. — Instantiate Corollary 4.4 and Proposition 5.1. �

Proposition 5.2 can be used to reduce other and more intricate entailment rela-
tions by way of suitable weakly conservative interpretations. To give an example,
let V be a set of vectors of M . Let N = span(V ) be the linear hull of V in M .
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We consider the entailment relation `M→K,N=0 on M × K which is inductively
generated by all instances of the following axioms:

(m, a), (m, b) `M→K,N=0 (s [a 6= b])
(m, a), (n, b) `M→K,N=0 (λm+ µn, λa+ µb) (h)

`M→K,N=0 { (m, a) | a ∈ K } (t)
`M→K,N=0 (n, 0) (n [n ∈ V ])

with side conditions indicated in square brackets. The ideal elements of this en-
tailment relation precisely are the linear forms which vanish on N . Considering
initial entailments, it is clear that the canonical mapping [·] : M → M/N induces
an interpretation of entailment relations:

ι[·] : (M ×K,`M→K,N=0)→ (M/N ×K,`M/N→K), (m, a) 7→ ([m], a).

Proposition 5.3. — ι[·] is weakly conservative.

Proof. — Let (m1, a1), . . . , (mk, ak) ∈M ×K and suppose that
([m1], a1), . . . , ([mk], ak) `M/N→K .

In other words, there are λ1, . . . , λk ∈ K for which
k∑
i=1

λimi ∈ N and
k∑
i=1

λiai = 1.

Hence we can find n1, . . . , n` ∈ N along with µ1, . . . , µ` ∈ K such that
k∑
i=1

λimi =
∑̀
j=1

µjnj

which implies
(m1, a1), . . . , (mk, ak), (n1, 0), . . . , (n`, 0) `M→K

and so
(m1, a1), . . . , (mk, ak) `M→K,N=0

by successive cut with corresponding instances of the additional axiom (n). �

Proposition 5.4. — For every m ∈M , the following are equivalent.
(1) m ∈ N .
(2) `M→K,N=0 (m, 0).

Proof. — The second item is an axiom in case m ∈ N . Conversely, if `M→K,N=0
(m, 0), then `M/N→K ([m], 0) by interpretation. It follows that ([m], 1) `M/N→K
which with Proposition 5.2 implies [m] = 0, i.e., m ∈ N . �

From a semantical point of view, Proposition 5.4 has the following interpretation:
in order to show that some m ∈M is covered by a certain set V of vectors of M , it
suffices to show that α(m) = 0 for every linear form α : M → K that vanishes on
V . This is related to a well-known principle in functional analysis [31, 3.5 Remark].

Corollary 5.5. — For every m ∈M , the following are equivalent.
(1) m = 0.
(2) `M→K (m, 0)
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Proof. — Instantiate Proposition 5.4 with N = 0. �

Keeping in mind Remark 4.6, this corollary is a constructive counterpart of the
classical fact that the only element of M which maps to 0 under every linear form
α : M → K is null, i.e., ⋂

α∈M∗
kerα = 0.

Recall that this amounts to say that the canonical mapping

ι : M →M∗∗, m 7→ ( evm : α 7→ α(m) )

embeds M in its double dual.

6. Conclusion

The present paper has its origins in our endeavour to put certain extension the-
orems on constructive grounds [29]. For the methods developed in [30, 29] to carry
over to the present setting, it was necessary first to develop a generalized concept
of entailment relation, dropping the restriction on finite sets of succedents [38]. An
outline of this has been given in Section 3.

Guided by Baer’s criterion, which allows to identify injective modules by reduc-
ing the problem to the extension of maps defined on ideals of the underlying ring,
we have been able to trace back injectivity to a comparatively elementary, compu-
tational property in Section 4. From a classical point of view, a suitable variant of
AC immediately gives back the conventional result.

Applications seem to indicate that a further pursuit might bear fruits. For in-
stance, where homology abounds with injective resolutions, the development of
constructive methods may profit from formal Baer criteria. In linear algebra, suit-
able axioms allow to treat (symmetric, skew-symmetric, alternating) bilinear forms
by means of entailment relations. Our approach to injectivity further raises the
question as to how algebraically compact modules [28] might find a treatment in
terms of entailment relations. However, it remains to be seen whether concrete
computational use can be made of our formal Baer criterion. Last but not least, a
reapproach through dynamical methods [15] is likely to shed further light.
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