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RATIONAL FACTORS, INVARIANT FOLIATIONS AND
ALGEBRAIC DISINTEGRATION OF COMPACT MIXING

ANOSOV FLOWS OF DIMENSION 3

RÉMI JAOUI

Abstract. In this article, we develop a geometric framework to study the notion of semi-
minimality for the generic type of a smooth autonomous differential equation (X, v), based
on the study of rational factors of (X, v) and of algebraic foliations on X, invariant under
the Lie derivative of the vector field v.

We then illustrate the effectiveness of these methods by showing that certain autonomous
algebraic differential equation of order three defined over the field of real numbers — more
precisely, those associated to mixing, compact, Anosov flows of dimension three — are gener-
ically disintegrated.
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Introduction

Many applications of geometric stability theory to concrete geometric settings
originated from Zilber’s trichotomy on minimal types — respectively called disin-
tegrated, locally-modular (non-disintegrated) or non-locally modular — in stable
theories. From this point of view, the study of ordinary algebraic differential equa-
tions takes place in the theory DCF0 of existentially closed differential fields of
characteristic 0, where the minimal types of the second and of the third kinds have
been entirely classified in [12] 1.

This theorem entails many important consequences for minimal algebraic differ-
ential equations while certain algebraic differential equations of higher rank witness
a “mixed” behavior where pregeometries of different kinds are witnessed. In [15], we
advocated that many interesting consequences of this theorem remain valid under
a weaker minimality notion, sufficient to rule out these mixed behaviors, known as
semi-minimality (see also Section 2.5 of [16] for a geometric exposition).

In this article, we develop a complementary geometric framework for the notion of
the semi-minimality, which provide effective tools to establish this property, based
on the study of rational factors and invariant foliations of a given autonomous
differential equations (X, v).

We also apply these techniques to study certain three dimensional algebraic
differential equations — namely, algebraically presented, compact, mixing Anosov
flows of dimension three — and establish disintegration of the system of algebraic
relations shared by their generic solutions. The techniques of this article will also
be applied in [16] to study similar properties for generic planar algebraic vector
fields.

Semi-minimality and rational factors. We fix k a field of characteristic 0 and we
consider autonomous algebraic differential equations (X, v) with coefficients in k,
presented as smooth irreducible k-algebraic varieties X endowed with algebraic
vector fields v.

The solutions of such a differential equation (X, v) in an existentially closed
differential field form a definable set of the theory DCF0. All the generic solutions
of (X, v) over k — those who do not lie in any proper closed k-subvariety of X —
realize the same (complete) type p ∈ S(k) called the generic type of (X, v). Recall
that a type p ∈ S(k) in a stable theory is called semi-minimal if it is almost internal
to the collection of acl(k)-conjugates of a minimal type r ∈ S(l) defined over some
extension of the parameters k ⊂ l.

As many other notions from geometric stability, this definition involves, as it
stands, arbitrary extension of parameters, or in other words, base change by ar-
bitrary differential field extensions of (k, 0). It is remarkable that, in fact, this
property can be checked directly from k-algebraic dynamical data (not involving
any base-change), using the notion of rational factor as follows.

A rational factor φ : (X, v) 99K (Y,w) (over k) of an autonomous algebraic
differential equation (X, v) is a rational dominant morphism φ : X 99K Y over k,
satisfying the obvious compatibility relation dφ(v) = w with the vector fields v and
w. Additionally, we say that an autonomous differential equation (X, v) over k does

1The article [12] itself is unpublished and a proof of the trichotomy theorem can be found in
[21, Section 2.1] for example.
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not admit any non-trivial rational factor if any rational factor of (X, v) of positive
dimension has a finite generic fibre.

With this terminology in place, it follows from standard techniques of geometric
stability theory that the generic type of an algebraic differential equation which
does not admit any non-trivial rational factor is always semi-minimal (see, for
example, [18]). The first aim of this article is to develop a correspondent geometric
framework to study effectively rational factors of algebraic autonomous differential
equations.

Invariant foliations. Our analysis of rational factors of an algebraic autonomous
differential equation (X, v) relies on an auxiliary construction which associates to
a rational factor of relative dimension r, an invariant foliation of (X, v) of rank r,
that we describe below.

Let X be a smooth complex algebraic variety over some field k of characteristic
0. Recall that a non-singular foliation on X is an involutive vector subbundle of
the tangent bundle TX/k on X. More generally, a (possibly singular) foliation F of
rank r on X is a coherent, integrable, saturated subsheaf of rank r of the locally
free sheaf ΘX/k of vector fields on X.

It follows from the results of [8] on coherent saturated subsheaves of a locally
free sheaf that a (possibly singular) foliation F is always non-singular outside of a
closed subvariety Z = Sing(F) of X of codimension > 2, called the singular locus
of F . Our main incentive to allow such singularities in this definition of foliation
is the following extension principle for foliations (Proposition 2.3.1), which allows
us to localize our analysis and constructions at the generic point of X: provided X
is smooth, any foliation on a dense open set U ⊂ X extends uniquely to a foliation
on X.

Assume now moreover that the smooth algebraic variety X in endowed with a
vector field v. Recall that the Lie derivative Lv of the vector field v acts on the
coherent sheaf ΘX/k of vector fields on X by the rule Lv(w) = [v|U , w] for every
local section w ∈ ΘX/k(U).

For every open set U of X, the Lie derivative Lv acts as a derivation on the
OX(U)-module ΘX/k(U), compatible with the derivation δv induced by the vec-
tor field v on OX(U). In other words, the Lie derivative Lv defines a δv-module
structure (in the sense of Pillay-Ziegler [22]) on ΘX/k(U) viewed as an (OX(U), δv)-
module. We study, more generally, in the first section of this article coherent sheaves
E on X endowed with such a connection operator ∇ over an autonomous differential
equation (X, v), under the name of D-coherent sheaves (E ,∇) over the D-scheme
(X, v).

A foliation F on X is called an invariant foliation of (X, v) if it is stable under
the action of the Lie derivative Lv or, in other words, if F is a D-coherent subsheaf
of the D-coherent sheaf (ΘX/k,Lv). Among other things, we provide, for smooth
complex algebraic autonomous differential equations (X, v), an analytic interpreta-
tion (Proposition 3.2.1) for this notion of invariance and we prove that (Corollary
3.2.2) the singular locus of an invariant foliation F of (X, v) is always a closed
invariant subvariety of (X, v).

The following proposition relates the study of rational factors of smooth algebraic
autonomous differential equations (X, v) with the study of invariant foliations of
(X, v).
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Proposition A. — Let k be a field of characteristic 0 and let (X, v) be a k-
algebraic irreducible variety endowed with a vector field v.

If φ : (X, v) 99K (Y,w) is a rational factor of (X, v) of relative dimension r then
the foliation Fφ tangent to the fibres of φ is an invariant foliation of (X, v) of rank r.

Recall that, over a field k of characteristic 0, any dominant rational morphism
φ : X 99K Y of relative dimension r determines a foliation Fφ on X of rank r,
called the foliation tangent to the fibre of φ: indeed, one can first define Fφ|U on
any dense open set U ⊂ X on which π is defined and smooth and then extend it to
X itself using the extension principle discussed above. Note also that, in fact, this
construction presents the foliation Fφ of rank r as a fibration of X by algebraic
subvarieties of dimension k.

Disintegration of 3-dimensional compact mixing Anosov flow. The second aim of
this article is to exploit the relationship between invariant foliations and rational
factors described above, conjointly with the results of [14], to study disintegration
properties of, algebraically presented, compact, mixing Anosov flows of dimension
3.

Recall first the notion of disintegration (as formulated, for example, in [15]) at
the generic point of an autonomous differential equation (X, v) (over some field k
of characteristic 0). For n > 2, denote by Igenn (X, v) the set of closed irreducible
invariant subvarieties of (X, v)n which project generically on all factors. We say
that an algebraic differential equation (X, v) is generically disintegrated if for every
n > 3, every Z ∈ Igenn (X, v) can be written as an irreducible component (which
projects generically on all factors) of:⋂

16i 6=j6n
π−1
i,j (Zi,j).

where πi,j : Xn −→ X2 is the projection on the ith and jth coordinates and
Zi,j ∈ Igen2 (X, v) for every i 6= j.

The following theorem shows that an algebraically presented, mixing, compact
Anosov flow of dimension three is always generically disintegrated:

Theorem B. — Let X be an absolutely irreducible variety of dimension 3 over
R endowed a vector field v. Assume that the real-analytification X(R)an of X
admits a compact (non-empty) connected component CR contained in the regular
locus of X.

If the real-analytic flow (CR, (φt)t∈R) is a mixing Anosov flow, then the au-
tonomous differential equation (X, v) is generically disintegrated.

Anosov flows are uniformly hyperbolic flows defined by Anosov in [1]. Recall
that, for an Anosov flow (M, (φt)t∈R), the various notions of mixing — topologi-
cally weakly-mixing, topologically mixing and the mixing properties relatively to an
equilibrium measure— collapse into a single one (see for example [4]). We will sim-
ply say that (M, (φt)t∈R) is a mixing Anosov flow to mean that one of the previous
properties is satisfied.

Apart from suspensions of Anosov diffeomorphisms, other classical examples of
compact Anosov flow come from geodesic motion on compact Riemannian manifolds
with negative curvature and are known to be mixing (see [7]). We proved in [14]
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that these classical examples ensure the existence of unlimited families of algebraic
autonomous differential equations satisfying the hypotheses of Theorem B.

Theorem B provides a substential improvement of some of results of [14] which
only ensures, for an autonomous differential equation (X, v) satisfying the hy-
potheses of Theorem B, the existence of a generically disintegrated rational factor
π : (X, v) 99K (Y,w) of positive dimension.

Building on this result, Theorem B reduces to proving that an an algebraically
presented, compact, mixing Anosov flow (X, v) of dimension three does not admit
any non-trivial rational factor. For that matter, we carry out, in the fourth section,
an analysis of the continuous invariant distributions by an Anosov flow (M, (φt)t∈R)
of dimension three based on the usual (hyperbolic) decomposition:

TM = W ss ⊕ E ⊕W su

of the tangent bundle of M as the direct sum of the strongly stable continuous line
bundle W ss, the strongly unstable continuous line bundle W su and the direction
E of flow.

The decisive argument in our study of rational factors through invariant foliations
is a result of Plante in [23], which ensures that the strongly stable and the strongly
unstable distributions W ss and W su do not admit any algebraic leaves.

To conclude this introduction, we illustrate more concretely the content of The-
orem B with a separate real-analytic instance of it, when applied to a geodesic
motion in negative curvature:

Corollary C. — Let M be a regular compact real-algebraic subset of the
Euclidean space RN of dimension 2 with negative curvature and let r be integer
> 2.

Consider r unitary geodesics γ1, . . . γr : R → SM of the Euclidean submanifold
M , viewed as analytic curves on the sphere bundle SM ⊂ TRN of M . Assume
that, for every 1 6 i 6 r, the analytic curve γi is Zariski-dense in SM . Then, the
following are equivalent:

(i) The analytic curve t 7→ (γ1(t), . . . , γr(t)) is Zariski-dense in SMr.
(ii) For every i 6= j, the analytic curve t 7→ (γi(t), γj(t)) is Zariski-dense in

SM2.

Organization of the article. In the first section, we recall various classical facts
about the Lie derivative in the setting of algebraic geometry. We emphasize the
connection with differential algebra by formulating the results at the level of D-
schemes.

In the second section, we set up some classical definitions and notations from
the theory of algebraic foliations before defining, in the third section, the notion of
invariant algebraic foliation for a vector field v on a smooth algebraic variety X.

Finally the last section is dedicated to the study of rational factors of compact,
mixing, Anosov flows of dimension 3 and to the proofs of Theorem B and Corol-
lary C.

1. Lie derivative

In this section, we recall some classical facts on the Lie derivative in the setting
of algebraic and analytic geometry.
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The Lie derivative of a vector field (or more generally of a tensor field) with
respect to another vector field is a standard notion of differential calculus. Surpris-
ingly, it seems that that this notion has not been considered before in the setting
of differential algebra à la Buium [3].

On the other hand, the effectiveness of the Lie derivative in order to study
“non-integrability properties” of a differential equation given by a vector field on
a manifold already appears in the work of Morales-Ruiz and Ramis (cf. [19] and
[20]) by means of the so-called variational equation (see also [2, Part 3.1, p.46]).
Moreover, the notion of Lie derivative lies — through the Frobenius Integrability
Theorem — at the heart of the theory of algebraic foliations of dimension > 2 that
we will study in the second section of this article.

1.1. Definition. We fix k a field of characteristic 0. Recall that if A is a k-algebra,
Ω1
A/k denotes the A-module of 1-forms on A and Derk(A) = Hom(Ω1

A/k;A) is the
A-module of derivations of A trivial on k. We endow Derk(A) with a Lie bracket
by the formula:

[δ1, δ2] = δ1 ◦ δ2 − δ2 ◦ δ1. (1.1)

The Lie bracket is compatible with localization. Indeed, if A is a k-algebra and
S is a multiplicative system of A then the natural isomorphism of S−1A-modules:

S−1Derk(A) ' Derk(S−1A)

is also an isomorphism of k-Lie algebras.

Definition 1.1.1. — Let (X,OX) be a k-scheme. The Lie bracket defined by
the formula (1.1) on each affine open subset defines a Lie bracket on the coherent
sheaf ΘX/k = Derk(OX) of derivations of the structural sheaf of X.

Similarly, if (M,OM ) is a (real or complex) analytic space, then the formula
(1.1) defines a Lie bracket on the coherent sheaf ΘM = Der(OM ).

In both cases, under an additional smoothness assumption on X (respectively
on M), the sheaf ΘX/k is a locally free on X and is, indeed, the sheaf of sections
of the vector bundle TX/k — or in other words, the sheaf of vector fields on X.

Lemma 1.1.2. — Let k be either the field of real or complex numbers and
(X,OX) be a k-scheme. The (algebraic) Lie bracket on X satisfies the obvious
compatibility relation with the analytic one on X(k)an:

[v, w]an = [van, wan]

where −an denotes either the real or the complex analytification and the Lie bracket
on the right-hand side is the (real or complex) analytic one.

Proof. — This can easily be derived from the standard properties of the ana-
lytification functor. It is also a direct consequence of the formula (1.2) of the next
paragraph in both analytic and étale coordinates. �

We will use the formalism of D-schemes of Buium: if (k, δ) is a differential
field, a D-scheme over (k, δ) is a pair (X, δX) where X is a scheme over k and
δX : OX → OX is a derivation of the structural sheaf of X extending δ (see [3] and
the appendix of [15] for more details). We will work at two levels of generality:
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• We only consider D-schemes over constant differential fields namely, over
differential fields (k, 0) where the derivation δ = 0 is trivial on k. Typical
examples of constant differential fields are k = R and k = C endowed with
the trivial derivation.

Under this assumption, we get an isomorphism:
Derk(OX) ' Hom(Ω1

X/k,OX) ' H0(X,ΘX/k).

So a D-scheme over (k, 0) with underlying scheme X over k can be presented either
as (X, δX) where δX is a derivation of OX trivial on k or as (X, v) where v is a
global section of ΘX/k.

• We will often assume furthermore that the underlying schemeX is a smooth
irreducible algebraic variety over k. In that case, we say that (X, δX) is a
smooth irreducible D-variety over (k, 0).

Under this second assumption, the tangent space TX/k is a vector bundle over X
and ΘX/k is the locally free sheaf of sections of TX/k. So H0(X,ΘX/k) is the set of
(global) sections of TX/k which are the (global) vector fields on X. Hence, a smooth
D-variety can be presented either as (X, δX) where δX is a derivation of OX or as
(X, v) where v is a vector field on X.

Definition 1.1.3. — Let (X, δX) be a D-scheme over a constant differential
field (k, 0) and v a vector field on X. The Lie derivative of δX , denoted LδX

:
ΘX/k −→ ΘX/k is the k-linear morphism defined by:

LδX
(δ) = [δX|U , δ]

for every local section δ ∈ ΘX/k(U).

Lemma 1.1.4. — Let (X, δX) be a D-scheme over a constant differential field
(k, 0), let δ, δ′ ∈ ΘX/k(U) be two local sections defined on the same open set U and
a ∈ OX(U). We have: {

LδX
(δ + δ′) = LδX

(δ) + LδX
(δ′)

LδX
(a.δ) = δX(a).δ + a.LδX

(δ).

Proof. — These two properties follow immediately from the formula (1.1). �

Before studying, more generally, the k-linear operator on a coherent sheaf sat-
isfying the properties of Lemma 1.1.4, we compute, in the next paragraph, the
Lie bracket of two vector fields on a smooth variety in local coordinates (analytic
coordinates in the analytic case and étale coordinates in the algebraic one).

1.2. Computation in analytic and étale coordinates. Every analytic manifold
(M,OM ) can be covered by analytic charts. More precisely, there exists a covering
of M by open subsets endowed with analytic coordinates x1, . . . , xn (meaning that
the map x = (x1, . . . , xn) : U −→ kn is an analytic isomorphism onto its image).

In order to prove local properties of the Lie derivative, we will sometimes work
locally inside these coordinates. Instead of analytic coordinates, we will use étale
coordinates when working with algebraic varieties.

Definition 1.2.1. — Let U be a smooth variety over some field k of dimension
n. A system (x1, . . . , xn) of étale coordinates on U is an étale morphism x =
(x1, . . . , xn) : U −→ An.
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In other words, it is a n-tuple (x1, . . . , xn) of regular functions on U such that
the section dx1 ∧ · · · ∧ dxn of the canonical line bundle ΩnU/k = ΛnΩ1

U/k does not
vanish on U .

Remark 1.2.2. — Note that, if (x1, . . . xn) : U −→ An is a system of étale co-
ordinates then, by definition, {dx1, . . . , dxn} define a trivialization of ΩnU/k. It
follows that the dual basis of vector fields { ∂

∂x1
, . . . , ∂

∂xn
} define a trivialization of

the tangent bundle of X.

Lemma 1.2.3. — Let X be a smooth algebraic variety over some field k of
characteristic 0. There exists a covering of X by Zariski-open subsets (U ;x1, . . . xn)
endowed with étale coordinates. �

Example 1.2.4. — LetX be a smooth algebraic variety over a field k of character-
istic 0. Consider an open set U ⊂ X and (x1, . . . xn) a system of étale coordinates
on U . Since the vector fields ∂

∂x1
, . . . , ∂

∂xn
define a trivialization of the tangent

bundle of X, we may write

v|U =
n∑
i=1

vi
∂

∂xi
and w|U =

n∑
i=1

wi
∂

∂xi

for some functions vi, wi ∈ OX(U).

Lemma 1.2.5. — With the notation above, the Lie bracket of the vector fields
v and w is given by:

[v, w]|U =
n∑
i=1

( n∑
j=1

vj
∂wi
∂xj
− wj

∂vi
∂xj

)
∂

∂xi
. (1.2)

Proof. — The lemma follows from Lemma 1.1.4 applied to both Lv and Lw. �
Note that when one works with (a subfield of) the field of complex numbers, on

may use analytic coordinates instead of étale coordinates and the formula (1.2) also
holds in this analytic setting.

1.3. Lie derivative and D-coherent sheaves. The notion of D-coherent sheaves
over some D-scheme (X, δX) formalizes the notion of a “linear differential equation
over (X, δX)”. This is a straightforward generalization to D-schemes of the notion
of δ-module over differential fields, that appears for example in [22, Section 3].

Definition 1.3.1. — Let (X, δX) be aD-scheme over some constant differential
field (k, 0). A D-coherent sheaf over (X, δX) is a pair (E ,∇) where E is a coherent
sheaf over X and ∇ : E −→ E is a k-linear sheaf morphism satisfying the Leibniz-
rule with respect to scalar multiplication:

∇(a.m) = δX(a).m+ a.∇(m)

for every local sections a ∈ OX(U) and m ∈ E(U) on some open subset U of X.
If (E ,∇E) and (F ,∇F ) are both D-coherent sheaves over (X, δX), then a mor-

phism of D-coherent sheaves over (X, δX) is a morphism f : E −→ F of coherent
sheaves over X such that

f ◦ ∇E = ∇F ◦ f.
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Remark 1.3.2. — The notion of D-coherent sheaf is closely related to the more
usual notion of a coherent sheaf E endowed with a connection ∇. Recall that if X
is a scheme over a field k, a connection ∇ on a coherent sheaf E over X is k-bilinear
morphism:

∇ : E ×ΘX/k −→ E
which satisfies the Leibniz rule with respect to scalar multiplication on E and is
OX -linear with respect to scalar multiplication on ΘX/k.

Lemma 1.3.3. — Let (X, δX) be a D-scheme over some constant differential
field (k, 0) and (E ,∇) a coherent sheaf endowed with a connection on X. Denote
by

∇δX
(σ) = ∇(σ, vX|U ) for a local section σ ∈ E(U)

where vX the global section of H0(X,ΘX/k) corresponding to δX . Then (E ,∇δX
)

is a D-coherent sheaf over (X, δX).

Proof. — By definition, the morphism ∇δX
is k-linear and satisfies the Leibniz

rule. �

In particular, we get the following example:

Example 1.3.4. — Let (X, δX) be a D-scheme over some constant differential
field (k, 0) and E = OXε1 ⊕ · · · ⊕ OXεn be a free sheaf of rank n over X. Define
the k-linear map ∇0 : E −→ E by the formula:

∇0(
n∑
i=1

fiεi) =
n∑
i=1

δX(fi)εi.

Then (E ,∇0) is a D-coherent sheaf over (X, δX).

Lemma 1.3.5. — Let (X, δX) be a D-scheme over some constant differential
field (k, 0) and let E be a coherent sheaf on X. If (E ,∇) and (E ,∇′) are both
D-coherent sheaves then:

∇−∇′ ∈ EndOX(E)
where EndOX(E) denotes the set of OX -linear endomorphisms of E

Proof. — For a local function a ∈ OX(U) and a local section σ ∈ OX(U), we
have:

(∇−∇′)(a.σ) = a.(∇(σ)−∇′(σ)) + δX(a).σ − δX(a).σ = a.(∇−∇′)(σ).
It follows that ∇−∇′ is OX -linear. �

Example 1.3.6. — Let (X, δX) be a smooth D-variety over a constant differential
field (k, 0) and (E ,∇) a locally free D-coherent sheaf.

Consider an open set U ⊂ X for which E|U = OU ε1 ⊕ · · · ⊕ OU εn is free. Using
Example 1.3.4 and Lemma 1.3.5, there are functions ai,j ∈ OX(U) for i, j = 1, . . . , n
such that:

∇(
n∑
i=1

fiεi) = ∇0(
n∑
i=1

fiεi) +A.(f1, . . . , fn) (1.3)

where A = (ai,j) is the n× n-matrix with coefficients ai,j(x) ∈ OX(U).
Conversely, for every matrix A = (ai,j)i,j6n with coefficients ai,j(x) ∈ OX(U),

∇ = ∇0 +A defines a D-coherent sheaf on ΘU/k.
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Example 1.3.7. — Let (X, δX) be a D-scheme over some constant differential
field (k, 0). By Lemma 1.1.4, the pair (ΘX/k, LδX

) is a D-coherent sheaf over
(X, δX).

Assume now that (X, δX) is a smooth D-variety over (k, 0): in other words,
assume that moreover X is smooth over k and denote by vX the vector field on X
associated to the derivation δX . Consider U ⊂ X an open subset and (x1, . . . , xn)
a system of étale coordinates on U . Combining the formulas (1.3) and (1.2), we
get:

Lv(w) = ∇0(w)−A.w where ai,j = ∂vi
∂xj
∈ OX(U).

Since the coefficients ai,j of the matrix A do not depend linearly on the vec-
tor field v. By Lemma 1.3.3, this kind of D-coherent sheaves never come from a
connection on X.

1.4. The category of D-coherent sheaves over D-schemes.
Lemma 1.4.1. — Let (X, δX) be a D-scheme over some constant differential

field (k, 0). The category of D-coherent sheaves over (X, δX) is an Abelian category.
Proof. — If f : (E ,∇E) −→ (F ,∇F ) is a morphism of D-coherent sheaves, it

is easy to check that the kernel and the image of f are respective D-subcoherent
sheaves of (E ,∇E) and (F ,∇F ) respectively.

Moreover, if G is a D-coherent sheave of (E ,∇E), then there exists a unique D-
coherent sheaf structure (E/G,∇E/G) which makes the canonical projection into a
morphism of D-coherent sheaves.

Using the forgetful functor to the category of coherent sheaves on X, which is
an Abelian category, it is easy to check that the axioms of an Abelian category are
satisfied. �

Definition 1.4.2. — Let φ : (X, δX) −→ (Y, δY ) be a morphism of D-schemes
over some constant differential field (k, 0) and (E ,∇E) a D-coherent sheaf over
(Y, δY ).

The pull-back of (E ,∇E) by φ, denoted φ∗(E ,∇E), is the coherent sheaf φ∗E over
X endowed with the derivation:

φ∗∇E = ∇E ⊗ 1 + Id⊗ δX .
Example 1.4.3. — Let φ : (X, δX) −→ (Y, δY ) be a morphism of D-schemes over

some constant differential field (k, 0) and (E ,∇E) a locally free D-coherent sheaf
over (Y, δY ).

Consider an open subset U ⊂ Y such that the restriction E|U = OU ε1⊕· · ·⊕OU εn
of E to U is free. Using formula (1.3), we can write:

∇E|U = ∇0 +A

where A = (ai,j) is an n× n matrix with coefficients ai,j ∈ OY (U).
Set V = φ−1(U). Note that the restriction φ∗E|V = OV φ∗ε1 ⊕ · · · ⊕ OV φ∗εn of

φ∗E to V is also free.
Lemma 1.4.4. — With the notations above, the D-coherent structure on φ∗E

is given by:
φ∗∇E = ∇0 +Aφ

where Aφ is the matrix with coefficients ai,j ◦ φ ∈ OX(V ).
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1.5. Main Proposition.

Proposition 1.5.1. — Let φ : (X, v) −→ (Y,w) be a morphism of smooth D-
varieties over some constant differential field (k, 0). The derivative of φ defines a
morphism of D-coherent sheaves over X:

dφ : (ΘX/k,Lv) −→ φ∗(ΘY/k,Lw)

Proof. — It is sufficient to work locally in the Zariski topology. Consider étale
coordinates (x1, . . . , xp) : U −→ Ap and (y1, . . . , yq) : V −→ Aq be étale coordinates
on Y such that φ : U −→ V .

We want to show that dφ ◦ Lv = φ∗Lw ◦ dφ. Using Example 1.3.7 and Lemma
1.4.4, we can write:{

Lv = ∇0 −A where ai,j = ∂vi

∂xj
∈ OX(U)

φ∗Lw = ∇′0 −Bφ where bi,j = ∂wi

∂yj
∈ OY (V ).

where ∇0 is the trivial connection on ΘU/k in the trivialization ΘU/k = OU ∂
∂x1

+
. . .OU ∂

∂xn
and∇′0 is the trivial connection on φ∗ΘV/k in the trivialization φ∗ΘV/k =

OUφ∗ ∂
∂y1

+ . . .OUφ∗ ∂
∂yn

. Using this notation, the equality dφ ◦ Lv = φ∗Lw ◦ dφ
which we aim to prove can be written as:

Bφ.dφ = dφ.A+ (∇′0.dφ− dφ.∇0)
which is an identity between two matrices of size p× q with coefficients in OX(U).

Now, since φ is a morphism of D-varieties, we have dφ(v) = φ∗w, which — after
denoting φj = yj ◦φ, the coordinate function of φ— translates in these coordinates
by:

p∑
k=1

∂φj
∂xk

vk = wj ◦ φ.

For 1 6 i 6 p and 1 6 j 6 q, the chain rule for derivation as well as the Leibniz
rule imply that:

(Bφ.dφ)i,j = ∂

∂xi
(wj ◦ φ) = ∂

∂xi
(
p∑
k=1

∂φj
∂xk

vk) = (dφ.A)i,j +
p∑
k=1

vk
∂2φj
∂xkxi

.

Moreover, since ∇0( ∂
∂xi

) = 0, we have that:

(∇′0.dφ− dφ.∇0)i,j = (∇′0.dφ)i,j = v(∂φj
∂xi

) =
p∑
k=1

vk
∂2φj
∂xkxi

.

This concludes the proof of the proposition. �

We now gather two corollaries of Proposition 1.5.1 which deal respectively with
two different geometric situations.

Corollary 1.5.2. — Let φ : (X, v) −→ (Y,w) be a dominant morphism of
smooth D-varieties over a constant differential field (k, 0). The coherent subsheaf
ΘX/Y = Ker(dφ) is invariant under the Lie derivative Lv of v.

Corollary 1.5.3. — Let (X, v) be a smooth D-variety and Y ⊂i X a closed
smooth invariant submanifold. We have an exact sequence of sheaves over Y :

0 −→ ΘY/k −→ i∗ΘX/k −→ NX/Y −→ 0
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where NX/Y denotes the normal bundle of Y in X. The Lie derivative Lv induces
a well-defined D-coherent sheaf structure on NX/Y .

1.6. Cauchy formula on an analytic manifold.

Construction 1.6.1. — Let (A, δA) be a differential ring of characteristic 0. Con-
sider the differential ring (A((t)), ddt ) of formal power series over A endowed with
the derivation sending t to 0 and the morphism of differential rings φ∗ : (A, δA) −→
(A((t)), ddt ) given by the expansion in power series:

a 7→
∞∑
k=0

δkA(a)
k! tk.

We denote by −|t=0 : A((t)) −→ A the morphism of evaluation at t = 0 and we
denote by δA, the unique extension of δA to A((t)) satisfying δA(t) = 0. Note
that with this derivation, the morphism of rings −|t=0 becomes a morphism of
differential rings:

Lemma 1.6.2. — With the notation above for every f ∈ A, φ∗(f) may be
described as the unique solution of the differential equation:{

φ∗(f)|t=0 = f
d
dtφ
∗(f) = δA(φ∗(f))

Remark 1.6.3. — Consider M an analytic manifold, v an analytic vector field on
M and a ∈ M . The vector field v induces a derivation δv on A = OM,a. In [15,
Lemme 3.1.21], we proved — bounding the norm of δnv (f) in terms of n — that in
that case, the morphism φ∗ may be factored as:

φ∗ : A −→ OM×C,(a,0) ⊂ A((t)).

As noted in [15], one easily checks that if φa denotes the local analytic flow of the
vector field at v, this implies that:

f ◦ φa = φ∗(f) =
∞∑
k=0

δkv (f)
k! tk.

This property was then used to translate — for a closed submanifold of M — in-
variance properties with respect to the vector field in terms of invariance properties
with respect to the local analytic flow (see [15, Proposition 3.1.20]).

Construction 1.6.4. — Let (A, δA) be a differential ring of characteristic 0 and
(M,∇M ) be a D-module over A. One may define a morphism of A-modulesM −→
M ⊗A((t)) by the formula:

m 7→
∞∑
k=0

∇kM (m)
k! ⊗ tk.

When (M,∇M ) is given by the Lie derivative of a vector field v on an analytic
manifold M , we will once again bound the norms of the sequence (∇

k
M (m)
k! )k∈N in

terms of k:
Let M be a smooth analytic manifold and let v be a vector field on M . For

every point a ∈ M , the Lie derivative of vector field v defines a derivation Lv :
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ΘM,a −→ ΘM,a. We denote by OM,a{t} the ring of local analytic functions on
C×M . Pull-back along the local flow φa of v defines a morphism of OM,a-modules:

φ∗a : Θa,M −→ Θa,M ⊗OM,a{t}

We extend the derivation Lv on Θa,M to a derivation on Θa,M ⊗ OM,a{t} still
denoted Lv by setting Lv(t) = 0.

Lemma 1.6.5 (Cauchy formula for the Lie derivative). — With the notation
above for every vector fields w in a neighborhood of p, we have:{

φ∗a(w)|t=0 = w
d
dtφ
∗
a(w) = Lv(φ∗a(w))

Moreover, we have:

φ∗aw =
∞∑
n=0

Lnv (w)
n! tn.

Proof. — The relation between the Lie derivative of a vector field v and the
pull-back by the local flow of the vector field v, given in the first part is well-known
and holds more generally on smooth manifolds (see [17, Chapter V, Section 2]).

For the second part, one needs to check that the right hand-side converges nor-
mally to an analytic function in a neighborhood of p. By formal derivation of power
series, it follows easily that the left-hand side satisfies the differential equation given
by the first part and therefore must be equal to the local flow φ∗aw. Similar formulas
already appear in the work of Cauchy.

Given a vector field w on M , we need a uniform bound for Lnv (w) in a neighbor-
hood of p, in order to prove normal convergence. Since M is smooth and that we
work locally on M , we may assume that M = Cn and p = 0.

Fix r0 < R0 are the radii of two complex polydisks of p and n a natural number.
By applying Cauchy’s integral formula (see [11, Theorem 2.2.1]) to the holomorphic
coordinates of w, there exists a constant C > 0 such that for all ε > 0, all radii r > 0
and all vector fields w, we obtain Cauchy inequalities (see [11, Theorem 2.2.7]) :

||Lv(w)||∞,r−ε 6
C

ε
||w||∞,r.

where || − ||∞,r denotes the supremum norm on the polydisk with radius r . It
then follows from n successive applications of the previous inequality to the radii
rk = r0 + (R0 − r0) kn that:

||Lnv (w)||∞,r0 6 (C
n

)n||w||∞,R0

The normal convergence of the left-hand side follows from this inequality. �

2. Foliations on a smooth algebraic variety

In this section, we recall the standard definition of an algebraic foliation — in
the setting of algebraic varieties over a field k of characteristic 0 — that we will use
in this article.

Let X be a smooth irreducible algebraic variety over k. Intuitively, a foliation F
on X is the data of a subspace TF,x of the tangent space TX,x at x for every point
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x of X that depends algebraically on the point x ∈ X and such that the sheaf of
sections of F is stable under Lie bracket.

The dimension of the subspace Fη at the generic point η of X is called the rank
of the foliation. A singularity of the foliation F is simply a point x of X where the
dimension of the fibre Fx is less than the rank of the foliation.

More restrictively, we will require the foliations to satisfy an additional assump-
tion of saturation. On the one hand, the involutivity property — that is the stability
under Lie bracket — ensures the local analytic integrability of the foliation, outside
of the singular locus. On the other hand, the saturation hypothesis ensures that
the singular locus of F is “small”, namely of codimension at least 2 in X.

The main motivation for these additional requirement is the extension result
(Proposition 2.3.1) for any algebraic foliation F on a quasi-projective smooth variety
X to a foliation F on any projective closure.

2.1. Algebraic foliations and their singular locus. Let X be an irreducible
and smooth variety over a field k of characteristic 0. The coherent sheaf ΘX/k is a
locally free sheaf of rank n = dim(X).

Definition 2.1.1. — A foliation F on X is a sub-sheaf TF of the tangent
bundle ΘX/k which satisfies:

(i) The sub-sheaf TF is involutive, that is, stable under the Lie bracket.
(ii) The sub-sheaf TF is saturated, that is, the quotient ΘX/k/TF does not have

torsion.
The coherent sheaf TF is the sheaf of vector fields tangent to the foliation F . The
rank of the foliation F is the (generic) rank of the coherent sheaf TF . Alternatively,
we say that F is an r-foliation to mean that F is a foliation with rank r.

Remark 2.1.2. — We first comment on the two main assumptions in Definition
2.1.1, namely involutivity and saturation.

(1) In this article, we are mainly interested in smooth algebraic varieties defined
over the field of real or complex numbers. In that case, the involutivity
assumption is crucial to ensure local analytic integrability of the algebraic
foliation under study (see section 2.5). However, for a coherent sub-sheaf L
of ΘX/k of rank 1, the condition of involutivity is automatically satisfied.

(2) The property of saturation for TF (inside a locally free sheaf) implies that
the coherent sheaf TF is reflexive (namely, isomorphic to its bidual). This
property, which is extensively studied in [8], is weaker than being locally
free but stronger than being torsion-free.

In particular, a 1-foliation is always defined by an invertible sheaf TF
whereas for a 2-foliation on a smooth algebraic variety X of dimension 3 is
always defined by a coherent sheaf TF which is locally free outside a finite
set of points (see [8]) of X. Since the main result of this article deals with
D-variety of dimension 3, these two examples are the most important ones
for the proof of Theorem B.

Lemma 2.1.3. — LetX be a smooth algebraic variety over k and let TF ⊂ ΘX/k

be a coherent sub-sheaf of the tangent sheaf of X. The following properties are
equivalent:

(i) ΘX/k/TF does not have torsion.
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(ii) There exists an open set U ⊂ X such that codimX(X \ U) > 2 and
0 −→ TF|U −→ ΘU/k −→ ΘU/k/TF|U −→ 0

is an exact sequence of locally free-sheaves on U .

Proof. — Indeed, fix x ∈ X of codimension 1. Since X is a smooth algebraic
variety, the local ring OX,x is a principal local ring. It follows that the exact
sequence of torsion-free OX,x-modules:

0 −→ TF,x −→ ΘX/k,x −→ ΘX/k,x/TF,x −→ 0
is in fact an exact sequence of free OX,x-module which therefore have to split. Since
this is true for every point x ∈ X of codimension 1, the lemma follows. �

Definition 2.1.4. — Let F be a foliation on X. The singular locus of F ,
denoted Sing(F) is the set of points x ∈ X such that ΘX/k/F is not locally-free in
a neighborhood of x, i.e.

Sing(F) = {x ∈ X | (ΘX/k/F)x is not a OX,x − free module}.

Definition 2.1.5. — Let F be a foliation on X. The foliation F on X is called
non-singular if Sing(F) = ∅.

Proposition 2.1.6. — Let F be a foliation on X. The singular locus of F is
a closed subset of X of codimension > 2.

Proof. — The fact that the singular locus of a foliation is closed follows from
the general properties of morphisms of coherent sheaves. This also follows from
the computations of Example 2.1.7. Moreover, the previous lemma shows that its
codimension is greater than 2. �

Example 2.1.7. — Let F be a foliation on X and U ⊂ X an open subset endowed
with a system of étale coordinates x1, . . . xn : U −→ An. Recall that the tangent
sheaf ΘU/k may be identified with the free sheaf OnU/k with basis ( ∂

∂x1
, . . . , ∂

∂xn
).

Since the coherent sub-sheaf F|U is finitely generated, it can be described as the
coherent sheaf on U spanned by some vector fields v1, . . . , vr written as:

vi =
n∑
i=1

fi,j
∂

∂xi
.

We can now explicit the system of equations describing the singular locus of F
restricted to U in terms of these data:

Sing(F) ∩ U = {p ∈ U | rank(fi,j(p)) is not maximal}.
Hence, if F is a foliation of rank p, the system of equations describing the singular lo-
cus of F is given by the vanishing of the p×p minors of the matrix (fi,j)16i6r,16j6n.

2.2. Analytification of an algebraic foliation. Assume that k is the field of
real or complex number. We have the following counterpart for Definition 2.1.1 in
the analytic setting:

Definition 2.2.1. — LetM is a real or complex analytic manifold. An analytic
foliation on M is a coherent subsheaf E of the tangent sheaf ΘM of M which is
both involutive and saturated.
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Similarly to the algebraic case, for an analytic foliation E on an analytic manifold
M , one can define its rank and its singular locus Sing(E). The singular locus of E
is a closed analytic subspace of M of codimension > 2.

Lemma 2.2.2. — Let X be a complex (resp. a real) smooth algebraic va-
riety and F a foliation on X. Through the complex-analytication (resp. real-
analytification) functor −an, F defines an analytic foliation Fan on Xan.

Moreover, the rank of Fan is the rank of F and the singular locus of Fan is the
analytification of the singular locus of F .

Remark 2.2.3. — When we will work in the analytic setting, we will mainly
work with non-singular foliation. The only exception to that rule is the proof of
Proposition 3.2.2 where we work with the local analytic flow of a vector field to
prove invariance properties for its singular locus.

Once this has been established, we will simply throw away the singular locus
Sing(F) of the foliation F at the level of scheme before applying the analytification
functor.

2.3. Saturation of an algebraic foliation on a open subset.

Proposition 2.3.1 (Saturation). — LetX be a smooth algebraic variety over k
and let U be a dense open subset. Any algebraic foliation F on U extends uniquely
to an algebraic foliation on X.

Proof. — Let F be an algebraic foliation on U . There exists a coherent subsheaf
G of ΘX/k such that G|U = F (namely, the sheaf G of vector fields v such that
v|U ∈ F , which, as a simple verification shows, is quasi-coherent, hence coherent).

We will use the following characterization of saturation (see [8, Proposition 1.1]):
let G be a coherent saturated subsheaf of a locally free sheaf E on X. The following
are equivalent:

(i) G is a saturated subsheaf of E (in other words, E/G does not have torsion).
(ii) G is reflexive: the canonical morphism i : G → G∨∨ to the double dual G∨∨

is an isomorphism.
Set F = G∨∨ ⊂ Θ∨∨X/k = ΘX/k where the identification Θ∨∨X/k = ΘX/k follows

from the fact that ΘX/k is locally free (since X is smooth). By [8, Corollary 1.2], F
is reflexive and therefore is a saturated subsheaf of ΘX/k. Since the coherent sheaf
F on U is already reflexive and G|U = F , it follows that F |U = F . It remains to
check that F is involutive.

Let v ∈ F(V ) be a local section of F . The Lie bracket with v defines a morphism
of OX -modules:

[−, v] : F |V −→ (ΘX/k/F)|V
Since the algebraic foliation F is involutive, this morphism is zero on U ∩ V .

Consequently, the image of this morphism is a coherent sheaf whose support is
a proper closed subvariety of X, hence a torsion sheaf. Since the coherent sheaf
ΘX/k/F has no torsion, this morphism is zero.

To show uniqueness, assume that F1 and F2 are two saturated subsheaves of X
which agree on a dense open set U ⊂ X. We want to show that F1 = F2.

Consider T the image of F1 in ΘX/k/F2. Since F1 = F2 on the open set U ,
we have that T|U = 0 and the support of T is a proper closed subscheme of X. It
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follows that T is a torsion sheaf. Since ΘX/k/F2 does not have torsion, we conclude
that T = 0, so that F1 ⊂ F2. The symmetric argument shows that F1 = F2. �

Proposition 2.3.1 can be used to construct algebraic foliations on smooth alge-
braic variety X: it shows that one only needs to construct them on a dense open
subset.

Construction 2.3.2. — Let φ : X 99K Y be a rational dominant morphism of
smooth irreducible varieties over a field k. Denote by n the dimension of X and m
the dimension of Y . Let U be the biggest open set where φ is defined and smooth.
The restriction of the differential dφ : ΘX/k −→ φ∗ΘY/k of φ to U has constant
rank n−m.

Lemma 2.3.3. — With the notation above, Ker(dφ|U ) defines a non-singular
algebraic foliation on U of rank (n−m).

Proof. — Since Ker(dφ|U ) is a sub-vector bundle of TU/k, it suffices to prove that
Ker(dφ|U ) is involutive. Let v be a local section of Ker(dφ|U ) on a open set V . Then,
φ|V : (V, v) −→ (Y, 0) is a morphism of smooth D-varieties. By Corollary 1.5.2,
Ker(dφ|U ) is stable under Lv. Since this is true for every local section, Ker(dφ|U )
is involutive. �

Definition 2.3.4. — Let φ : X 99K Y be a rational dominant morphism of
smooth irreducible varieties over a field k. Denote by n the dimension of X and m
the dimension of Y .

By Proposition 2.3.1, the non-singular foliation Ker(dφ|U ) uniquely extends to
a (possibly singular) (n − m)-foliation on X denoted Fφ and called the foliation
tangent to φ.

2.4. 1-Foliation tangent to a vector field.

Definition 2.4.1. — Let X be a smooth and irreducible algebraic variety and
v be a non-zero rational vector field on X. Let U be the biggest open set of X
where v is defined and does not vanish. The restriction of v on U generates a non-
singular 1-foliation on U . By Proposition 2.3.1, this foliation uniquely extends to
a 1-foliation on X denoted Fv and called the foliation tangent to v (with possible
singularities outside of U).

Lemma 2.4.2. — Let v, w be two non-zero rational vector fields on X. The
foliations Fv and Fw coincide if and only if v = f.w for some non-zero rational
function f on X.

Proof. — The main observation is that the vector fields v and w define the same
foliation if and only if they define the same foliation on an open set of X (by
uniqueness of Proposition 2.3.1).

Now, if f is a non-zero rational function such that v = f.w then the foliation
tangent to v and w agrees at least outside of the indeterminacy locus and the zero
locus of f . By the previous observation, they agree everywhere. Conversely, if v
and w define the same foliation then, outside the closed subset of X given as the
union of the singularities and zeros of both v and w, they differ by multiplication
by a non vanishing function. Hence they differ by multiplication by a non-zero
rational function. �
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Remark 2.4.3. — The main content of Proposition 2.3.1 is that — in contrast
with vector fields — foliations extend automatically to any smooth projective model
of a quasi-projective variety.

If (X, v) is any quasi-projective D-variety, one can consider the 1-foliation Fv
tangent to v on the projective closure X of X. In particular, in that setting, the
notion of closed invariant subvarieties naturally extends to closed subvarieties of
X.

We illustrate the previous remark by computing the foliation on P2 associated
to a polynomial vector field on A2:

Example 2.4.4. — Let k be a field of characteristic 0. We consider polynomial
vector fields v on the plane A2:

v(x, y) = a(x, y) ∂
∂x

+ b(x, y) ∂
∂y

where a(x, y) and b(x, y) are two coprime polynomials with coefficients in k, with
the same degree n. The condition of coprimeness simply express that v defines a
saturated subsheaf of A2

x,y.

We now describe the foliation Fv tangent to v on P2 in the chart (s, t) where:

s = 1
x

and t = y

x
.

Note that in the coordinates (s, t), the line at infinity is described by s = 0. Denote
by â(s, t) = sn.a(1/s, t/s) ∈ k[s, t] and b̂(s, t) = sn.b(1/s, t/s) ∈ k[s, t]. A simple
computation shows the coordinates (s, t), the vector field v is given by:

sn−1.v(s, t) = −s.â(s, t) ∂
∂s

+ (−t.â(s, t) + b̂(s, t)) ∂
∂t
.

Now, if we denote by w(s, t) the vector field on the right-hand side, the vector fields
w(s, t) and v(s, t) have the same singularities outside of the line x = 0 and s = 0.
Hence, the vector field w(s, t) defines a saturated sub-sheaf of ΘA2

s,t/k
if and only

if the vector field w(s, t) does not vanish on the line at infinity. This condition can
be rewritten as:

P (t) := −t.â(0, t)+ b̂(0, t) 6= 0 or Q(x, y) = xnP (y/x) = x.bn(x, y)−y.an(x, y) 6= 0.

where an(x, y) and bn(x, y) are respectively the homogeneous parts of degree n of
a(x, y) and b(x, y) respectively.

We have proven the following:

Lemma 2.4.5. — Let v(x, y) = a(x, y) ∂
∂x+b(x, y) ∂∂y be a polynomial vector field

on the plane where a(x, y) and b(x, y) are two coprime polynomials with degree n.
Assume moreover that:

Q(x, y) = x.bn(x, y)− y.an(x, y) 6= 0

Then the line at infinity is invariant for the foliation Fv and the singularities
Sing(Fv)∞ of Fv on the line at infinity are given (in homogeneous coordinates)
as the roots of Q(x, y).
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Remark 2.4.6. — This simple lemma admits strong consequences for the struc-
ture of closed invariant varieties for the D-variety (A2, v) for a vector field v satis-
fying the assumption of the lemma. For example, if L∞ denotes the line at infinity
then every closed invariant curve C of (A2, v) satisfies:

C∞ = C ∩ L∞ ⊂ Sing(Fv)∞.

This property heavily constrains the possible closed invariant curves for (A2, v).
For example, with refinements of this idea in [5], Coutinho and Menasché describe
an algorithm to compute polynomial vectors fields on the plane without closed
invariant curves.

2.5. Analytic leaves of a non-singular analytic foliation.

Theorem 2.5.1 (Frobenius Integrability Theorem, [13, Theorem 2.9, Part I]).
LetM be a complex analytic manifold of dimension n, F be a non-singular analytic
r-foliation on M and x ∈M .

There exist a neighborhood U of x in M , open subsets V1 ⊂ Cr, V2 ⊂ Cn−r and
an analytic isomorphism φ : U −→ V1 × V2 such that for all t ∈ V2, the tangent
space of Lt = φ−1(V1 × {t}) at every point a ∈ Lt is Fa.

Remark 2.5.2. — Let M be a complex analytic manifold of dimension n, F be a
non-singular analytic r-foliation on M and x ∈M .

The germ at x of the analytic subvariety Ly = φ−1(V1 × {y}) where y = φ2(x)
does not depend on the chosen trivialisation φ given by Theorem 2.5.1 and is called
the germ of the leaf of F through x.

Definition 2.5.3. — LetM be a complex analytic manifold of dimension n and
F be a non-singular analytic r-foliation on M . A leaf of F is a maximal immersed
analytic subvariety N of M , which is the germ of a leaf at any point of N .

Corollary 2.5.4. — LetM be a complex analytic manifold of dimension n and
F be a non-singular analytic r-foliation on M . The leaves of F define a partition
of M into immersed analytic subvariety of dimension the rank of F .

Proof. — Indeed, by maximality, two distinct leaves of F never intersect. More-
over, by Theorem 2.5.1, any point x ∈M is contained in a leaf. �

Definition 2.5.5. — Let X be an algebraic manifold and F a possibly singular
foliation of X . Denote by U the complementary of the singular locus Sing(F ) of
F .

A leaf L of the non-singular foliation Fan|U is called algebraic if there exists a
closed algebraic subvariety Z of X such that

Z(C) ∩ U(C) = L.

Example 2.5.6. — Let X be a smooth complex algebraic variety. By [6, Theorem
1.2], there exists at least one rational vector field v (in fact, most of them), such
that the foliation Fv defined in Example 2.4.1 does not admit any algebraic leaf.

However, by definition, the foliation associated to a rational factor Fφ in Example
2.3.2, there exists a non-empty open set U such that any leaf that encounters U is
algebraic.
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2.6. Continuous foliations on an analytic manifold. Let M be a (real or
complex) analytic manifold and let E ⊂ TM be a continuous distribution on M ,
that is a continuous sub-bundle E of TM . Under such a weak regularity assump-
tion, the property of involutivity formulated in terms of the Lie derivative is not
available anymore to distinguish foliations (satisfying local-integrability properties)
from other distributions.

Let’s start by recalling the definition of an Anosov flow, which evidences two
important continuous distributions.

Definition 2.6.1. — Let (M, g) be a Riemannian manifold of dimension > 3
and v a C∞-vector field on M with a complete flow (φt)t∈R. The flow (M, (φt)t∈R)
is called an Anosov flow if the vector field v does not vanish and there exists a
splitting of the tangent bundle TM into continuous sub-bundles

TM = Ess ⊕ R.v ⊕ Esu (2.1)
satisfying:

(i) The sub-bundles Ess and Esu are non-trivial bundles which are (dφt)t∈R-
invariant.

(ii) There exist C,C ′ > 0 and 0 < λ < 1 such that for all u ∈ Ess,
||dφt(u)|| 6 C.λt||u|| and ||dφ−t(u)|| > C ′.λ−t||u|| for all t > 0.

(iii) There exist C,C ′ > 0 and 0 < λ < 1 such that for all w ∈ Esu,
||dφt(w)|| > C.λ−t||w|| and ||dφ−t(w)|| 6 C ′.λt||w|| for all t > 0.
where the norm on the tangent bundle TM is given by the Riemannian
metric on M .

The distributions Ess and Esu are called respectively strongly stable and strongly
unstable distributions. Note that ifM is compact then any two Riemannian metrics
on M are equivalent. Hence, for a vector v on a smooth compact manifold M , the
property that expresses that its real-analytic flow is Anosov is independent of the
choice of a Riemannian metric onM . In particular, for compact manifoldM , these
two distributions are uniquely determined by the vector field v.

Remark 2.6.2. — The work of Hasselblat in [9] (that goes back to Anosov in the
case of diffeomorphisms) imply that these distributions do not, in general, satisfy
stronger regularity properties (such as being C2). Consequently, when working with
Anosov flows, we will need to work at this degree of regularity.

The procedure that allows that — which produces, after real analytication, from
an algebraic foliation F , a continuous foliation outside of the singular locus — will
be essential for our purposes.

Definition 2.6.3. — LetM be a analytic manifold of dimension n. A continu-
ous (non-singular) foliation F onM of rank p is a continuous atlas {(Ui, φi) , i ∈ I}
on M such that:

(i) For each i, there are two connected open subsets V 1
i and V 2

i of Rp and
Rn−p respectively such that the image φi(Ui) = V 1

i × V 2
i ⊂ Rp × Rn−p.

(ii) The transition maps ψi,j are “locally triangular” with respect to the de-
composition Rn = Rp ⊕ Rn−p i.e.

ψi,j(x, y) = (hi,j(x, y), gi,j(y)) where x ∈ Rp and y ∈ Rn−p.
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for some functions hi,j and gi,j defined on the appropriate open subspaces
of Rn.

The leaves of the foliation F are then the equivalence classes for the equivalence
relation R generated by xRy if:

(iii) ∃i ∈ I, x, y ∈ Ui and the last (n − p) coordinates of ψi(y) and ψi(x) are
equal.

In particular, the leaves {Lα, α ∈ A} of the foliation F define a partition of M .
The compatibility between this definition and Definition 2.2.1 in the analytic case
is ensured by Frobenius Integrability Theorem.

Theorem 2.6.4 (Hadamard-Perron Theorem — see [10, Section 2.2.i]). — Let
(M, (φt)t∈R) be an Anosov flow as above. The stable and unstable distributions Es
and Eu are integrable by continuous foliations with C1 leaves.

3. Foliations invariant by a vector field

In this section, we study foliations in the setting of smooth D-variety (X, v)
over some constant differential field (k, 0). In the same way that one defines invari-
ant closed subscheme of (X, v), we define invariant foliations by means of the Lie
derivative along the vector field v.

The invariant foliations of a smooth irreducible D-variety (X, v) provide a ef-
fective tool to study rational factors — namely rational dominant morphisms φ :
(X, v) 99K (Y,w) of D-varieties — of the D-variety (X, v). Indeed, we prove that
any such rational factor induces through its tangent sheaf, an invariant foliation on
(X, v) (see Proposition 3.1.5).

We also prove that the singular locus of an invariant foliation is in fact invariant
(as a closed invariant subvariety). We get this result by using the local complex
analytic flow of the vector field v instead of the vector field itself (see Corollary
3.2.2).

When working dynamically in the fourth section, this convenient result will allow
us to work far away from the singularities of the foliation. A similar invariance
result, regarding the indeterminacy locus of a rational integral, was also needed in
the proof of the criterion of orthogonality to the constants in [15].

3.1. Definition.

Definition 3.1.1. — Let X be an algebraic variety over k and v a vector field
onX. We say that a coherent subsheaf F of ΘX/k is v-invariant if F is aD-coherent
subsheaf of (ΘX/k, [v,−]).

In other words, a coherent subsheaf F of ΘX/k is v-invariant if
[v,F(U)] ⊂ F(U) for every open subspace U ⊂ X.

Remark 3.1.2. — Let (E ,∇E) be a D-coherent sheaf over a D-scheme (X, δX).
For every coherent subsheaf F ⊂ E , the derivation ∇E induces a morphism of
OX -sheaves:

φF : F −→ E/F .
Moreover, F is a D-coherent subsheaf of E if and only if this map is the null
morphism.
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Now, consider the case of a linear differential equation defined over some constant
differential field.

Example 3.1.3. — If x1, . . . , xn are coordinates on An, then the vector fields
∂
∂x1

, . . . , ∂
∂xn

define a trivialization of the tangent bundle TAn/k. We will work in
this trivialization.

Consider a linear vector field v(x) = A.x for some matrix A ∈Mn(k) where (k, 0)
is a constant differential field and Mn(k) are the n × n matrices with coefficients
in k . Let E ⊂ An be a A-invariant linear subspace. Then, the sheaf of sections E
of E × An is v-invariant as a subsheaf of ΘAn/k.

In particular, if k is algebraically closed and the eigenvalues of A are simple then
the tangent bundle

ΘAn/k = Eλ1 ⊕ · · · ⊕ Eλn .

splits as a direct sum of 1-dimensional v-invariant coherent subsheaves.

Lemma 3.1.4. — Let X be an irreducible algebraic variety over k, let F ⊂ ΘX/k

be a coherent saturated subsheaf and let U be a non-empty open subset of X.
The subsheaf F if v-invariant if and only if F|U is v|U -invariant.

Proof. — The direct implication is obvious. Conversely, assume that F|U is
v|U -invariant. Using Remark 3.1.2, we can consider the morphism of OX -coherent
sheaves defined by the Lie bracket with v:

[v,−] : F −→ ΘX/k/F

By assumption, this morphism is the null morphism on U . Since ΘX/k/F does not
have torsion, this implies that it is the the null morphism. �

The principal examples of invariant foliations that we will encounter in those
notes will be derived from rational factors by the following proposition.

Proposition 3.1.5. — Let φ : (X, v) 99K (Y,w) be a rational morphism of
D-varieties over (k, 0) and denote by Fφ the foliation tangent to the fibres of φ.
Then Fφ is v-invariant.

Proof. — By Lemma 3.1.4, we may assume that X and Y are smooth and that
φ is regular and smooth. In particular, we have an exact sequence of locally free
sheaves over X:

0 −→ Fφ −→ ΘX/k
dφ−→ φ∗ΘY/k −→ 0.

Moreover, since φ is a morphism of D-varieties, Lemma 1.5.1 ensures that dφ is a
morphism of D-coherent sheaves over (X, v):

dφ : (ΘX/k, [v,−]) −→ φ∗(ΘY/k, [w,−]).

From Lemma 1.4.1, we conclude that its kernel Fφ is a D-subcoherent sheaf of
(ΘX/k,Lv). �

3.2. Analytification of an invariant coherent sheaf. Let M be an analytic
manifold and v an analytic vector field on M . We say that an open set U ⊂ M is
ε-complete (relatively to v) for some ε > 0 if for every x ∈ U , the unique analytic
solution γx of the differential equation (M, v) through x is defined for all times
t ∈ C of norm less than ε.
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So if U is ε-complete, we can consider the flow φt of v for all times t of norm less
than ε: {

U × D→M

(x, t) 7→ γx(t) = φt(x)
where D ⊂ C is the open disk of radius ε.

Proposition 3.2.1. — Let F be a coherent analytic subsheaf of ΘM and v an
analytic vector field on M . The following are equivalent:

(i) The subsheaf F is v-invariant.
(ii) For every x ∈M and t ∈ C sufficiently small,

φ∗t (Fx) ⊂ Fφ−t(x).

(iii) For every ε > 0 and every ε-complete open set U ⊂M ,
φ∗t (F(U)) ⊂ F(φ−t(U)).

Proof. — We first prove the equivalence between (ii) and (iii). First note that
(iii) implies (ii) since every x ∈ M is contained in an ε-complete open set U for
some ε > 0. Conversely, assume that (ii) holds and consider U an ε-complete open
set. Without loss of generality, it is enough to prove (iii) for connected open sets
so we assume that U is connected. Consider w ∈ F(U) and set

Z = {(x, t) ∈ U × D | φ∗twx ∈ Fφ−t(x)} ⊂ U × D
Note that if π : ΘM → ΘM/F is the canonical projection then Z = {(x, t) ∈

U × D | π(φ∗twx) = 0}. It follows that Z is a closed subset of U × D since (x, t) 7→
π(φ∗twx) is analytic hence continuous. Moreover, using the local group properties
of the flow φt — namely that φt+t′ = φt + φ′t whenever t, t′, t + t′ have norm less
than ε — (ii) implies that Z is open. Since Z contains the U × {0} and U × D is
connected, it follows that Z = U × D. This implies that φ∗t (w) ∈ F(φ−t(U)).

We now prove the equivalence between (ii) and (i). As before, denote by π :
ΘM −→ ΘM/F , the canonical projection. Let w ∈ Fx be a local section of F .
Consider ε > 0 such that φ∗tw is defined and bounded on B(x, ε) for t ∈ C sufficiently
small.

Now, the space of bounded sections of ΘM and ΘM/F on B(x, ε) is a Banach
space.

Using Cauchy formulas (Lemma 1.6.5) we know that t 7→ φ∗tw is the solution of
the differential equation: {

φ∗t (w)|t=0 = w
d
dtφ
∗
t (w) = Lv(φ∗t (w))

Therefore, composing with the linear map π, the path t 7→ π ◦ φ∗t (w) is a solution
of the differential equation:{

π ◦ φ∗t (w)|t=0 = 0
d
dt (π ◦ φ

∗
t (w)) = π ◦ Lv(φ∗t (w))

In the Banach space of bounded sections of ΘM/F on B(x, ε), we get that
π ◦ φ∗tw = 0 for t sufficiently small if and only if π ◦ Lv(w) = 0

which exactly means the equivalence between (i) and (ii). �
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Corollary 3.2.2. — Let v be a vector field on M and F an analytic foliation
such that F is v-invariant. Then, Sing(F) is a closed invariant analytic subspace
of (M, v).

Proof. — By definition the singular locus of F is described by :

Sing(F) = {x ∈M | ΘM,x/Fx is not a free OM,x − submodule of rank 1}

For every point p ∈ M and t ∈ C sufficiently small, the local flow φt at p is
a local diffeomorphism. It defines a ring-isomorphism between OX,x and OX,φt(x)
and its differential defines an isomorphism of modules:

dφt : ΘM,x −→ ΘM,φt(x)

Since F is v-invariant,by Proposition 3.2.1, we have that Fφt(x) = φt(Fx). There-
fore, dφt defines an isomorphism of exact sequences:

0 // Fx //

��

ΘM,x
//

dφt

��

ΘM,x/Fx //

��

0

0 // Fφt(x) // ΘM,φt(x) // ΘM,φt(x)/Fφt(x) // 0

Therefore, the first exact sequence is a direct product if and only if the second one
is. We conclude that for t sufficiently small, the germ of Sing(F) at p is invariant
by the local flow at p. Since this is true through any point of Sing(F), we conclude
that Sing(F) is a closed invariant analytic subspace of M . �

Corollary 3.2.3 (Preparatory Lemma). — Let (X, v) be an absolutely irre-
ducible realD-variety such thatM = X(R)an is regular, compact, and Zariski-dense
in X. Suppose that (X, v) admits an invariant saturated coherent subsheaf F of
ΘX/k. Then

• The singular locus Z = Sing(F) is invariant.
• On the dense invariant open subset U = X(R)an \ Z(R), the real analyti-
cation of F defines a continuous vector subbundle F of TM such that

∀t ∈ R, ∀x ∈ U , dφt(Fx) = Fφt(x).

Proof. — Using Corollary 3.2.2, the singular locus is invariant. Therefore, the
restriction of the flow of v to U = X(R)an \ Z(R) is complete. We then apply
Proposition 3.2.1. �

4. Rational factors of mixing Anosov flows of dimension 3

If (X, v) be a D-variety defined over (R, 0), we already reduced in the previous
sections the understanding of the rational factors of (X, v) to the understanding of
the invariant algebraic foliations on (X, v).

When the real-analytic flow (M, (φt)t∈R) of (X, v) is an Anosov flow, there exists,
by definition, a splitting of the tangent bundle ofM into continuous invariant (non-
singular) foliations:

TM = W su ⊕ R.v ⊕W ss

whereW ss (resp. W su) is called the strongly stable foliation (resp. strongly unstable
foliation).
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In dimension 3, these three invariant foliations have rank 1 and therefore, can
not be split again into invariant foliations of smaller rank. Looking at the periodic
orbits of (M, (φt)t∈R) , we are able to describe all continuous invariant foliations of
(M, (φt)t∈R) from the strongly stable foliation W ss, the strongly unstable one W su

and the direction of the flow R.v (Proposition 4.1.1 and Proposition 4.1.2).
Using this explicit description of invariant continuous foliations and a result of

Plante in [23], we conclude that none of these foliations comes from a rational
factor.

4.1. Continuous invariant subbundles of a mixing Anosov flow.

Proposition 4.1.1. — Let (M, (φt)t∈R) be a compact and connected Anosov
flow of dimension 3 and Σ a proper closed invariant subset. The (dφt)t∈R-invariant
continuous line subbundles defined on U = M \ Σ are exactly:

• the (non-singular) foliation F tangent to the flow.
• the strongly stable and strongly unstable folationsW ss andW su, associated
to the Anosov structure.

Proof. — By definition of an Anosov flow, these three continuous foliations are
(dφt)t∈R-invariant. We denote by σ1, σ2, σ3 : M −→ Gr1(TM). the three (continu-
ous) sections of the 1-Grassmanian bundle of TM defining those 1-foliations.

Furthermore, let L ⊂ TM be a continuous line subbundle defined on U ⊂ M
and denote by σ : M −→ Gr1(TM), the associated section.

Since (M, (φt)t∈R) is an Anosov flow, the periodic points of (φt)t∈R are dense in
U .

Let p ∈ M be a periodic points of (φt)t∈R of period T > 0. Then, the fibre
Lp ⊂ TpM is a stable line of the linear map:

(dφT )|TpM : TpM −→ TpM

Since (M, (φt)t∈R) is an Anosov flow, this linear map has exactly three eigenval-
ues and the associated eigenspaces are precisely W su

p , W ss
p and Fp.

We have proven that, on a dense set, σ agrees pointwise with one of the sections
σ1, σ2, σ3. For i 6 3, denote by Fi the closed subset of M where σ agrees with σi.
Since F1∪F2∪F3 is closed and contain a dense set, we have that F1∪F2∪F3 = M .
Moreover, they are disjoint since two distinct σi have distinct values at every point
of M . Since M is connected, M = Fi for some i 6 3. This implies that L is either
the stable foliation, or the unstable foliation or the direction of the flow itself. �

Proposition 4.1.2. — Let (M, (φt)t∈R) be a compact and connected Anosov
flow of dimension 3 and Σ a proper closed invariant subset. The (dφt)t∈R-invariant
continuous subbundles of rank 2 defined on U = M \ Σ are exactly:

• the stable and unstable folations W s = F ⊕ W ss and Wu = F ⊕ W su

associated to the Anosov structure, where F is the direction tangent to the
flow.

• the direct sum of the strongly stable and strongly unstable folations W ss⊕
W su.

Proof. — Since these three examples are direct sum of (dφt)t∈R-invariant line
bundles, there are also (dφt)t∈R-invariant.
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Conversely let P ⊂ TM be a continuous plane subbundle defined on U ⊂ M .
Since (M, (φt)t∈R) is an Anosov flow, the periodic points of (φt)t∈R are dense in U .

Let p ∈ M be a periodic points of (φt)t∈R of period T > 0. Then, the fibre
Lp ⊂ TpM is a stable plane of the linear map:

(dφT )|TpM : TpM −→ TpM

But these stable planes are exactly W s
p , Wu

p and (W ss ⊕W su)p. One concludes
in the same way as Proposition 4.1.1. �

Theorem 4.1.3 ([23, Theorem 1.3]). — Let (M, (φt)t∈R) be a mixing Anosov
flow.

Every leaf of the strongly stable foliation W ss and every leaf of the strongly
unstable foliation W su is dense in M .

We will use Theorem 4.1.3 combined with the two preceding propositions in the
following form:

Corollary 4.1.4. — Let (M, (φt)t∈R) be a compact and connected mixing
Anosov flow of dimension 3, Σ a proper closed invariant subset and F a continuous
foliation on M \ Σ with positive rank.

Suppose that the foliation F is (dφt)t∈R-invariant and distinct from the foliation
tangent to the flow. Then, every leaf of F is dense in M .

Proof. — Denote by r the rank of the foliation. If r = 3, it is true since Σ has
empty interior (the flow is mixing so topologically transitive). For r = 1, 2, we do
a case by case inspection:

• If r = 1, then by Proposition 4.1.1, F is either the strongly stable foliation
or the strongly unstable one. In both cases, Theorem 4.1.3 implies that
every leaf of F is dense.

• If r = 2, then by Proposition 4.1.2, F is either the stable foliation or the
strongly unstable one, or the direct sum of the strongly stable and the
strongly unstable ones. In those three cases, the foliation contains either
the strongly stable foliation or the strongly unstable one. Using Theorem
4.1.3, we conclude that every leaf of F is dense in M .

�

4.2. Rational factors of mixing, compact, Anosov flows of dimension 3.

Theorem 4.2.1. — Let (X, v) be an absolutely irreducible D-variety of dimen-
sion 3 over R. Assume that the real-analytification X(R)an of X admits a compact
(non-empty) connected component CR contained in the regular locus of X.

If the real analytic flow (CR, (φt|CR)t∈R) is a mixing Anosov flow, then (X, v)
does not admit any non-trivial rational factor.

Proof. — Let (X, v) be a real D-variety satisfying the hypothesis of Theorem
4.2.1. Suppose that (X, v) admits a non-trivial rational factor π : (X, v) 99K (Y,w).
Since we already now that (X, v) has no non-trivial rational integral (see [14]),
we may assume that w 6= 0. By Proposition 3.1.5, the tangent foliation Fπ is
v-invariant and does not contain the foliation generated by v, since w 6= 0.

Now, by corollary 2.1.4, the singular locus Z of Fπ is a closed invariant subvariety.
On the open set U = X \ Z, Fπ is a non-singular foliation. Consequently, outside
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of the closed invariant set Σ = Z(R), F = Fanπ is a non-singular foliation on
X(R)an \ Σ.

• Since Fπ is v-invariant, the continuous foliation is a (dφt)t∈R-invariant sub-
bundle of TM .

• It is distinct from the foliation generated by v, since w 6= 0.
By Corollary 4.1.4, we conclude that every leaf of F is dense in CR. This contradicts
the fact that Fπ is a foliation tangent to the algebraic fibration π (see Example
2.5.6). �

4.3. Proof of Theorem B.

Theorem 4.3.1. — Let X be an absolutely irreducible variety of dimension 3
over R endowed a vector field v. Assume that the real-analytification X(R)an of X
admits a compact (non-empty) connected component CR contained in the regular
locus of X.

If the real-analytic flow (CR, (φt)t∈R) is a mixing Anosov flow, then the au-
tonomous differential equation (X, v) is generically disintegrated.

Proof. — Consider an algebraic autonomous differential equation (X, v) satisfy-
ing the hypotheses of Theorem 4.3.1. It is easy to see that the algebraic differential
equation (X, v) also satisfies the hypotheses of Théorème D of [15]: the differential
equation (X, v) is absolutely irreducible and the dynamic of the real-analytic flow
of the vector field v on the invariant compact subspace K = CR is mixing (hence,
weakly mixing).

It therefore follows from Théorème D that the generic type of (X, v) is orthogonal
to the constants and therefore from Théorème A of [15] that the differential equation
(X, v) admits a rational factor π : (X, v) 99K (Y,w) of positive dimension, which is
generically disintegrated.

Now, since Y has positive dimension, Theorem 4.2.1 ensures that the generic
fibre of π is in fact finite, so that (X, v) is a finite extension of the generically
disintegrated differential equation (Y,w). We conclude using Proposition 1.3.7 of
[15] that (X, v) itself is generically disintegrated. �

4.4. Proof of Corollary C.

Corollary 4.4.1. — Let M be a regular compact real-algebraic subset of the
Euclidean space RN of dimension 2 with negative curvature and let r be integer
> 2.

Consider r unitary geodesics γ1, . . . γr : R → SM of the Euclidean submanifold
M , viewed as analytic curves on the sphere bundle SM ⊂ TRN of M . Assume
that, for every 1 6 i 6 r, the analytic curve γi is Zariski-dense in SM . Then, the
following are equivalent:

(i) The analytic curve t 7→ (γ1(t), . . . , γr(t)) is Zariski-dense in SMr.
(ii) For every i 6= j, the analytic curve t 7→ (γi(t), γj(t)) is Zariski-dense in

SM2.

Note that (i) =⇒ (ii) is always true and that the real content of Corollary 4.4.1
is contained in the converse implication.
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Proof. — Consider a regular compact real-algebraic subset M of the Euclidean
space RN satisfying the hypotheses of Corollary 4.4.1. We write M = X(R) for
some quasi-affine algebraic X over R.

Let us first argue that we may assume that X is absolutely irreducible: since M
is regular and connected, it is contained in an irreducible component of X, so that
we may assume that X is irreducible. Moreover, by replacing X by the Zariski-
closure of M in X, we can assume that M = X(R) is Zariski-dense in X. Together
with the irreducibility property, this implies that X is absolutely irreducible (see
for example Lemma 4.1.1 of [14]).

The Euclidean metric on the affine space endows X with the structure of a
pseudo-Riemmannian manifold over R in the sense of [14]. Denote by (SX, v)
the corresponding (unitary) geodesic differential equation (supported on the sphere
bundle SX of X).

Claim. — In the notation above, the autonomous differential equation (SX, v)
is generically disintegrated.

Proof of Claim. — Indeed, it follows from the proof of Theorem 4.2.1 in [14]
that:

• The subset SX(R) is Zariski dense in SX.
• The algebraic variety SX (over R) is absolutely irreducible.
• The real-analytic flow of (SX, v) is the unitary geodesic flow of the compact
Riemanian manifold (M, gE|M ) where gE|M denotes the restriction of the
Euclidean metric to M .

Since (M, gE|M ) is a compact Riemannian manifold of dimension two with negative
curvature, it follows from the results of [1] that the unitary geodesic flow of (SX, v)
is a mixing Anosov flow of dimension 3 (see, for example, Theorem 3.3.5 of [14]).
We conclude that (X, v) satisfies the hypotheses of Theorem 4.4.1 and is therefore
generically disintegrated. �

Now consider γ1, . . . γr : R −→ SM , geodesics of M , Zariski-dense in SM , such
that the analytic curve Γ : t 7→ (γ1(t), . . . , γr(t)) is not Zariski-dense in SMr and
denote by G its Zariski closure is SXr. The following properties are fulfilled:

• G is a proper closed algebraic subvariety of SXr which projects generically
on all factors.

• G is an invariant closed subvariety of (SX, v)r: indeed, since Γ is invariant
under the action of the real-analytic flow of the vector field v× . . .× v, the
Zariski-closure G of Γ is a proper closed invariant subvarieties of (SX, v)r.

Since (SX, v) is generically disintegrated, we can write G as an irreducible compo-
nent of: ⋂

16i 6=j6r
π−1
i,j (Zi,j).

where πi,j : Xr −→ X2 is the projection on the ith and jth coordinates and Zi,j ∈
Igen2 (SX, v) for every i 6= j 6 r.

Since G is a proper closed subvariety of (SX, v)r, for some i 6= j 6 n, the
closed subvariety Zi,j is a proper closed subvariety of (SX, v)2. It follows that
t 7→ (γi(t), γj(t)) is not Zariski-dense in SM2, which concludes the proof. �
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