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CHARACTERISTIC FUNCTIONS ON THE BOUNDARY OF A
PLANAR DOMAIN NEED NOT BE TRACES OF LEAST

GRADIENT FUNCTIONS

MICKAËL DOS SANTOS

Abstract. Given a smooth bounded planar domain Ω, we construct a compact set on the
boundary such that its characteristic function is not the trace of a least gradient function.
This generalizes the construction of Spradlin and Tamasan [3] when Ω is a disc.

1. Introduction

We let Ω be a bounded C2 domain of R2. For a function h ∈ L1(∂Ω,R), the
least gradient problem with boundary datum h consists in deciding whether

inf
ß∫

Ω
|Dw| ; w ∈ BV (Ω) and tr∂Ωw = h

™
(1.1)

is achieved or not.
In the above minimization problem, BV (Ω) is the space of functions of bounded

variation. It is the space of functions w ∈ L1(Ω) having a distributional gradient
Dw which is a bounded Radon measure.

If the infimum in (1.1) is achieved, minimal functions are called functions of least
gradient.

Sternberg, Williams and Ziemmer proved in [4] that if h : ∂Ω→ R is a continuous
map and if ∂Ω satisfies a geometric properties then there exists a (unique) function
of least gradient. For further use, we note that the geometric property is satisfied
by Euclidean balls.

On the other hand, Spradlin and Tamasan [3] proved that, for the disc Ω = {x ∈
R2 : |x| < 1}, we may find a function h0 ∈ L1(∂Ω) which is not continuous such
that the infimum in (1.1) is not achieved. The function h0 is the characteristic
function of a Cantor type set K ⊂ S1 = {x ∈ R2 : |x| = 1}

The goal of this article is to extend the main result of [3] to a general C2 bounded
open set Ω ⊂ R2.

We prove the following theorem.
Theorem 1.1. — Let Ω ⊂ R2 be a bounded C2 open set. Then there exists a

measurable set K ⊂ ∂Ω such that the infimum

inf
ß∫

Ω
|Dw| ; w ∈ BV (Ω) and tr∂Ωw = 1IK

™
(1.2)

is not achieved.
The calculations in [3] are specific to the case Ω = D. The proof of Theorem 1.1

relies on new arguments for the construction of the Cantor set K and the strategy
of the proof.

Math. classification: 26B30,35J56.
Keywords: traces of functions of bounded variation, least gradient problem.

65
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2. Strategy of the proof

2.1. The model problem. We illustrate the strategy developed to prove Theorem
1.1 on the model case Q = (0, 1)2. Clearly, this model case does not satisfy the C2

assumption.
Nevertheless, the flatness of ∂Q allows to get a more general counterpart of

Theorem 1.1. Namely, the counterpart of Theorem 1.1 (see Proposition 2.1 below)
is no more an existence result of a set K ⊂ ∂Q such that Problem (1.2) is not
achieved. It is a non existence result of a least gradient function for h = 1IM for
any measurable domainM⊂ [0, 1]× {0} ⊂ ∂Q with positive Lebesgue measure.

We thus prove the following result whose strategy of the proof is due to Petru
Mironescu.

Proposition 2.1 (P. Mironescu). — Let M̃ ⊂ [0, 1] be a measurable set with
positive Lebesgue measure. Then the infimum in

inf
ß∫
Q
|Dw| ; w ∈ BV (Q) and tr∂Qw = 1IM̃×{0}

™
(2.1)

is not achieved.

This section is devoted to the proof of Proposition 2.1. We fix a measurable
set M̃ ⊂ [0, 1] with positive measure and we let h = 1IM̃×{0}. We argue by
contradiction: we assume that there exists a minimizer u0 of (2.1). We obtain a
contradiction in 3 steps.

Step 1. Upper bound and lower bound
This first step consists in obtaining two estimates. The first estimate is the upper

bound ∫
Q
|Du0| 6 ‖1IM̃×{0}‖L1(∂Q) = H 1(M̃). (2.2)

Here, H 1(M̃) is the length of M̃.
Estimate (2.2) follows from Theorem 2.16 and Remark 2.17 in [2]. Indeed, by

combining Theorem 2.16 and Remark 2.17 in [2] we may prove that for h ∈ L1(∂Ω)
and for all ε > 0 there exists a map uε ∈ BV (Ω) such that∫

Ω
|Duε| 6 (1 + ε)‖h‖L1(∂Ω) and tr∂Ωuε = h.

The proof of this inequality when Ω is a half space is presented in [2]. It is easy
to adapt the argument when Ω = Q = (0, 1)2. The extension for a C2 set Ω is
presented in Appendix E.

Step 2. Optimality of (2.2) (see (2.3))
The optimality of (2.2) is obtained via the following lemma.

Lemma 2.2. — For u ∈ BV (Q) we have∫
Q
|D2u| >

∫ 1

0
|tr∂Qu(·, 0)− tr∂Qu(·, 1)|.

Here, for k ∈ {1, 2} we denoted∫
Q
|Dku| = sup

ß∫
Q
u∂kξ : ξ ∈ C1

c (Q) and |ξ| 6 1
™
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where C1
c (Q) are the set of real valued C1-functions with compact support included

in Q.

Lemma 2.2 is proved in Appendix B.1.
From Lemma 2.2 we get∫

Q
|D2u0| >

∫ 1

0
|tr∂Qu0(·, 0)− tr∂Qu0(·, 1)| =

∫ 1

0
1IM̃×{0} = H 1(M̃).

Since we have∫
Q
|Du0| := sup

ß∫
Q
udiv(ξ) : ξ = (ξ1, ξ2) ∈ C1

c (Q,R2) and ξ2
1 + ξ2

2 6 1
™

>

∫
Q
|D2u0| >H 1(M̃),

(2.3)

we get the optimality of (2.2).
Step 3. A transverse argument
From (2.2) and (2.3) we may prove∫

Q
|D1u0| = 0. (2.4)

Equality (2.4) is a direct consequence of the following lemma.

Lemma 2.3. — Let Ω be a planar open set. If u ∈ BV (Ω) is such that∫
Ω
|Du| =

∫
Ω
|D2u|,

then
∫

Ω
|D1u| = 0.

Lemma 2.3 is proved in Appendix B.2.
In order to conclude we state an easy lemma.

Lemma 2.4 (Poincaré inequality). — For u ∈ BV (Q) satisfying tr∂Qu = 0 in
{0} × [0, 1] we have ∫

Q
|u| 6

∫
Q
|D1u|.

Lemma 2.4 is proved in Appendix B.3.
Hence, from (2.4) and Lemma 2.4 we have u0 = 0 which is in contradiction with

tr∂Qu0 = 1IM̃×{0} with H 1(M̃) > 0.

2.2. Outline of the proof of Theorem 1.1. The idea is to adapt the above
construction and argument to the case of a general C2 domain Ω. If Ω has a flat
or concave part Γ of the boundary ∂Ω, then a rather straightforward variant of the
above proof shows that 1IM, whereM is a non trivial part of Γ, is not the trace of
a least gradient function.

Remark 2.5. — Things are more involved when Ω is convex. For simplicity we
illustrate this fact when Ω = D = {x ∈ R2 : |x| < 1}. LetM⊂ S1 ∩ {(x, y) ∈ R2 :
x < 0} be an arc whose endpoints are symmetric with respect to the x-axis. We
let (x0,−y0) and (x0, y0) be the endpoints ofM (here x0 6 0 and y0 > 0).
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We let C be the chord ofM. On the one hand, if u ∈ C1(D) ∩W 1,1(D) is such
that trS1u = 1IM then, using the Fundamental Theorem of calculus, we have for
−y0 < y < y0 ∫ √1−y2

−
√

1−y2
|∂xu(x, y)| > 1.

Thus we easily get∫
D
|∇u| >

∫
D
|∂xu| >

∫ y0

−y0

dy
∫ √1−y2

−
√

1−y2
|∂xu(x, y)| > 2y0 = H 1(C ).

Consequently, with the help of a density argument (e.g. Lemma A.1 in Appendix
A) we obtain

inf
ß∫

D
|Du| ; u ∈ BV (D) and trS1u = 1IM

™
>H 1(C ).

On the other hand we let ω := {(x, y) ∈ R2 : x < x0}. It is clear that u0 = 1Iω ∈
BV (D) and trS1u0 = 1IM. Moreover∫

D
|Du0| = H 1(C ).

Consequently u0 is a function of least gradient. We may do the same argument
for a domain Ω as soon as we have a chord entirely contained in Ω. This example
suggest that for a convex set Ω, the construction of a set K ⊂ ∂Ω such that (1.2)
is not achieved has to be "sophisticated".

The strategy to prove Theorem 1.1 consists of constructing a special set K ⊂ ∂Ω
(of Cantor type) and to associate to K a set B∞ (the analog of M̃ × (0, 1) in the
model problem) which "projects" onto K and such that, if u0 is a minimizer of (1.1),
then ∫

B∞

| ~X ·Du0| >H 1(K). (2.5)

Here, ~X is a vector field satisfying | ~X| 6 1. It is the curved analog of ~X = e2 used
in the above proof.

By (2.5) (and Proposition E.1 in Appendix E), if u0 is a minimizer, then∫
Ω\B∞

|Du0|+
∫
B∞

(|Du0| − | ~X ·Du0|) = 0. (2.6)

We next establish a Poincaré type inequality implying that any u0 satisfying (2.6)
and tr∂Ω\Ku = 0 is 0, which is not possible.

The heart of the proof consists of constructing K, B∞ and ~X (see Sections 4 and
5).

3. Notation, definitions

The ambient space is the Euclidean plan R2. We let Bcan be the canonical basis
of R2.

a) The open ball centered at A ∈ R2 with radius r > 0 is denoted B(A, r).
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b) A vector may be denoted by an arrow when it is defined by its endpoints (e.g.
−−→
AB). It may be also denoted by a letter in bold font (e.g. u) or more simply
by a Greek letter in normal font (e.g. ν).
We let also |u| be the Euclidean norm of the vector u.

c) For a vector u we let u⊥ be the direct orthogonal vector to u, i.e., if u =
(x1, x2) then u⊥ = (−x2, x1).

d) For A,B ∈ R2, the segment of endpoints A and B is denoted [AB] = {A +
t
−−→
AB : t ∈ [0, 1]} and dist(A,B) = |−−→AB| is the Euclidean distance.

e) For a set U ⊂ R2, the topological interior of U is denoted by
◦
U and its

topological closure is U .
f) For k > 1, a Ck-curve is the range of a Ck injective map from (0, 1) to R2.

Note that, in this article, Ck-curves are not closed sets of R2.
g) For Γ a C1-curve, H 1(Γ) is the 1-dimensional Hausdorff measure of Γ.
h) For k > 1, a Ck-Jordan curve is the range of a Ck injective map from the

unit circle S1 to R2.
i) For Γ a C1-curve or a C1-Jordan curve, C = [AB] is a chord of Γ when
A,B ∈ Γ with A 6= B.

j) If Γ is a C1-Jordan curve then, for A,B ∈ Γ with A 6= B, the set Γ \ {A,B}
admits exactly two connected components: Γ1 and Γ2. These connected
components are C1-curves.

By smoothness of Γ, it is clear that there is ηΓ > 0 such that for 0 <
dist(A,B) < ηΓ there always exists a unique smallest connected component:
we have H 1(Γ1) < H 1(Γ2) or H 1(Γ2) < H 1(Γ1).

If 0 < dist(A,B) < ηΓ we may define ÃB by:

ÃB is the closure of the smallest curve between Γ1 and Γ2. (3.1)

k) In this article Ω ⊂ R2 is a C2 bounded open set.

4. Construction of the Cantor set K

It is clear that, in order to prove Theorem 1.1, we may assume that Ω is a
connected set.

We fix Ω ⊂ R2 a bounded C2 open connected set. The set K ⊂ ∂Ω is a Cantor
type set we will construct below.

4.1. First step: localization of ∂Ω. From the regularity of Ω, there exist ` + 1
C2-open sets, ω0, ..., ω`, such that Ω = ω0 \ ω1 ∪ · · · ∪ ω` and

• ωi is simply connected for i = 0, ..., `,
• ωi ⊂ ω0 for i = 1, ..., `,
• ωi ∩ ωj = ∅ for 1 6 i < j 6 `.

We let Γ = ∂ω0. The Cantor type set K we construct "lives" on Γ. Note that Γ
is a Jordan-curve.

LetM0 ∈ Γ be such that the inner curvature of Γ atM0 is positive (the existence
of M0 follows from the Gauss-Bonnet formula). Then there exists r0 ∈ (0, 1) such
that [AB] ⊂ Ω and [AB] ∩ ∂Ω = {A,B}, ∀A,B ∈ B(M0, r0) ∩ Γ. Note that we
may assume 2r0 < ηΓ (where ηΓ is defined in Section 3.j).

We fix A,B ∈ B(M0, r0) ∩ Γ such that A 6= B. We have:



70 M. Dos Santos

• By the definition of M0 and r0, the chord C0 := [AB] is included in Ω.
• We let ÃB be the closure of the smallest part of Γ which is delimited by
A,B (see (3.1)). We may assume that ÃB is the graph of f ∈ C2([0, η],R+)
in the orthonormal frame R0 = (A, e1, e2) where e1 = −−→AB/|−−→AB|.

• The function f satisfies f(x) > 0 for x ∈ (0, η) and f ′′(x) < 0 for x ∈ [0, η].
For further use we note that the length of the chord [AB] is η and that for intervals
I, J ⊂ [0, η], if I ⊂ J then {

‖f ′|I‖L∞(I) 6 ‖f ′|J‖L∞(J)

‖f ′′|I‖L∞(I) 6 ‖f ′′|J‖L∞(J)
(4.1)

where f|I is the restriction of f to I.
Replacing the chord C0 = [AB] with a smaller chord of ÃB parallel to C0, we may
assume that

0 < η < min
®

1
2 : 1

16‖f ′′‖2L∞([0,η])
: 1

2‖f ′‖L∞([0,η])‖f ′′‖L∞([0,η])

´
. (4.2)

We may also assume that
• Letting D+

0 be the bounded open set such that ∂D+
0 = [AB]∪ ÃB we have

Π∂Ω, the orthogonal projection on ∂Ω, is well defined and of class C1 in
D+

0 .
• We have

1 + 4‖f ′′‖2L∞diam(D+
0 ) < 16

9 (4.3)

where diam(D+
0 ) = sup{dist(M,N) : M,N ∈ D+

0 }. (Here we used (4.1).)

4.2. Step 2: Iterative construction. We are now in position to construct the
Cantor type set K as a subset of ÃB. The construction is iterative.

The goal of the construction is to get at step N > 0 a collection of 2N pair-
wise disjoint curves included in ÃB (denoted by {KN

1 , ...,K
N
2N }) and their chords

(denoted by {CN
1 , ...,CN

2N }).
The idea is standard: at step N > 0 we replace a curve Γ0 included in ÃB by

two curves included in Γ0 (see Figure 4.1).
Initialization. We initialize the procedure by letting K0

1 := ÃB and C 0
1 =

C0 = [AB].
At step N > 0 we have:
• A set of 2N curves included in ÃB, {KN

1 , ...,K
N
2N }. The curves KN

k ’s are
mutually disjoint. We let KN = ∪2N

k=1K
N
k .

• A set of 2N chords, {CN
1 , ...,CN

2N } such that for k = 1, ..., 2N , CN
k is the

chord of KN
k .

Remark 4.1. — (1) Note that since the CN
k ’s are chords of ÃB and since

in the frame R0 = (A, e1, e2), ÃB is the graph of a function, none of the
chords CN

k is vertical, i.e., directed by e2.
Since the chords CN

k are not vertical, for k ∈ {1, ..., 2N}, we may define
νC N

k
as the unit vector orthogonal to CN

k such that νC N
k

= αe1 + βe2 with
β > 0.
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(2) For η satisfying (4.2), if we consider a chord CN
k and a straight line D

orthogonal to CN
k and intersecting CN

k , then the straight line D intersect
KN
k at exactly one points. This fact is proved in Appendix C.1.

Induction rules. From step N > 0 to step N + 1 we follow the following rules:
(1) For each k ∈ {1, ..., 2N}, we let ηNk be the length of CN

k . Inside the chord
CN
k we center a segment INk of length (ηNk )2.

(2) With the help of Remark 4.1.2, we may define two distinct points of KN
k

as the intersection of KN
k with straight lines orthogonal to CN

k which pass
to the endpoints of INk .

(3) These intersection points are the endpoints of a curve K̃N
k included in KN

k .
We let KN+1

2k−1 and KN+1
2k be the connected components of KN

k \ K̃N
k . We

let also
• CN+1

2k−1 and CN+1
2k be the corresponding chords;

• KN+1 = ∪2N+1

k=1 KN+1
k .

Definition 4.2. — A natural terminology consists in defining the father and
the sons of a chord or a curve:

• F(CN+1
2k−1) = F(CN+1

2k ) = CN
k is the father of the chords CN+1

2k−1 and CN+1
2k .

F(KN+1
2k−1) = F(KN+1

2k ) = KN
k is the father of the curves KN+1

2k−1 and
KN+1

2k .
• S(CN

k ) = {CN+1
2k−1,C

N+1
2k } is the set of sons of the chord CN

k , i.e. F(CN+1
2k−1) =

F(CN+1
2k ) = CN

k .
S(KN

k ) = {KN+1
2k−1,K

N+1
2k } is the set of sons of the curve KN

k , i.e.,
F(KN+1

2k−1) = F(KN+1
2k ) = KN

k .
The inductive procedure is represented in Figure 4.1.

(ηkN )2

ηkN

Figure 4.1. Induction step

In Figures 4.2 and 4.3 the two first iterations of the process are represented.b e

Figure 4.2. First
iteration of the process

Figure 4.3. Second
iteration of the process

We now define the Cantor type set

K =
⋂
N>0
KN . (4.4)



72 M. Dos Santos

The Cantor type set K is fat:

Proposition 4.3. — We have H 1(K) > 0.

This proposition is proved in Appendix C.3.

5. Construction of a sequence of functions

A key argument in the proof of Theorem 1.1 is the use of the coarea formula
to calculate a lower bound for (1.2). The coarea formula is applied to a function
adapted to the set K.

For N = 0 we let
• D+

0 be the compact set delimited by K0 = ÃB and C 0
1 := [AB] the chord

of K0.
• We recall that we fixed a frame R0 = (A, e1, e2) where e1 = −−→AB/|−−→AB|. For
σ = (σ1, 0) ∈ C 0

1 , we define:

Iσ is the connected component of {(σ1, t) ∈ Ω : t 6 0} which contains σ. (5.1)

(Iσ is a vertical segment included in Ω.)
• D−0 = ∪σ∈C 0

1
Iσ.

• We now define the maps

Ψ̃0 : D−0 → C 0
1

x 7→ ΠC 0
1
(x)

and
Ψ0 : D−0 ∪D

+
0 → C 0

1

x 7→
®

Π∂Ω(x) if x ∈ D+
0

Π∂Ω[Ψ̃0(x)] if x ∈ D−0
where Π∂Ω is the orthogonal projection on ∂Ω and ΠC 0

1
is the orthogonal

projection on C 0
1 . Note that, in the frame R0, for x = (x1, x2) ∈ D−0 , we

have ΠC 0
1
(x) = (x1, 0).

For N = 1 and k ∈ {1, 2} we let:
• D1

k be the compact set delimited by K1
k and C 1

k ;
• T 1

k be the compact right-angled triangle (with its interior) having C 1
k as

side adjacent to the right angle and whose hypothenuse is included in C 0
1 ;

• H1
k be the hypothenuse of T 1

k .
We now define D−1 = Ψ̃−1

0 (H1
1 ∪H1

2 ), T1 = T 1
1 ∪ T 1

2 and D+
1 = D1

1 ∪D1
2.

We first consider the map

Ψ̃1 : T1 ∪D−1 → C 1
1 ∪ C 1

2

x 7→
®

ΠC 1
k
(x) if x ∈ T 1

k

ΠC 1
k
[Ψ̃0(x)] if x ∈ D−1

.

In Appendix D (Lemma D.1 and Remark D.2), it is proved that the triangles T 1
1

and T 1
2 are disjoint. Thus the map Ψ̃1 is well defined
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By projecting C 1
1 ∪ C 1

2 on ∂Ω we get
Ψ1 : T1 ∪D−1 ∪D

+
1 → K1

x 7→
®

Π∂Ω(x) if x ∈ D+
1

Π∂Ω[Ψ̃1(x)] if x ∈ T1 ∪D−1 .

σ

D1
2

T 1
2

ψ̃−1
0 (H1

2 )

D1
1 ∪ T 1

1 ∪ Ψ̃−1
0 (H1

1 )

Figure 5.1. The sets defined at Step N = 1 and the dashed level
line of Ψ1 associated to σ ∈ K1

For N > 1, we first construct Ψ̃N+1 and then ΨN+1 is obtained from Ψ̃N+1 and
Π∂Ω.

For k ∈ {1, ..., 2N+1}, we let
• DN+1

k be the compact set delimited by KN+1
k and CN+1

k (recall that CN+1
k

is the chord associated to KN+1
k );

• TN+1
k be the right-angled triangle (with its interior) having CN+1

k as side
adjacent to the right angle and whose hypothenuse is included in F(CN+1

k ).
Here F(CN+1

k ) is the father of CN+1
k (see Definition 4.2);

• HN+1
k ⊂ F(CN+1

k ) be the hypothenuse of TN+1
k .

We denote

TN+1 =
2N+1⋃
k=1

TN+1
k , D=

N+1Ψ̃−1
N

Å 2N+1⋃
k=1

HN+1
k

ã
and D+

N+1 =
2N+1⋃
k=1

DN+1
k .

KN+1
2k−1DN+1

2k−1 KN+1
2k

TN+1
2k−1 HN+1

2k−1 DN
k

Figure 5.2. Induction. The bold lines correspond to the new iteration
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Remark 5.1. — It is easy to check that for N > 0:
(1) TN+1 ⊂ D+

N ,
(2) if x ∈

◦
TN then x /∈ TN ′ for N ′ > N + 1 (here T0 = ∅).

We now define
Ψ̃N+1 : TN+1 ∪D−N+1 → ∪2N+1

k=1 CN+1
k

x 7→

{
ΠC N+1

k
(x) if x ∈ TN+1

k

ΠC N+1
k

[Ψ̃N (x)] if x ∈ Ψ̃−1
N (∪2N+1

k=1 HN+1
k ).

In Appendix D (Lemma D.1 and Remark D.2), it is proved that for N > 1, the
triangles TNk for k = 1, ..., 2N are mutually disjoint. recursively, we find that all
the Ψ̃N ’s are well-defined.

As in the Initialization Step, we get ΨN+1 from Ψ̃N+1 by projecting ∪2N+1

k=1 CN+1
k

on ∂Ω:
ΨN+1 : TN+1 ∪D−N+1 ∪D

+
N+1 → KN+1

x 7→
®

Π∂Ω[Ψ̃N+1(x)] if x ∈ TN+1 ∪D−N+1
Π∂Ω(x) if x ∈ D+

N+1.

It is easy to see that ΨN+1(TN+1 ∪D−N+1 ∪D
+
N+1) = KN+1.

6. Basic properties of B∞ and ΨN

6.1. Basic properties of B∞. We set BN = TN ∪D+
N ∪D

−
N . It is easy to check

that for N > 0 we have BN+1 ⊂ BN and K ⊂ ∂BN . Therefore we may define

B∞ = ∩N>0BN

which is compact and satisfies K ⊂ ∂B∞.
We are going to prove:

Lemma 6.1. — The interior of B∞ is empty.

Proof of Lemma 6.1. — From Lemma D.1 (and Remark D.2) in Appendix D
combined with Hypothesis (4.2), we get two fundamental facts:

(1) The triangles TN1 , ... ,TN2N+1 are mutually disjoint.
(2) We have:

H 1(HN+1
k ) < H 1(F(CN

k ))
2 . (6.1)

For a non empty set A ⊂ R2 we let

rad(A) = sup{r > 0 : ∃x ∈ A such that B(x, r) ⊂ A}.

Note that the topological interior of A is empty if and only if rad(A) = 0.
On the one hand, it is not difficult to check that for sufficiently large N

rad(BN ) = rad(BN ∩D−N ). (6.2)

On the other hand, using (6.1) we obtain for N > 1:

rad(BN+1 ∩D−N+1) 6 rad(BN ∩D−N )
2 . (6.3)



NON-EXISTENCE OF LEAST GRADIENT FUNCTIONS 75

Consequently, by combining (6.2) and (6.3) we get the existence of C0 such that

rad(BN ) 6 C0

2N . (6.4)

Since B∞ = ∩N>0BN , from (6.4) we get that rad(B∞) = 0. �

6.2. Basic properties of ΨN . We now prove the key estimate for ΨN :

Lemma 6.2. — There exists bN = oN (1) such that for N > 1 and U a connected
component of BN , the restriction of ΨN to U is (1 + bN )-Lipschitz.

Proof. — Let N > 1 and U be a connected component of BN . The restriction
of Ψ̃N to U ∩ (TN ∪D−N ) is obtained as composition of orthogonal projections on
straight lines and thus is 1-Lipschitz.

There exists bN = oN (1) such that the projection PN := Π∂Ω defined in D+
N is

(1 + bN )-Lipschitz. The functions ΨN are either the composition of Ψ̃N with PN
or ΨN = PN . Consequently the restriction of ΨN to U is (1 + bN )-Lipschitz. �

In the following we will not use ΨN but "its projection" on R. For N > 1 and
k ∈ {1, ..., 2N}, we let BNk := Ψ−1

N (KN
k ) and we define

Πk,N : BNk → R
x 7→ H 1(¸�AΨN (x))

where ¸�AΨN (x) ⊂ ÃB is defined by (3.1) as the smallest connected component of
∂Ω \ {A,ΨN (x)} if ΨN (x) 6= A and ¸�AΨN (x) = {A} otherwise.

Lemma 6.3. — For N > 1 there exists cN ∈ (0, 1) with cN = oN (1) such that
for k ∈ {1, ..., 2N} the function Πk,N : BNk → R is (1 + cN )-Lipschitz.

Proof. — Let N > 1, k ∈ {1, ..., 2N} and let x, y ∈ BNk be such that ΨN (x) 6=
ΨN (y). It is clear that we have

|Πk,N (x)−Πk,N (y)| = H 1( ˇ�ΨN (y)ΨN (x))

where ˇ�ΨN (y)ΨN (x) ⊂ KN
k is defined by (3.1) as the smallest connected component

of ∂Ω \ {ΨN (y),ΨN (x)}.
Moreover, from Lemma C.3 in Appendix C.2, we have the existence of C > 1

independent of N and k such that for x, y ∈ BNk such that ΨN (x) 6= ΨN (y) we
have (denoting X := ΨN (x), Y := ΨN (y))

dist (X,Y ) 6H 1
Ä
X̄Y
ä
6 dist (X,Y ) [1 + Cdist (X,Y )]

and
H 1(KN

k ) 6H 1(CN
k )
[
1 + CH 1(CN

k )
]
.

From Step 1 in the proof of Proposition 4.4 (Appendix C.3) we have

max
k=1,...,2N

H 1(CN
k ) 6

Å2
3

ãN
.
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Thus, letting aN :=
Å2

3

ãN ñ
1 + C

Å2
3

ãNô
, we have aN → 0, and since X̄Y ⊂ KN

k

we get:
dist (X,Y ) 6H 1

Ä
X̄Y
ä
6H 1(KN

k )

6H 1(CN
k )
[
1 + CH 1(CN

k )
]
6 aN (1 + CaN ).

Thus, letting ãN = max {aN (1 + CaN ), |bN |} where bN is defined in Lemma 6.2,
we get

H 1
Ä
X̄Y
ä

= |Πk,N (x)−Πk,N (y)| 6 H 1 ([ΨN (y)ΨN (x)]) (1 + CãN )
6 (1 + ãN ) (1 + CãN ) |x− y|.

Therefore, letting cN be such that 1+cN = (1+ãN ) (1 + CãN ) we have cN = oN (1),
cN is independent of k ∈ {1, ..., 2N} and Πk,N is (1 + cN )-Lipschitz. �

7. Proof of Theorem 1.1

We are now in position to prove Theorem 1.1. This is done by contradiction.
We assume that there exists a map u0 ∈ BV (Ω) which minimizes (1.2).

7.1. Upper bound. The first step in the proof is the estimate∫
Ω
|Du0| 6 ‖1IK‖L1(∂Ω) = H 1(K). (7.1)

This estimate is obtained by proving that for all ε > 0 there exists uε ∈ W 1,1(Ω)
such that tr∂Ωuε = 1IK and

‖∇uε‖L1(Ω) 6 (1 + ε)‖tr∂Ωuε‖L1(Ω) = (1 + ε)H 1(K). (7.2)

Proposition E.1 in Appendix E gives the existence of such uε’s.
Clearly (7.2) implies (7.1).

7.2. Optimality of the upper bound. In order to have a contradiction we follow
the strategy of Spradlin and Tamasan in [3]. We fix a sequence (un)n ⊂ C1(Ω) such
that

un ∈W 1,1(Ω) : un → u in L1(Ω) :
∫

Ω
|∇un| →

∫
Ω
|Du0| : tr∂Ωun = tr∂Ωu0.

(7.3)
Note that (7.3) implies∫

F

|∇un| →
∫
F

|Du| for all F ⊂ Ω relatively closed set. (7.4)

Such a sequence can be obtained via partition of unity and smoothing ; see the
proof of Theorem 1.17 in [2]. For the convenience of the reader a proof is presented
in Appendix A (see Lemma A.1).

For further use, let us note that the sequence (un)n constructed in Appendix A
satisfies the following additional property:∣∣∣∣ If u0 = 0 outside a compact set L ⊂ Ω and if ω is an open set

such that dist(ω,L) > 0 then, for large n, un = 0 in ω .
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For x ∈ B0 we let

V0(x) =
®
νΠ∂Ω(x) if x ∈ D+

0
(0, 1) if x ∈ D−0

, (7.5)

and for N > 0, x ∈ BN+1 we let

VN+1(x) =

VN (x) if x ∈ BN\
◦
T N+1

νC N+1
k

if x ∈
◦
T
N+1
k

, (7.6)

where, for σ ∈ ∂Ω, νσ is the normal outward of Ω in σ and νC N+1
k

is defined in
Remark 4.1.1.

We now prove the following lemma.

Lemma 7.1. — When N →∞ we may define V∞(x) a.e. x ∈ B∞ by

V∞ : B∞ → R2

x 7→ limN→∞ VN (x) (7.7)

Moreover, from dominated convergence, we have:

VN1IBN
→ V∞1IB∞ in L1(Ω).

Proof. — If x ∈ B∞ \∪N>1TN , then we have VN (x) = V0(x) for all N > 1. Thus
limN→∞ VN (x) = V0(x).

For a.e. x ∈ B∞ ∩∪N>1TN there exists N0 > 1 such that x ∈
◦
TN0 . Therefore for

all N > N0 we have VN (x) = VN0(x). Consequently limN→∞ VN (x) = VN0(x). �
This section is devoted to the proof of the following lemma:

Lemma 7.2. — For all w ∈ C∞ ∩W 1,1(Ω) such that tr∂Ωw = 1IK we have∫
B∞∩Ω

|∇w · V∞| >H 1(K)

where V∞ is the vector field defined in (7.7).

Remark 7.3. — Since |V∞(x)| = 1 for a.e. x ∈ B∞, it is clear that Lemma 7.2
implies that for all n we have∫

B∞∩Ω
|∇un| >H 1(K).

From (7.4) we have: ∫
B∞∩Ω

|Du0| >H 1(K).

Section 7.3 is devoted to a sharper argument than above to get∫
B∞∩Ω

|∇un| >
∫
B∞∩Ω

|∇un · V∞|+ δ

with δ > 0 is independent of n. The last estimate will imply
∫
B∞∩Ω |Du0| >

H 1(K) + δ which will be the contradiction we are looking for.
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Proof of Lemma 7.2. — We will first prove that for w ∈ C∞ ∩W 1,1(Ω) such
that tr∂Ωw = 1IK we have ∫

BN∩Ω
|∇w · VN | >

H 1(K)
1 + oN (1) . (7.8)

where VN is the vector field defined in (7.5) and (7.6).
Granted (7.8), we conclude as follows: if w ∈ C∞ ∩W 1,1(Ω) such that tr∂Ωw =

1IK, then ∫
B∞∩Ω

|∇w · V∞| = lim
N→∞

∫
BN∩Ω

|∇w · VN |

> lim
N→∞

H 1(K)
1 + oN (1) = H 1(K),

by dominated convergence.
It remains to prove (7.8). We fix w ∈ C∞ ∩W 1,1(Ω) such that tr∂Ωw = 1IK.

Using the Coarea Formula we have for N > 1 and k ∈ {1, ..., 2N}, with the help of
Lemma 6.3, we have

(1 + cN )
∫
B

(k)
N
∩Ω
|∇w · VN | >

∫
B

(k)
N
∩Ω
|∇Πk,N ||∇w · VN |

=
∫
R

dt
∫

Π−1
k,N

({t})∩Ω
|∇w · VN |.

Here, if Π−1
k,N ({t}) is non trivial, then Π−1

k,N ({t}) is a polygonal line:

Π−1
k,N ({t}) = Iσ(t,k,N) ∪ I1

k,N,t ∪ · · · ∪ IN+1
k,N,t

where
• σ(t, k,N) ∈ [AB] is such that [AB] ∩Π−1

k,N ({t}) = {σ(t, k,N)},
• Iσ(t,k,N) is defined in (5.1),
• for l = 1, ..., N we have I lk,N,t = Π−1

k,N ({t}) ∩ TN+1−l,
• IN+1

k,N,t = Π−1
k,N ({t}) ∩D+

N .
From the Fundamental Theorem of calculus and from the definition of VN , denoting

• Iσ(t,k,N) = [M0,M1] (where M0 ∈ ∂Ω \ ÃB and M1 = σ(t, k,N)),
• I lk,N,t = [Ml,Ml+1], l = 1, ..., N + 1 and MN+2 ∈ KN

k ,
we have for a.e. t ∈ Πk,N (KN

k ) and using the previous notation,∫
[Ml,Ml+1]

|∇w · VN | > |w(Ml+1)− w(Ml)|.

Here we used the convention w(Ml) = tr∂Ωw(Ml) for l = 0 and N + 2.
Therefore for a.e t ∈ Πk,N (KN

k ) we have∫
Π−1

k,N
({t})∩Ω

|∇w · VN | > |tr∂Ωw(MN+2)− tr∂Ωw(M0)| = 1IK(MN+2).

Since K ⊂ KN = ∪2N

k=1K
N
k , we may thus deduce that

(1 + cN )
∫
BN∩Ω

|∇w · VN | = (1 + cN )
2N∑
k=1

∫
B

(k)
N
∩Ω
|∇w · VN | >

∫
ÂB

1IK = H 1(K).
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The last estimate clearly implies (7.8) and completes the proof of Lemma 7.2. �

7.3. Transverse argument. We assumed that there exists a map u0 which solves
Problem (1.2).

We investigate the following dichotomy:
• u0 6≡ 0 in Ω \B∞;
• u0 ≡ 0 in Ω \B∞.

We are going to prove that both cases lead to a contradiction.

7.3.1. The case u0 6≡ 0 in Ω\B∞. We thus have
∫

Ω\B∞
|u0| > 0. In this case, since

(tr∂Ωu0)|∂Ω\∂B∞ ≡ 0, we have

δ :=
∫

Ω\B∞
|Du0| > 0. (7.9)

Estimate (7.9) is a direct consequence of the following lemma applied on each
connected components of Ω \B∞.

Lemma 7.4 (Weak Poincaré lemma). — Let ω ⊂ R2 be an open connected set.
Assume that there exist x0 ∈ ∂ω and r > 0 such that ω ∩B(x0, r) is Lipschitz.

If u ∈ BV (ω) satisfies tr∂ω∩B(x0,r) = 0 and
∫
ω
|Du| = 0 then u = 0.

Lemma 7.4 is proved in Appendix B.4.
Recall that we fixed a sequence (un)n ⊂ C1 ∩W 1,1(Ω) satisfying (7.3).
In particular, for sufficiently large n, we have∫

Ω\B∞
|∇un| >

δ

2 .

Thus, from Lemma 7.2 and the fact that |V∞(x)| = 1 for a.e. x ∈ B∞,∫
Ω
|∇un| >

∫
B∞

|∇un · V∞|+
∫

Ω\B∞
|∇un| >H 1(K) + δ

2 .

This implies ∫
Ω
|Du0| = lim

n

∫
Ω
|∇un| >H 1(K) + δ

2
which is in contradiction with (7.1).

7.3.2. The case u0 ≡ 0 in Ω \ B∞. We first note that, since tr∂D+
0
u0 6≡ 0, there

exists a triangle TN0
k such that

∫
T

N0
k

|u0| > 0. We fix such a triangle TN0
k and we

let α be the vertex corresponding to the right angle.
We let R̃ = (α, ẽ1, ẽ2) be the direct orthonormal frame centered in α where

ẽ2 = ν
C

N0
k

(ν
C

N0
k

is defined Remark 4.1.1), i.e., the directions of the new frame are
given by the side of the right-angle of TN0

k .

It is clear that for N > N0 we have VN ≡ ẽ2 in
◦
TN0
k .

By construction of B∞, TN0
k ∩ B∞ is a union of segments parallel to ẽ2, i.e.

1IB∞ |TN0
k

(s, t) depends only on the first variable "s" in the frame R̃.
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Since
∫
T

N0
k

|u0| > 0, in the frame R̃, we may find a, b, c, d ∈ R such that, consid-
ering the rectangle (whose sides are parallel to the direction of R̃)

P := {α+ sẽ1 + tẽ2 : (s, t) ∈ [a, b]× [c, d]} ⊂ TN0
k

we have ∫
P
|u0| > 0.

Since from Lemma 6.1 the set B∞ has an empty interior (and that 1IB∞ |TN0
k

(s, t)
depends only on the first variable in the frame R̃), we may find a′ < b′ such that

• [a′, b′]× [c, d] ⊂ [a, b]× [c, d],
• S ∩B∞ = ∅ with S := {α+ sẽ1 + tẽ2 : (s, t) ∈ {a′, b′} × [c, d]}

• δ :=
∫
P′
|u0| > 0 with P ′ := {α+ sẽ1 + tẽ2 : (s, t) ∈ [a′, b′]× [c, d]}.

Moreover, since S and B∞ are compact sets with empty intersection, we may find
V, an open neighborhood of S such that dist(V, B∞) > 0.

Noting that u0 ≡ 0 in Ω \B∞, from Lemma A.1 (in Appendix A) it follows that
for sufficiently large n we have

• un ≡ 0 in S,
•
∫
P′
|un| >

δ

2 .

Consequently, from a standard Poincaré inequality∫
P′
|∂ẽ1un| >

2
b′ − a′

∫
P′
|un| >

δ

b′ − a′
=: δ′.

Therefore
∫
P′ |∂ẽ1un| > δ′,

∫
P′ |∂ẽ2un| 6 2H 1(K) and then by Lemma 3.3 in [3]

we obtain: ∫
P′
|∇un| >

∫
P′
|∂ẽ2un|+

δ′2

4H 1(K) + δ′
.

Thus, from Lemma 7.2, for sufficiently large n:∫
Ω
|∇un| >H 1(K) + δ′2

4H 1(K) + δ′
− on(1).

From the convergence in BV -norm of un to u0 we have∫
Ω
|Du0| >H 1(K) + δ′2

4H 1(K) + δ′
.

Clearly this last assertion contradicts (7.1) and ends the proof of Theorem 1.1.

Appendices

Appendix A. A smoothing result

We first state a standard approximation lemma for BV -functions.

Lemma A.1. — Let Ω ⊂ R2 be a bounded Lipschitz open set and let u ∈
BV (Ω). There exists a sequence (un)n ⊂ C1(Ω) such that

(1) un
strictly−→ u in the sense that un → u in L1(Ω) and

∫
Ω
|∇un| →

∫
Ω
|Du|,

(2) tr∂Ωun = tr∂Ωu for all n,
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(3) for k ∈ {1, 2},∫
Ω
|∂kun| →

∫
Ω
|Dku| := sup

ß∫
Ω
u∂kξ : ξ ∈ C1

c (Ω,R) and |ξ| 6 1
™
,

(4) If u = 0 outside a compact set L ⊂ Ω and if ω is an open set such that
dist(ω,L) > 0 then, for large n, un = 0 in ω.

Proof. — The first assertion is quite standard. It is for example proved in
[1][Theorem 1]. We present below the classical example of sequence for such ap-
proximation result (we follow the presentation of [2][Theorem 1.17]).

Let Ω ⊂ R2 be a bounded Lipschitz open set and let u ∈ BV (Ω).
For n > 1, we let ε = 1/n. We may fix m ∈ N∗ sufficiently large such that letting

for k ∈ N

Ωk =
ß
x ∈ Ω : dist(x, ∂Ω) > 1

m+ k

™
we have ∫

Ω\Ω0

|Du| < ε.

We fix now A1 := Ω2 and for i ∈ N \ {0, 1} we let Ai = Ωi+1 \Ωi−1. It is clear that
(Ai)i>1 is a covering of Ω and that each point in Ω belongs to at most three of the
sets (Ai)i>1.

We let (ϕi)i>1 be a partition of unity subordinate to the covering (Ai)i>1, i.e.,
ϕi ∈ C∞c (Ai), 0 6 ϕi 6 1 and

∑
i>1 ϕi = 1 in Ω.

We let η ∈ C∞c (R2) be such that supp(η) ⊂ B(0, 1), η > 0,
∫
η = 1 and for

x ∈ R2 η(x) = η(|x|). For t > 0 we let ηt = t−2η(·/t).
As explained in [2], for i > 1, we may choose εi ∈ (0, ε) sufficiently small such

that 
supp(ηεi

∗ (uϕi)) ⊂ Ai∫
Ω
|ηεi
∗ (uϕi)− uϕi| <

ε

2i∫
Ω
|ηεi
∗ (u∇ϕi)− u∇ϕi| <

ε

2i .

.

Here ∗ is the convolution operator.
Define

un :=
∑
i>1

ηεi
∗ (uϕi).

In some neighborhood of each point x ∈ Ω there are only finitely many nonzero
terms in the sum defining un. Thus un is well defined and smooth in Ω.

Moreover, we may easily check that

‖un − u‖L1(Ω) +
∣∣∣∣∫

Ω
|Du| −

∫
Ω
|∇un|

∣∣∣∣ < ε (here ε = 1/n).

The previous estimate proves that (un) satisfies the first assertion, i.e. un
strictly−→ u.

As claimed in [2][Remark 2.12] we have tr∂Ωun = tr∂Ωu for all n. Thus the
second assertion is satisfied.
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We now prove the third assertion. Since un → u in L1(Ω), by inferior semi
continuity we easily get for k ∈ {1, 2}∫

Ω
|Dku| 6 lim inf

n→∞

∫
Ω
|∂kun|.

We now prove
∫

Ω
|Dku| > lim sup

n→∞

∫
Ω
|∂kun|.

Let ξ ∈ C1
c (Ω,R) with |ξ| 6 1. Since η is a symmetric mollifier and

∑
ϕi = 1 we

have

∫
Ω
un∂kξ =

∑
i>1

∫
Ω
ηεi
∗ (uϕi)∂kξ

=
∑
i>1

∫
Ω
uϕi∂k(ηεi

∗ ξ)

=
∑
i>1

∫
Ω
u∂k[ϕi(ηεi

∗ ξ)]−
∑
i>1

∫
Ω
u∂kϕi(ηεi

∗ ξ)

=
∑
i>1

∫
Ω
u∂k[ϕi(ηεi

∗ ξ)]−
∑
i>1

∫
Ω
ξ [ηεi

∗ (u∂kϕi)− u∂kϕi] .

On the one hand we have (note that ϕi(ηεi ∗ ξ) ∈ C1
c (Ai) and |ϕi(ηεi ∗ ξ)| 6 1)∣∣∣∣∣∣∑i>1

∫
Ω
u∂k[ϕi(ηεi

∗ ξ)]

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
A1

u∂k[ϕi(ηεi
∗ ξ)] +

∑
i>2

∫
Ai

u∂k[ϕi(ηεi
∗ ξ)]

∣∣∣∣∣∣
6

∫
Ω
|Dku|+

∑
i>2

∫
Ai

|Dku|

6

∫
Ω
|Dku|+ 3

∫
Ω\Ω0

|Dku|

6

∫
Ω
|Dku|+ 3ε.

Here we used that each point in Ω belongs to at most three of the sets (Ai)i>1, for
i > 2 we have Ai ⊂ Ω \ Ω0 and∫

Ω\Ω0

|Dku| 6
∫

Ω\Ω0

|Du| < ε.

On the other hand, since for i > 1
∫

Ω
|ηεi ∗ (u∇ϕi)− u∇ϕi| <

ε

2i , we get∣∣∣∣∣∣∑i>1

∫
Ω
ξ [ηεi

∗ (u∂kϕi)− u∂kϕi]

∣∣∣∣∣∣ 6∑i>1

∫
Ω
|ηεi
∗ (u∂kϕi)− u∂kϕi| < ε.

Consequently

sup
ß∫

Ω
un∂kξ : ξ ∈ C1

c (Ω,R) and |ξ| 6 1
™

=
∫

Ω
|∂kun| 6

∫
Ω
|Dku|+ 4ε
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and thus
lim sup

n

∫
Ω
|∂kun| 6

∫
Ω
|Dku|.

This inequality in conjunction with

lim inf
n

∫
Ω
|∂kun| >

∫
Ω
|Dku|

proves the third assertion of Lemma A.1.
The last assertion of Lemma A.1 is a direct consequence of the definition of the

un’s. �

Appendix B. Proofs of Lemma 2.2, Lemma 2.3, Lemma 2.4
and Lemma 7.4

B.1. Proof of Lemma 2.2. Let u ∈ BV (Q). We prove that∫
Q
|D2u| >

∫ 1

0
|tr∂Qu(·, 0)− tr∂Qu(·, 1)|.

From Lemma A.1, there exists (un)n ⊂ C1(Q) with tr∂Qun = tr∂Qu and such that
un

strictly−→ u and ∫
Q
|∂2un| →

∫
Q
|D2u|.

From Fubini’s theorem and the Fundamental theorem of calculus we have∫
Q
|∂2un| =

∫ 1

0
dx1

∫ 1

0
|∂2un(x1, x2)|dx2

>

∫ 1

0
dx1

∣∣∣∣∣
∫ 1

0
∂2un(x1, x2)dx2

∣∣∣∣∣
=

∫ 1

0
dx1 |tr∂Qun(x1, 1)− tr∂Qun(x1, 0)|

=
∫ 1

0
|tr∂Qu(·, 1)− tr∂Qu(·, 0)| .

Since
∫
Q |∂2un| →

∫
Q |D2u|, Lemma 2.2 is proved.

B.2. Proof of Lemma 2.3. Let Ω be a planar open set. Let u ∈ BV (Ω) be such
that ∫

Ω
|Du| =

∫
Ω
|D2u|.

We prove that
∫

Ω
|D1u| = 0. We argue by contradiction and we assume that∫

Ω
|D1u| > 0, i.e., there exists ξ ∈ C1

c (Ω) such that |ξ| 6 1 and

η :=
∫

Ω
u∂1ξ > 0.

Let (ξn)n ⊂ C1
c (Ω) be such that |ξn| 6 1 and

ηn :=
∫

Ω
u∂2ξn →

∫
Ω
|D2u|.
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For (α, β) ∈ {x ∈ R2 : |x| 6 1} we let ξ(n)
α,β = (αξ, βξn) ∈ C1

c (Ω,R2). Clearly,
|ξ(n)
α,β | 6 1 and ∫

Ω
|Du| >

∫
Ω
udiv(ξ(n)

α,β) = αη + βηn. (B.1)

If we maximize the right hand side of (B.1) w.r.t. (α, β) ∈ {x ∈ R2 : |x| 6 1}, then

we find with (α, β) =
Ç

η√
η2 + η2

n

,
ηn√
η2 + η2

n

å
that

∫
Ω
|Du| >

√
η2 + η2

n →
n→∞

√
η2 +

Å∫
Ω
|Du|
ã2

>

∫
Ω
|Du|.

This is a contradiction.

B.3. Proof of Lemma 2.4. Let u ∈ BV (Q) satisfying tr∂Qu = 0 in {0} × [0, 1].
We are going to prove that ∫

Q
|u| 6

∫
Q
|D1u|.

Let (un)n ⊂ C1(Ω) be given by Lemma A.1. Using the Fundamental theorem of
calculus we have for (x1, x2) ∈ Q that

|un(x1, x2)| 6
∫ x1

0
|∂1un(t, x2)|dt 6

∫ 1

0
|∂1un(t, x2)|dt.

Therefore, from Fubini’s theorem, we get∫
Q
|un| 6

∫
Q

dx1dx2

∫ 1

0
|∂1un(t, x2)|dt =

∫ 1

0
dx2

∫ 1

0
|∂1un(t, x2)|dt =

∫
Q

|∂1un|.

It suffices to see that
∫
Q |un| →

∫
Q |u| and

∫
Q
|∂1un| →

∫
Q
|D1u| to get the result.

B.4. Proof of Lemma 7.4. Let ω ⊂ R2 be an open connected set. Assume there
exist x0 ∈ ∂ω and r > 0 such that ω ∩B(x0, r) is Lipschitz.

Let u ∈ BV (ω) satisfying tr∂ω∩B(x0,r)u = 0 and
∫
ω
|Du| = 0. We are going to

prove that u = 0. On the one hand, since
∫
ω
|Du| = 0, we get u = C with C ∈ R a

constant. We thus have tr∂ω∩B(x0,r)u = C. Consequently C = 0 and u ≡ 0.

Appendix C. Results related to the Cantor set K

C.1. Justification of Remark 4.1.(1). We prove the following lemma:

Lemma C.1. — Let η > 0 and let f ∈ C2([0, η],R) be such that

η <
1

2‖f ′‖L∞([0,η])‖f ′′‖L∞([0,η])
.

We denote Cf the graph of f in an orthonormal frame R0.
For 0 6 a < b 6 η, denoting C the chord [(a, f(a)), (b, f(b))], for any straight

line D orthogonal to C such that D∩C 6= ∅, the straight line D intersects Cf,a,b at
exactly one point, where Cf,a,b is the part of Cf delimited by (a, f(a)) and (b, f(b)).

Remark C.2. — We may state an analog result with f ∈ C1 where we use the
modulus of continuity of f ′ instead of ‖f ′′‖∞ in the hypothesis.
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Proof. — The key point here is uniqueness. Indeed, for 0 6 a < b 6 η and C , D
as in the lemma, we may easily prove that Cf,a,b ∩D 6= ∅ by solving an equation.
(We do not use η < (2‖f ′‖L∞([0,η])‖f ′′‖L∞([0,η]))−1 for the existence)

In contrast with the existence of an intersection point, its uniqueness is valid only
for η not too large. To prove uniqueness we argue by contradiction and we consider
f and η as in lemma and we assume that there exist two points 0 6 a < b 6 η
such that there exist a 6 x < y 6 b such that the segments [(x, f(x)), (y, f(y))] and
[(a, f(a)), (b, f(b))] are orthogonal. Note that with this hypothesis the straight line
D := ((x, f(x)), (y, f(y))) is orthogonal to the chord C := [(a, f(a)), (b, f(b))].

So we get
f(y)− f(x)

y − x
= − b− a

f(b)− f(a) .

From the Mean Value Theorem, there exist c ∈ (x, y) and c̃ ∈ (a, b) such that
f ′(c) = − 1

f ′(c̃) . Consequently

f ′(c)× [f ′(c̃)− f ′(c)] = −1− [f ′(c)]2. (C.1)
From the hypothesis η < (2‖f ′‖L∞([0,η])‖f ′′‖L∞([0,η]))−1, we have

|f ′(c̃)− f ′(c)| 6 η‖f ′′‖L∞([0,η]) <
1

2‖f ′‖L∞([0,η])
.

Therefore, we get
|f ′(c)× [f ′(c̃)− f ′(c)]| < 1

2
which is in contradiction with (C.1). �

C.2. Two preliminary results. We first prove a standard result which states that
the length of a small chord is a good approximation for the length of a curve.

Lemma C.3. — Let 0 < η < 1 and let f ∈ C2([0, η],R+). We fix an orthonormal
frame and we denote Cf the graph of f in the orthonormal frame. Let A =
(a, f(a)), B = (b, f(b)) ∈ Cf (with 0 6 a < b 6 η) and let C = [AB] be the chord
of Cf joining A and B. We denote ÃB the arc of Cf with endpoints A and B.

We have
H 1(C ) 6H 1(ÃB) 6H 1(C ) {1 + (b− a)‖f ′′‖L∞ [2‖f ′‖L∞ + ‖f ′′‖L∞(b− a)]} .

Proof. — The estimate H 1(C ) 6 H 1(ÃB) is standard, we thus prove the sec-
ond inequality.

On the one hand

H 1(C ) =
»

(a− b)2 + [f(a)− f(b)]2 = (b− a)

√
1 +
Å
f(a)− f(b)

a− b

ã2
.

On the other hand

H 1(ÃB) =
∫ b

a

√
1 + f ′2.

With the help of the Mean Value Theorem, there exists c ∈ (a, b) such that
f(a)− f(b)

a− b
= f ′(c).
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Applying once again the Mean Value Theorem (to f ′), for x ∈ [a, b] there exists cx
between c and x such that

f ′(x) = f ′(c) + f ′′(cx)(x− c).
Consequently for x ∈ [a, b] we have:»

1 + f ′(x)2 =
»

1 + [f ′(c) + f ′′(cx)(x− c)]2

=
»

1 + f ′(c)2

 
1 + 2f ′(c)f ′′(cx)(x− c) + f ′′(cx)2(x− c)2

1 + f ′(c)2

6

√
1 +
Å
f(a)− f(b)

a− b

ã2[
1 + 2‖f ′‖L∞‖f ′′‖L∞(b− a) + ‖f ′′‖2L∞(b− a)2].

Thus we have

H 1(ÃB) =
∫ b

a

»
1 + f ′(x)2 dx

6 (b− a)

√
1 +
Å
f(a)− f(b)

a− b

ã2

[
1 + 2‖f ′‖L∞‖f ′′‖L∞(b− a) + ‖f ′′‖2L∞(b− a)2]

= H 1(C ) {1 + (b− a)‖f ′′‖L∞ [2‖f ′‖L∞ + ‖f ′′‖L∞(b− a)]} . �
We now state another technical lemma which gives an upper bound for the height

of the curve w.r.t. its chord.

Lemma C.4. — Let 0 6 a < b 6 η, f ∈ C2([0, η],R+) be a strictly concave
function and let Cf be the graph of f in an orthonormal frame. Let A = (a, f(a))
and B = (b, f(b)) be two points of Cf .

Assume that we have

η <
1

2‖f ′‖L∞([0,η])‖f ′′‖L∞([0,η])

in order to define for C ∈ [AB] (with the help of Lemma C.1) C̃ as the unique
intersection point of Cf with the line orthogonal to [AB] passing by C.

We have
H 1([CC̃]) 6 (b− a)2‖f ′′‖L∞

8 .

Proof. — Let 0 6 a < b 6 η, f ∈ C2([0, η],R+) be as in Lemma C.4.
We consider the function

g : [0, η] → R

x 7→ f(x)−
ï
f(b)− f(a)

b− a
(x− a) + f(a)

ò
.

It is clear that g is non negative since f is strictly concave.
For C ∈ [AB], we let C̃ be as in Lemma C.4. Then we have

sup
C∈[AB]

H 1([CC̃]) = max
[0,η]

g.

Thus, it suffices to prove max[0,η] g 6
(b− a)2‖f ′′‖L∞

8 .



NON-EXISTENCE OF LEAST GRADIENT FUNCTIONS 87

Since g is C1 and g(a) = g(b) = 0, there exists c ∈ (a, b) such that

g(c) = max
[0,η]

g and g′(c) = 0.

Let t ∈ {a, b} be such that |t − c| 6 b− a
2 . Using a Taylor expansion, there exists

c̃ between c and t such that

0 = g(t) = g(c) + (t− c)g′(c) + (t− c)2

2 g′′(c̃).

Thus

0 6 max
[0,η]

g = g(c) = − (t− c)2

2 g′′(c̃) 6 (b− a)2‖f ′′‖L∞
8 .

The last inequality completes the proof. �

C.3. Proof of Proposition 4.4. We prove that

lim inf
N→∞

H 1(KN ) > 0. (C.2)

Step 1. We prove that max
k=1,...,2N

H 1(CN
k ) 6

Å2
3

ãN
.

For N > 1 we let {KN
k : k = 1, ..., 2N} be the set of the connected components

of KN . We let CN
k be the chord of KN

k and we define µN = maxk=1,...,2N H 1(CN
k ).

Note that by (4.2) we have µ0 < 1.
We first prove that for N > 0 we have

µN+1 6
2
3µN . (C.3)

By induction (C.3) implies (since µ0 < 1)

µN 6
Å2

3

ãN
. (C.4)

In order to get (C.3), we prove that for N > 1 and KN
k a connected component of

KN and CN
k its chord, we have

H 1(C ) 6 2H 1(CN
k )

3 for C ∈ S(CN
k ) (C.5)

(see Definition 4.2 for S(·), the set of sons of a chord).
Let N > 1. For k ∈ {1, ..., 2N}, we let KN

k be a connected component of KN .
We let KN+1

2k−1,K
N+1
2k ∈ S(KN

k ) be the curve obtained from KN
k in the induction

step.
For k̃ ∈ {2k − 1, 2k}, we let CN+1

k̃
be the chords of KN+1

k̃
.

In the frame R0, we may define four points of Γ,

(a1, f(a1)), (b1, f(b1)), (a2, f(a2)), (b2, f(b2)),

with 0 < a1 < b1 < a2 < b2 < η, such that:
• the endpoints of KN+1

2k−1 are (a1, f(a1)) and (b1, f(b1));
• the endpoints of KN+1

2k are (a2, f(a2)) and (b2, f(b2));
• the endpoints of KN

k are (a1, f(a1)) and (b2, f(b2)).
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In the frame R0 we let (α1, β1), (α2, β2) be the coordinates of the points of CN
k such

that for l ∈ {1, 2}, the triangles whose vertices are {(al, f(al)); (bl, f(bl)); (αl, βl)}
are right angled in (αl, βl).

We denote
• I1 the segment [(b1, f(b1)); (α1, β1)];
• I2 the segment [(a2, f(a2)); (α2, β2)].

From the construction of KN+1
2k−1 and KN+1

2k and from the Pythagorean theorem we
have for l = 1, 2

H 1(CN+1
2k−2+l)

2 = H 1(Il)2 +
Å

H 1(CN
k )−H 1(CN

k )2

2

ã2

.

Using Lemma C.4 we get that

H 1(Il) 6 (b2 − a1)2‖f ′′‖L∞ .

On the other hand we have obviously b2 − a1 6H 1(CN
k ). Consequently we get

H 1(CN+1
2k−2+l)

2 6 H 1(CN
k )4‖f ′′‖2L∞ +

Å
H 1(CN

k )−H 1(CN
k )2

2

ã2

6 H 1(CN
k )4‖f ′′‖2L∞ + H 1(CN

k )2

4 .

Therefore

H 1(CN+1
2k−2+l) 6

H 1(CN
k )

2

»
1 + 4‖f ′′‖2L∞H 1(CN

k )2,

thus using (4.3) we get

H 1(CN+1
2k−2+l) 6

2H 1(CN
k )

3 .

The last estimate gives (C.5) and thus (C.4) holds.

Step 2. We prove that lim inf
N→∞

2N∑
k=1

H 1(CN
k ) > 0.

For N > 1, we let

cN =
2N∑
k=1

H 1(CN
k ).

The main ingredient in this step consists in noting that a son of CN
k is a hy-

pothenuse of a right angled triangle which admits a cathetus of length

H 1(CN
k )−H 1(CN

k )2

2 .

Consequently we have

H 1(CN+1
2k−1) + H 1(CN+1

2k ) >H 1(CN
k )−H 1(CN

k )2.
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Thus, summing the previous inequality for k = 1, ..., 2N we get

cN+1 =
2N∑
k=1

H 1(CN+1
2k−1) + H 1(CN+1

2k ) >
2N∑
k=1

H 1(CN
k )[1−H 1(CN

k )]

> cN (1− µN ) > cN
ñ

1−
Å2

3

ãNô
.

By induction for N > 2

cN > c1

N−1∏
k=1

ñ
1−
Å2

3

ãkô
= c1 × exp

[
N−1∑
k=1

ln
ñ

1−
Å2

3

ãkô]
.

It is clear that lim infN
∑N−1
l=1 ln

î
1−

( 2
3
)kó

> −∞, thus lim infN cN > 0.
Step 3. We prove (C.2).
Since for a connected component KN

k of KN and its chord CN
k we have

H 1(KN
k ) >H 1(CN

k ),

we obtain (C.2) from Step 2.

Appendix D. A fundamental ingredient in the construction
of the Ψ̃N ’s

In this section we use the notation of Sections 4 and 5.

Lemma D.1. — Let γ ⊂ ÃB be a curve and let C be its chord. We let γ1, γ2 be
the curves included in γ obtained by the induction construction represented Figure
4.1 (section 4.2). For l = 1, 2, we denote also by Cl the chord of γl and by Tl the
right-angled triangle having Cl as side of the right-angle and having its hypothenuse
included in C .

If H 1(C ) < min{2−1, (4‖f ′′‖2L∞)−2}, then the hypothenuses of the triangles T1

and T2 have their length strictly lower than H 1(C )
2 . In particular the triangles T1

and T2 are disjoint.

Remark D.2. — From (4.2), we know that C0 = C 0
1 is such that H 1(C 0

1 ) <
min{2−1, (4‖f ′′‖2L∞)−2}. From (C.3) we have that for N > 1 and k ∈ {1, ..., 2N}
we have H 1(CN

k ) < H 1(C 0
1 ) < min{2−1, (4‖f ′′‖2L∞)−2}.

Therefore with the help of Lemma D.1, for N > 1, the triangles TNk ’s are pairwise
disjoint.

Proof. — We model the statement by denoting {M,Q} the set of endpoints of
γ and N and P are points such that:

• M,N are the endpoints of γ1,
• P,Q are the endpoints of γ2.

We denote δ := H 1([MQ]) = H 1(C ) < min{2−1, (4‖f ′′‖2L∞)−2}.
We fix an orthonormal frame R̃ with the origin inM , with the x-axis (MQ) and

such that N,P,Q have respectively for coordinates (x1, y1), (x2, y2) and (x3, 0),
where 0 < x1 < x2 < x3 and y1, y2 > 0.
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By construction we have

x1 = δ − δ2

2 , x2 = δ + δ2

2 and x3 = δ.

Moreover, arguing as in the proof of Lemma C.4 we have (recall that ÃB is the
graph of a function f in an other orthonormal frame):

0 < y1, y2 6 δ
2‖f ′′‖L∞ .

b
(0, 0)

b
(x1, y1 = ax1)

b
(x2, y2 = αx2 + β)

b
(x3, 0)

y = ax

y = αx + β

b

(x4, 0)

b

(x5, 0)

Figure D.1. Model problem

From these points, in Section 4.2, we defined two right-angled triangles having
their hypothenuses contained in the x-axis.

The first triangle admits for vertices the origin (0, 0), (x1, y1) and a point of the
x-axis (x4, 0). This triangle is right angled in (x1, y1). In the frame R̃, one of the
side of the right-angle is included in the line parametrized by the cartesian equation
y = ax. Since δ 6 1/2, we have

|a| =
∣∣∣∣ y1

x1

∣∣∣∣ 6 2δ2‖f ′′‖L∞
δ − δ2 6 4‖f ′′‖L∞δ.

The second triangle admits for vertices (x2, y2), (x3, 0) and a point of the x-axis
(x5, 0). This triangle is right-angled in (x2, y2). In the frame R̃, one of the side
of the right-angle is included in the line parametrized by the cartesian equation
y = αx+ β, where

|α| =
∣∣∣∣ y2

x2 − x3

∣∣∣∣ 6 2δ2‖f ′′‖L∞
δ − δ2 6 4‖f ′′‖L∞δ.

The proof of the proposition consists in obtaining

x4 <
x3

2 and x3 − x5 <
x3

2 .

We get the first estimate. With the help of Pythagorean theorem we have

x2
1 + y2

1 + (x1 − x4)2 + y2
1 = x2

4.

By noting that y1 = ax1 we have

x4 = (1 + a2)x1.
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Thus:

x4 <
x3

2 ⇐⇒ (1 + a2)δ − δ
2

2 <
δ

2
⇐= (1 + 16‖f ′′‖2L∞δ2)(1− δ) < 1

⇐⇒ δ − δ2 <
1

16‖f ′′‖2L∞

⇐= δ <
1

16‖f ′′‖2L∞
.

Following the same strategy we get that if δ < 1
16‖f ′′‖2L∞

then x3 − x5 <
x3

2 .

�

Appendix E. Adaptation of a result of Giusti in [2]

In this appendix we present briefly the proof of Theorem 2.16 and Remark 2.17
in [2]. The argument we present below follows the proof of Theorem 2.15 in [2].

Proposition E.1. — Let Ω ⊂ Rn be a bounded open set of class C2 and let
h ∈ L1(∂Ω). For all ε > 0 there exists uε ∈W 1,1(Ω) such that tr∂Ωuε = h and

‖uε‖W 1,1(Ω) := ‖uε‖L1(Ω) + ‖∇uε‖L1(Ω) 6 (1 + ε)‖h‖L1(Ω).

Proof. — We sketch the proof of Proposition E.1. Let h ∈ L1(∂Ω) and let ε > 0
be sufficiently small such that

(1 + ε2)2 + ε2 + ε4 < 1 + ε

2 and (1 + ε2)ε2 <
ε

2 .
.

Step 1. We may consider η > 0 sufficiently small such that in Ωη := {x ∈ Ω :
dist(x, ∂Ω) < η} we have:

(1) The function
d : Ωη → (0, η)

x 7→ dist(x, ∂Ω)
is of class C1 and satisfies |∇d| > 1/2,

(2) The orthogonal projection on ∂Ω, Π∂Ω is Lipschitz.

We now fix a sequence (hk)k ⊂ C∞(∂Ω) such that hk
L1

→ h. We may assume
that (up to replace the first term and to consider an extraction):

(1) h0 ≡ 0,
(2)

∑
k>0 ‖hk+1 − hk‖L1 6 (1 + ε2)‖h‖L1 .

And finally we fix a decreasing sequence (tk)k ⊂ R∗+ such that
(1) t0 < min(η, ε2) is sufficiently small such that

• 4t0 max(1; ‖∇Π∂Ω‖L∞)×max(1, supk ‖hk‖L1) < min(ε2, ε2‖h‖L1),
• for ϕ ∈ L1(∂Ω) we have for s ∈ (0, t0)∫

d−1({s})
|ϕ ◦Π∂Ω(x)| 6 (1 + ε2)

∫
∂Ω
|ϕ(x)|.

(2) For k > 1 we have tk 6
t0‖h‖L1

2k(1 + ‖∇hk‖L∞ + ‖∇hk+1‖L∞) .
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Step 2. We define a map uε : Ω→ R by

x 7→


d(x)− tk+1

tk − tk+1
hk ◦Π∂Ω(x) + tk − d(x)

tk − tk+1
hk+1 ◦Π∂Ω(x) if d(x) ∈ [tk+1, tk)

0 otherwise.

We may easily check that uε is locally Lipschitz and thus weakly differentiable.
From the coarea formula and a standard change of variable we have

‖uε‖L1 6 2
∫
{d6t0}

|uε||∇d|

6 2
∫ t0

0
ds
∫
d−1({s})

|uε|dx

6 2
∑
k>0

∫ tk

tk+1

ds
∫
d−1({s})

|uε|dx

6 2
∑
k>0

∫ tk

tk+1

ds
∫
d−1({s})

[|hk ◦Π∂Ω(x)|+ |hk+1 ◦Π∂Ω(x)|]dx

6 2(1 + ε2)
∑
k>0

∫ tk

tk+1

ds
∫
∂Ω

[|hk(x)|+ |hk+1(x)|]dx

6 2(1 + ε2)
∑
k>0

(tk − tk+1)(‖hk‖L1 + ‖hk+1‖L1)

6 4(1 + ε2)t0 sup
k
‖hk‖L1

6 (1 + ε2)ε2‖h‖L1

6
ε

2‖h‖L
1 .

We now estimate ‖∇uε‖L1 . It is easy to check that if d(x) ∈ (tk+1, tk) then we
have

|∇uε(x)| 6 |∇d(x)|
ï |hk ◦Π∂Ω(x)− hk+1 ◦Π∂Ω(x)|

tk − tk+1

+ 2‖∇Π∂Ω‖L∞ [|∇hk| ◦Π∂Ω(x) + |∇hk+1| ◦Π∂Ω(x)]
ò
.

Consequently we get

‖∇uε‖L1 6 (1 + ε2)
∑
k>0

ß ∫ tk

tk+1

‖hk+1 − hk‖L1

tk − tk+1

+ 2‖∇Π∂Ω‖L∞(tk − tk+1)(‖∇hk+1‖L1 + ‖∇hk‖L1)
™

6 (1 + ε2)[(1 + ε2)‖h‖L1 + 2‖∇Π∂Ω‖L∞t0‖h‖L1 ]
6 (1 + ε2)[(1 + ε2) + ε2]‖h‖L1

6 (1 + ε/2)‖h‖L1 .

Consequently uε ∈W 1,1(Ω) and ‖uε‖W 1,1 6 (1 + ε)‖h‖L1 .
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In order to end the proof it suffices to check that tr∂Ω(uε) = h. The justification
of this property follows the argument of Lemma 2.4 in [2]. �
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